作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么我们该如何写一篇较为完美的教案呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。
圆柱的认识和侧面积教案圆柱的认识说课稿人教版篇一
对于圆柱的侧面积,传统的教法是:在认识了圆柱的特征之后,教师提问:怎样计算圆柱的侧面积呢?之后,引导学生分别沿着圆柱的高和一条斜线将圆柱的侧面展开,然后出示讨论题,从而推导出圆柱侧面积的计算方法。最后,便是一层层的巩固练习。很显然,这样设计教学活动,是以让学生理解圆柱侧面积计算公式的推导过程,会利用公式计算圆柱的侧面积为目标的。应该说,学生是在被动地接受知识。这种以接受知识为目的的教学已不适应培养时代新人的要求。为此,在设计此课教案时,我力求改变这种传统的教学,进行了如下的教学尝试。
【片断1】
生:独立分析
2、练习:求下面各圆柱的侧面积
(1)底面直径是12厘米,高2厘米。
(2)底面半径3厘米,高5厘米。
生:任选一题独立计算。
生:归纳小结。(略)
师:请同学们动脑子想一想,然后利用手中的学具检验想得对不对,最后上台来演示给大家看。
生:演示
5、这是一个圆柱体的侧面展开图。单位:厘米
请你给它配上合适的底面。(图片略)
整个教学过程,学生学习兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了学生的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片断1通过学生动手动脑,来突破难点;片断2引导学生在应用中加深认识,形成能力。
1、不教之教,使学生得到满足。
本节课,教师所说的话并不多,学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使学生不断探索交流,增强他们学习数学的兴趣与自信心。从而树立自己去探索真理的志向,这一切都会产生强烈的、稳定的内部诱因,使学生的智慧、能力、情感、信念等不断得到提升和超越,心灵受到震撼、心理得到满足。
2、主动探索,使学生获得成功。
动手实践,主动探索和合作学习是小学生学习数学的重要方式。苏霍姆林斯基说过:在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。
本节课,教师通过让学生动手卷纸,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的.同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。
3、在练习中,使不同学生享受成功。
在《数学课程标准》的教学建议中指出:“教师应鼓励学生对同一个问题积极寻求多种不同的思路,而不是以教科书上的或是教师事先预设的答案作为评价的依据,限制学生的发展。”学生勇于回答问题的行为教师首先应给予肯定,至于回答的正确与否,是第二位的,是由学生集体讨论逐步澄清的。教师不能把自己放在“裁判员”的角色上。否则,久而久之,学生在主体发展方面就会受到限制。
本节课,教师为学生提供了基本题以及多向思维的材料,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。
总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。
圆柱的认识和侧面积教案圆柱的认识说课稿人教版篇二
对于圆柱的侧面积,传统的教法是:在认识了圆柱的特征之后,教师提问:怎样计算圆柱的侧面积呢?之后,引导学生分别沿着圆柱的高和一条斜线将圆柱的侧面展开,然后出示讨论题,从而推导出圆柱侧面积的计算方法。最后,便是一层层的巩固练习。很显然,这样设计教学活动,是以让学生理解圆柱侧面积计算公式的推导过程,会利用公式计算圆柱的侧面积为目标的。应该说,学生是在被动地接受知识。这种以接受知识为目的的教学已不适应培养时代新人的要求。为此,在设计此课教案时,我力求改变这种传统的教学,进行了如下的教学尝试。
【片断1】
生:独立分析
2、练习:求下面各圆柱的侧面积
(1)底面直径是12厘米,高2厘米。
(2)底面半径3厘米,高5厘米。
生:任选一题独立计算。
生:归纳小结。(略)
师:请同学们动脑子想一想,然后利用手中的学具检验想得对不对,最后上台来演示给大家看。
生:演示
5、这是一个圆柱体的侧面展开图。单位:厘米
请你给它配上合适的底面。(图片略)
整个教学过程,学生学习兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了学生的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片断1通过学生动手动脑,来突破难点;片断2引导学生在应用中加深认识,形成能力。
1、不教之教,使学生得到满足。
本节课,教师所说的话并不多,学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使学生不断探索交流,增强他们学习数学的兴趣与自信心。从而树立自己去探索真理的志向,这一切都会产生强烈的、稳定的内部诱因,使学生的智慧、能力、情感、信念等不断得到提升和超越,心灵受到震撼、心理得到满足。
2、主动探索,使学生获得成功。
动手实践,主动探索和合作学习是小学生学习数学的重要方式。苏霍姆林斯基说过:在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。
本节课,教师通过让学生动手卷纸,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。
3、在练习中,使不同学生享受成功。
在《数学课程标准》的教学建议中指出:“教师应鼓励学生对同一个问题积极寻求多种不同的思路,而不是以教科书上的或是教师事先预设的答案作为评价的依据,限制学生的发展。”学生勇于回答问题的行为教师首先应给予肯定,至于回答的正确与否,是第二位的,是由学生集体讨论逐步澄清的。教师不能把自己放在“裁判员”的角色上。否则,久而久之,学生在主体发展方面就会受到限制。
本节课,教师为学生提供了基本题以及多向思维的材料,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。
总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。
圆柱的认识和侧面积教案圆柱的认识说课稿人教版篇三
作为一位杰出的教职工,总归要编写说课稿,借助说课稿可以有效提高教学效率。那么你有了解过说课稿吗?下面是小编为大家整理的小学六年级数学上册圆柱的认识和侧面积说课稿范文,仅供参考,希望能够帮助到大家。
对于圆柱的侧面积,传统的教法是:在认识了圆柱的特征之后,教师提问:怎样计算圆柱的侧面积呢?之后,引导学生分别沿着圆柱的高和一条斜线将圆柱的侧面展开,然后出示讨论题,从而推导出圆柱侧面积的计算方法。最后,便是一层层的巩固练习。很显然,这样设计教学活动,是以让学生理解圆柱侧面积计算公式的推导过程,会利用公式计算圆柱的侧面积为目标的。应该说,学生是在被动地接受知识。这种以接受知识为目的的教学已不适应培养时代新人的要求。为此,在设计此课教案时,我力求改变这种传统的教学,进行了如下的教学尝试。
圆柱的认识和侧面积教案圆柱的认识说课稿人教版篇四
对于圆柱的侧面积,传统的教法是:在认识了圆柱的特征之后,教师提问:怎样计算圆柱的侧面积呢?之后,引导学生分别沿着圆柱的高和一条斜线将圆柱的侧面展开,然后出示讨论题,从而推导出圆柱侧面积的计算方法。最后,便是一层层的巩固练习。很显然,这样设计教学活动,是以让学生理解圆柱侧面积计算公式的推导过程,会利用公式计算圆柱的侧面积为目标的。应该说,学生是在被动地接受知识。这种以接受知识为目的的教学已不适应培养时代新人的要求。为此,在设计此课教案时,我力求改变这种传统的教学,进行了如下的教学尝试。
生:独立分析
2、练习:求下面各圆柱的侧面积
(1)底面直径是12厘米,高2厘米。
(2)底面半径3厘米,高5厘米。
生:任选一题独立计算。
生:归纳小结。(略)
师:请同学们动脑子想一想,然后利用手中的学具检验想得对不对,最后上台来演示给大家看。
生:演示
5、这是一个圆柱体的侧面展开图。单位:厘米
请你给它配上合适的底面。(图片略)
整个教学过程,学生学习兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了学生的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片断1通过学生动手动脑,来突破难点;片断2引导学生在应用中加深认识,形成能力。
本节课,教师所说的话并不多,学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使学生不断探索交流,增强他们学习数学的兴趣与自信心。从而树立自己去探索真理的志向,这一切都会产生强烈的、稳定的内部诱因,使学生的智慧、能力、情感、信念等不断得到提升和超越,心灵受到震撼、心理得到满足。
动手实践,主动探索和合作学习是小学生学习数学的`重要方式。苏霍姆林斯基说过:在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。
本节课,教师通过让学生动手卷纸,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。
在《数学课程标准》的教学建议中指出:“教师应鼓励学生对同一个问题积极寻求多种不同的思路,而不是以教科书上的或是教师事先预设的答案作为评价的依据,限制学生的发展。”学生勇于回答问题的行为教师首先应给予肯定,至于回答的正确与否,是第二位的,是由学生集体讨论逐步澄清的。教师不能把自己放在“裁判员”的角色上。否则,久而久之,学生在主体发展方面就会受到限制。
本节课,教师为学生提供了基本题以及多向思维的材料,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。
总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。
圆柱的认识和侧面积教案圆柱的认识说课稿人教版篇五
对于圆柱的侧面积,传统的教法是:在认识了圆柱的特征之后,教师提问:怎样计算圆柱的侧面积呢?之后,引导学生分别沿着圆柱的高和一条斜线将圆柱的侧面展开,然后出示讨论题,从而推导出圆柱侧面积的计算方法。最后,便是一层层的巩固练习。很显然,这样设计教学活动,是以让学生理解圆柱侧面积计算公式的推导过程,会利用公式计算圆柱的侧面积为目标的。应该说,学生是在被动地接受知识。这种以接受知识为目的的教学已不适应培养时代新人的要求。为此,在设计此课教案时,我力求改变这种传统的教学,进行了如下的教学尝试。
【片断1】
生:独立分析
2、练习:求下面各圆柱的侧面积
(1)底面直径是12厘米,高2厘米。
(2)底面半径3厘米,高5厘米。
生:任选一题独立计算。
师:结合上面我们做的'三道题,谁能说一说怎样求圆柱的侧面积?
生:归纳小结。(略)
师:请同学们动脑子想一想,然后利用手中的学具检验想得对不对,最后上台来演示给大家看。
生:演示
5、这是一个圆柱体的侧面展开图。单位:厘米
请你给它配上合适的底面。(图片略)
整个教学过程,学生学习兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了学生的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片断1通过学生动手动脑,来突破难点;片断2引导学生在应用中加深认识,形成能力。
1、不教之教,使学生得到满足。
本节课,教师所说的话并不多,学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使学生不断探索交流,增强他们学习数学的兴趣与自信心。从而树立自己去探索真理的志向,这一切都会产生强烈的、稳定的内部诱因,使学生的智慧、能力、情感、信念等不断得到提升和超越,心灵受到震撼、心理得到满足。
2、主动探索,使学生获得成功。
动手实践,主动探索和合作学习是小学生学习数学的重要方式。苏霍姆林斯基说过:在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。
本节课,教师通过让学生动手卷纸,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。
3、在练习中,使不同学生享受成功。
在《数学课程标准》的教学建议中指出:“教师应鼓励学生对同一个问题积极寻求多种不同的思路,而不是以教科书上的或是教师事先预设的答案作为评价的依据,限制学生的发展。”学生勇于回答问题的行为教师首先应给予肯定,至于回答的正确与否,是第二位的,是由学生集体讨论逐步澄清的。教师不能把自己放在“裁判员”的角色上。否则,久而久之,学生在主体发展方面就会受到限制。
本节课,教师为学生提供了基本题以及多向思维的材料,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。
总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。
圆柱的认识和侧面积教案圆柱的认识说课稿人教版篇六
在教学工作者实际的教学活动中,常常要写一份优秀的说课稿,借助说课稿我们可以快速提升自己的教学能力。快来参考说课稿是怎么写的吧!下面是小编帮大家整理的圆柱的认识和侧面积说课稿范文,仅供参考,欢迎大家阅读。
对于圆柱的侧面积,传统的教法是:在认识了圆柱的特征之后,教师提问:怎样计算圆柱的侧面积呢?之后,引导学生分别沿着圆柱的高和一条斜线将圆柱的侧面展开,然后出示讨论题,从而推导出圆柱侧面积的计算方法。最后,便是一层层的巩固练习。很显然,这样设计教学活动,是以让学生理解圆柱侧面积计算公式的推导过程,会利用公式计算圆柱的侧面积为目标的。应该说,学生是在被动地接受知识。这种以接受知识为目的的教学已不适应培养时代新人的要求。为此,在设计此课教案时,我力求改变这种传统的教学,进行了如下的教学尝试。
【片断1】
生:独立分析
2、练习:求下面各圆柱的侧面积
(1)底面直径是12厘米,高2厘米。
(2)底面半径3厘米,高5厘米。
生:任选一题独立计算。
师:结合上面我们做的三道题,谁能说一说怎样求圆柱的'侧面积?
生:归纳小结。(略)
师:请同学们动脑子想一想,然后利用手中的学具检验想得对不对,最后上台来演示给大家看。
生:演示
5、这是一个圆柱体的侧面展开图。单位:厘米
整个教学过程,学生学习兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了学生的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片断1通过学生动手动脑,来突破难点;片断2引导学生在应用中加深认识,形成能力。
1、不教之教,使学生得到满足。
本节课,教师所说的话并不多,学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使学生不断探索交流,增强他们学习数学的兴趣与自信心。从而树立自己去探索真理的志向,这一切都会产生强烈的、稳定的内部诱因,使学生的智慧、能力、情感、信念等不断得到提升和超越,心灵受到震撼、心理得到满足。
2、主动探索,使学生获得成功。
动手实践,主动探索和合作学习是小学生学习数学的重要方式。苏霍姆林斯基说过:在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。
本节课,教师通过让学生动手卷纸,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。
3、在练习中,使不同学生享受成功。
在《数学课程标准》的教学建议中指出:“教师应鼓励学生对同一个问题积极寻求多种不同的思路,而不是以教科书上的或是教师事先预设的答案作为评价的依据,限制学生的发展。”学生勇于回答问题的行为教师首先应给予肯定,至于回答的正确与否,是第二位的,是由学生集体讨论逐步澄清的。教师不能把自己放在“裁判员”的角色上。否则,久而久之,学生在主体发展方面就会受到限制。
本节课,教师为学生提供了基本题以及多向思维的材料,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。
总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。
圆柱的认识和侧面积教案圆柱的认识说课稿人教版篇七
一、《圆柱的特征与侧面积》选自人教版第十二册第二单元,本内容是学生在认识长方形、圆等平面图形及正方体、长方体的基础上进行教学的。学生初步掌握了“化曲为直”的转化思想并已具备一定的几何图形与实物形状相互转化的能力。因此本课教学,应引导学生继续使用“化曲为直”的思维解决问题,为进一步学习圆柱的表面积,圆柱的体积,圆锥的体积打下必要的基础。
1、教学目标的确定:
知识目标:(1)通过观察、操作、交流使学生认识圆柱, 了解圆柱各部分名称, 理解并掌握圆柱的特征与圆柱侧面积的计算方法。
能力目标:(2)在操作实践过程中培养学生的动手操作能力和空间想象能力。
情感目标:⑶、使学生在与现实生活密切相关的问题情境中,体会学习“圆柱的特征与侧面积”知识的现实意义,激发学生对数学的好奇心和求知欲,积极的参与数学学习。
2、教学重点、难点
理解并掌握圆柱侧面的特征及侧面积的计算方法是本课的教学重点,同时也是教学难点。
3、教具、学具准备
教师准备:多媒体课件、圆柱形实物
让学生准备:圆柱形实物、剪刀、直尺、白纸、自己制作的圆柱。
教学方法:教学时主要采用“导探结合法”为进行教学。
学习方法:学生采用自主探究法学习为主。
㈠、情境导入,引发问题(发现问题)
(课件展示压路机图片),教师:压路机的前轮是什么图形?(学生说是圆柱体,)生活中有这样的圆柱体吗?学生举例(水桶,日光灯管,钢管,米缸等)。教师:你能找出这些图形的特征吗?(能)
㈡、探究新知、解决问题(解决问题,获取方法)
1、观察感知,认识圆柱特征。
请同学们结合手中实物,自学书本第31页,找出圆柱体的特征,然后小组互相指认这些名称。(通过触摸,比较,交流使学生明白圆柱(直圆柱)有两个底面,一个侧面,能找到不同的高。)
可能得到的结论与问题:圆柱体上下两个底面是完全相同的两个圆。
验证:在同一个圆柱中,怎样验证两个底面是完全相同的两个圆?我鼓励学生通过多种方法验证圆柱体两个底面的关系,如可以用画在纸上比较的方法,用颜料复印的方法,用剪成两段重合比较的方法等。
2、 圆柱侧面的展开图与侧面积计算,
⑴展开侧面
认识了圆柱的特征,现在你知道压路机用哪个面压路的吗?会计算它一周的压路面积吗?(大多数说:不会)我们一起来找找计算方法吧。
a、如果沿着高剪开,展开图形是长方形或正方形。
b、如果斜着剪开,展开图形是平行四边形。
c、如果任意剪开或撕开,展开图形是不规则图形。
⑵、通过合作交流与探究得到圆柱侧面积的计算方法
在学生归纳出圆柱侧面积的计算方法后,我再现情境习题,让学生用归纳的方法解决实际问题,进一步理解、掌握圆柱侧面积的计算方法,突破教学难点。
应用:课件给出压路机滚筒的周长是3.14米,和滚筒的长1.5米。
(学生用刚学的知识解决问题后,一定兴趣高涨,我趁机用多媒体展示问题)
(三)、分层练习、巩固提高(验证方法,获取经验)
1、指出下面图形中哪些是圆柱(书上第35页第1题)。图略
4、实践:把圆柱形实物放在讲座上,询问学生怎样求出它的侧面积?学生通过观察与对比,发现应量出圆柱底面的周长和圆柱的高,然后指名学生上台来操作,下面的同学记录数据并进行计算。你想自己来量一量吗?要求小组合作测量一个圆柱形实物的侧面积(做好必要的数据记录与实验过程)小组汇报答案,教师把答案填写在表格中:(表格略)(习题的设计力求目标明确,针对性强,特别第4题我的考虑是:小学生的归纳应用能力有限,因此重难点地方给予必要的示范可以让学生更加深刻的理解计算圆柱的侧面积要知道哪些条件,通过自己动手测量既锻炼了动手操作能力,又加强了圆柱侧面积的计算,)
(四)、总结整理、深化认知(提炼方法,升华理论)
新课已经教学完毕,为了帮助学生梳理本课知识,我根据板书引导学生归纳本节课学了哪些知识,学会了什么,还有什么问题?对自己今天表现满意吗?最后师生一起为本节课命名。
板书设计:
特 征
直圆柱,粗细相同
上下两个底面是完全相同的两个圆
圆柱的曲面叫侧面
两底面间的距离叫高,高有无数条,都相等
圆柱的侧面
沿高剪:长方形或正方形
长方形的宽(b) = 圆柱体的高(h)
长方形的长(a) = 圆柱底面周长(c)
长方形面积=长×宽
圆柱侧面积=圆柱底面周长(c)×圆柱体的高(h)
s=ab
s=ch
圆柱的认识和侧面积教案圆柱的认识说课稿人教版篇八
1、在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。
3、积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。
教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物。
1、 我们生活在一个多姿多彩的大千世界,在我们的身边随处可见各种各样不同形状的物品,你们看——(课件出示),你能说出哪些物体的的形状是圆柱?(指名说)在我们的生活中,你还见过哪些形状是圆柱的物体?(指名说)
1、 认识圆柱
(1) 学生观察,并用手摸表面。
(2) 集体交流。(指名说)(教师随机介绍并板书:圆柱的上、下两个面叫做底面,它们是完全相同的两个圆。圆柱还有一个曲面,叫做侧面。
(3) 通过刚才的仔细观察,动手实践,同学们都有所发现,下面我们一起来整理一下。(课件出示)这就是圆柱的特点,我们一起来读一下,注意我有一个要求,就是要把关键词重读出来,能做到吗?(齐读一遍)
(4) 师介绍:圆柱两底之间的距离叫做高。大家想一想:圆柱有多少条高?(无数条)
2、 圆柱的侧面积。
(1)(出示)师:这是一个(圆柱)形状的茶叶桶,谁能给大家指出这个圆柱各部分的名称?(指名到前面来指)
(2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)
(3)那大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)
师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,得到了一个(长方形),也就是说圆柱的侧面展开后是一个(长方形)
(4)下面请同学们认真观察,想一想:
①我们得到的这张长方形纸的长和宽分别与这个圆柱形茶叶桶有什么关系?
②长方形的面积与茶叶桶的侧面积有什么关系?(课件出示)
同桌互相讨论一下。
集体交流。(指名说,教师随即板书)
长方形的面积 长 宽
圆柱的侧面积 底面周长 高
(5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高
这就是我们一起推导出来的圆柱的侧面积公式,一起读两遍,记住它。
那大家想一想,要想计算圆柱的侧面积必须得知道哪两个条件?(圆柱的底面周长和高)
刚才通过我们打家共同的努力一起推导出了计算圆柱侧面积的公式,下面我们就应用这个公式,走进生活,去解决生活中的问题。
3、请同学们拿出你课前准备的圆柱形的物体,同桌合作:先动手测量出要求它的侧面积所需要的数据,然后在练习本上计算它的侧面积。
通过这节课的学习,你都有什么收获?(指名说)
1、在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。
2、课后练一练1、3题做在练习本上。