音乐是一种美妙的艺术表达方式,它能够抚慰人心,激发灵感。在写总结时,要注重突出事物的本质和核心,同时也要注意逻辑严密和语言简练。高效职场人士总结了自己多年的经验,与大家分享,希望能为大家带来启示。
答:变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。
1.2什么是局部放电?
答:局部放电是指高压电器中的绝缘介质在高压电的作用下,发生在电极之间但未贯通的放电。
1.3局放试验的目的是什么?
答:发现设备结构和制造工艺的缺陷,例如:绝缘内部局放电场过高,金属部件有尖角;绝缘混入杂质或局部带有缺陷,防止局部放电对绝缘造成损坏。
1.4什么是铁损?
答:变压器的铁损又叫空载损耗,它属于励磁损耗而与负载无关,它不随负载大小而变化,只要加上励磁电压后就存在,它的大小仅随电压波动而略有变化。包括铁心材料的磁滞损耗、涡流损耗以及附加损耗三部分。
1.5什么是铜损?
答:负载损耗又称铜损,它是指在变压器一对绕组中,一个绕组流经额定电流,另一个绕组短路,其他绕组开路时,在额定频率及参考温度下,所汲取的功率。
1.6什么是高压首端?
答:与高压中部出头连接的2至3个饼,及附近的纸板、相间隔板等叫做高压首端(强调电气连接)。
1.7什么是高压首头?
答:普通220kv变压器高压线圈中部出头一直到高压佛手叫做高压首头(强调空间位置)。
1.8什么是主绝缘?它包括哪些内容?
答:主绝缘是指绕组(或引线)对地(如对铁轭及芯柱)、对其他绕组(或引线)之间的绝缘。
它包括:同柱各线圈间绝缘、距铁心柱和铁轭的绝缘、各相之间的绝缘、线圈与油箱的绝缘、引线距接地部分的绝缘、引线与其他线圈的绝缘、分接开关距地或其他线圈的绝缘、异相触头间的绝缘。
1.9什么是纵绝缘?它包括哪些内容?
答:纵绝缘是指同一绕组上各点(线匝、线饼、层间)之间或其相应引线之间以及分接开关各部分之间的绝缘。
它包括:桶式线圈的层间绝缘、饼式线圈的段间绝缘、导线线匝的匝间绝缘、同线圈引线间的绝缘、分接开关同触头间的绝缘。
1.10高压试验有哪些?分别考核重点是什么?
答:高压试验包含空载试验、负载试验、外施耐压试验、感应耐压试验、局部放电试验、雷电冲击试验。
(1)空载试验主要考核测量变压器的空载损耗和空载电流,验证变压器铁心设计的计算、工艺制造是否满足标准和技术条件的要求,检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。
(2)负载试验主要考核产品设计或制造中绕组及载流回路中是否存在缺陷;
(4)感应耐压试验主要考核变压器的纵绝缘;
(5)局部放电试验主要考核变压器的整体绝缘性能;
(6)雷电冲击试验主要考核变压器绝缘结构、绝缘质量是否能经受大气放电造成的过电压的冲击。
1.11生产中为什么要注意绝缘件清洁?
答:绝缘件清洁与否对变压器电气强度影响很大,若绝缘件上有粉尘,经过油的冲洗就随油游动起来。因为粉尘中有许多金属粒子,它在电场的作用下,排列成串,形成带电体之间通路(搭桥),从而破坏了绝缘强度,造成放电。电压越高,粉尘游离越严重,越容易放电。
2库仑定律。
3电场强度。
4电势能和电势。
5电势差。
6电势差与电场强度的关系。
7静电现象的应用。
8电容器的电容。
9带电粒子在电场中的运动。
1电源和电流。
2电动势。
3欧姆定律。
4串联电路和并联电路。
5焦耳定律。
6电阻定律。
7闭合电路的欧姆定律。
8多用电表。
9实验:测定电池的电动势和电阻。
10简单的逻辑电路。
1磁现象和磁场。
2磁感应强度。
3几种常见的磁场。
4磁场对通电导线的作用力。
5磁场对运动电荷的作用力。
6带电粒子在匀强磁场中的运动。
磁场对电流的作用力;1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力f等于磁感应强度b、电流i和导线长度l三者的乘积。2、定义式f=bil(适用于匀强电场、导线很短时)3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。
所有磁场都是由电流产生的;
(1)洛仑兹力f一定和b、v决定的平面垂直。(2)洛仑兹力只改变速度的方向而不改变其大小(3)洛伦兹力永远不做功。
2、洛伦兹力的大小(1)当v平行于b时:f=0(2)当v垂直于b时:f=qvb。
焦耳定律是定量说明传导电流将电能转换为热能的定律,下面是焦耳定律知识点,希望对考生有帮助。
1、焦耳定律反映了电流热效应的规律,是能量转化和守恒定律在电能和内能转化中的体现。由公式q=i2rt可知,电流通过导体产生的热量和电流强度i,电阻r及通电时间t有关,又因为产生的热量跟导体中电流强度的平方成正比,所以,电流强度大小的变化对产生热量多少影响更大。
2、运用公式q=i2rt解决问题时,电流强度i的单位是安,电阻r的单位是欧,时间t的单位是秒,热量q的单位才是焦耳,即各物理量代入公式前应该先统一单位。用电功公式和欧姆定律推导焦耳定律公式的前提是电能全部转化为内能。因为电能还可能同时转化为其他形式,所以只有电流所做的功全部用来产生热量,才有成立。
3、电热器的原理是电流的热效应,它表现的是电流通过导体都要发热的现象,在这一现象中产生热量的多少可运用焦耳定律计算。发热体是电热器的主要组成部分,它的作用是将电能转变为内能供人类使用。
从个人现实明确怎么办。有的放矢、主动高效。
2、抓住物理课本,落实基础知识。
课本是学习之本,是知识的载体,同时也是高考命题的重要参考。大多高考题在课本中都可以找到原型,所以抓纲务本。方可落实“五基”即:基本概念、基本规律、基本实验、基本模型、基本方法。
3、抓住课堂复习,提高复习质量。
课堂是学习的主战场,听课是主业,跟老师思路走,抓知识方法重点,力争当堂明白。注意,预习了才能真正的跟上老师的思路,跟上思路了才能抓重点,所有学生都要把握的重点就是公共重点,但重要的是要捉住自己个性化的重点,每个人的知识点认知和把握情景是不一样的,各有各的需求,自己缺什么就抓什么,重点一定要有个性化,要听懂个性化的重点,当堂消化掉。
4、抓住网络建立,形成知识体系。
要想落实知识,形成能力、提上科学素养,就必须注重知识体系、方法体系两大体系的建立,把知识点穿成知识线,把知识线织成成知识面,把知识面构成知识体。左勾右联、上挂下牵把知识形成一个有机的体系。只有这样,才能做到对知识全面理解。
1、有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器.它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。
随着光照的增强,载流子增多,导电性变好。光照越强,光敏电阻阻值越小。
3、金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。
金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。
二、传感器的应用(一)。
1.光敏电阻。
2.热敏电阻和金属热电阻。
3.电容式位移传感器。
4.力传感器————将力信号转化为电流信号的元件。
5.霍尔元件。
霍尔元件是将电磁感应这个磁学量转化为电压这个电学量的元件。
横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板左右两例会形成稳定的电压,被称为霍尔电势差或霍尔电压。
三、
传感器的应用(二)。
1.传感器应用的一般模式。
2.传感器应用:
力传感器的应用——电子秤。
声传感器的应用——话筒。
温度传感器的应用——电熨斗、电饭锅、测温仪。
光传感器的应用——鼠标器、火灾报警器。
四、传感器的应用实例:
1、光控开关。
2、温度报警器。
五、传感器定义。
国家标准gb7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
中国物联网校企联盟认为,传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。
“传感器”在新韦式大词典中定义为:“从一个系统接受功率,通常以另一种形式将功率送到第二个系统中的器件”。
六、主要作用。
人们为了从外界获取信息,必须借助于感觉器官。
而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。
新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。
在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或状态,并使产品达到的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。
在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到fm的粒子世界,纵向上要观察长达数十万年的天体演化,短到s的瞬间反应。此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。
显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。
传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。
由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。
有些选择题选项的代数表达式比较复杂,需经过比较繁琐的公式推导过程,此时可在不违背题意的前提下选择一些能直接反应已知量和未知量数量关系的特殊值,代入有关算式进行推算,依据结果对选项进行判断。
“二级结论”是由基本规律和基本公式导出的推论。熟记并巧用一些“二级结论”可以使思维过程简化,节约解题时间。非常实用的二级结论有:(1)等时圆规律;(2)平抛运动速度的反向延长线过水平位移的中点;(3)不同质量和电荷量的同性带电粒子由静止相继经过同一加速电场和偏转电场,轨迹重合;(4)直流电路中动态分析的“串反并同”结论;(5)平行通电导线同向相吸,异向相斥;(6)带电平行板电容器与电源断开,改变极板间距离不影响极板间匀强电场的强度等。
在解决某些物理问题的过程中直接入手有一定的难度,改变思考问题的顺序,从相反的方向进行思考,进而解决问题,这种解题方法称为逆向思维法。逆向思维法的运用主要体现在可逆性物理过程中(如运动的可逆性、光路的可逆性等),也可运用反证归谬法等,逆向思维法是一种具有创造性的思维方法。
等效替换法是把陌生、复杂的物理现象、物理过程在保证某种效果、特性或关系相同的前提下,转化为简单、熟悉的物理现象、物理过程来研究,从而认识研究对象本质和规律的一种思想方法。等效替换法广泛应用于物理问题的研究中,如:力的合成与分解、运动的合成与分解、等效场、等效电源等。
有些选择题本身就是估算题,有些貌似要精确计算,实际上只要通过物理方法(如:数量级分析),或者数学近似计算法(如:小数舍余取整),进行大致推算即可得出答案。估算是一种科学而有实用价值的特殊方法,可以大大简化运算,帮助考生快速地找出正确选项。
所谓类比分析法,就是将两个(或两类)研究对象进行对比,分析它们的相同或相似之处、相互的联系或所遵循的规律,然后根据它们在某些方面有相同或相似的属性,进一步推断它们在其他方面也可能有相同或相似的属性的一种思维方法。在处理一些物理背景很新颖的题目时,可以尝试着使用这种方法。
将某些物理量的数值推向极值(如设动摩擦因数趋近零或无穷大、电源内阻趋近零或无穷大、物体的质量趋近零或无穷大、斜面的倾角趋于0°或90°等),并根据一些显而易见的结果、结论或熟悉的物理现象进行分析和推理的一种办法。
对称情况存在于各种物理现象和物理规律中,应用这种对称性可以帮助我们直接抓住问题的实质,避免复杂的数学演算和推导,快速解题。
通过分析、推理和计算,将不符合题意的选项一一排除,最终留下的就是符合题意的选项。如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中只可能有一种说法是正确的,当然,也可能两者都错。
(2)非可再生能源(举例煤炭、石油、天然气等矿物能源和核能)。
二、资源开发条件。
1、资源状况——煤炭资源丰富,开采条件好。
(1)储量丰富。
(2)分布范围广,40%的土地下都有煤田分布。
(3)煤种齐全,十大煤种都有分布。
(4)煤质优良,低灰、低硫、低磷、发热量高。
(5)开采条件好,多为中厚煤层,埋藏浅。
2、市场——广阔。
(1)人口增加和社会经济发展使我国对能源的需求进一步增加;
(2)我国以煤为主的能源结构在相当长的时期内不会改变。
3、交通条件——位置适中,交通比较便利。
北中南三条运煤铁路分别是大秦线、神黄线、焦日线。
1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力。
先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑。
洛仑兹力安培力,二者实质是统一;相互垂直力,平行无力要切记。
3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。
两力合力小和大,两个力成q角夹,平行四边形定法。
合力大小随q变,只在最小间,多力合力合另边。
多力问题状态揭,正交分解来解决,三角函数能化解。
4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做。
状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做。
假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做。
正交分解选坐标,轴上矢量尽量多。
二、曲线运动、万有引力。
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比r,
mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。
卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快。
距离越远越慢行,同步卫星速度定,定点赤道上空行。
1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:
静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。
2、利用高压静电产生的电场,应用有:
静电保鲜、静电灭菌、作物种子处理等。
3、利用静电放电产生的臭氧、无菌消毒等。
雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。
二、静电的防止。
静电的主要危害是放电火花,如油罐车运油时,因为油与金属的振荡摩擦,会产生静电的积累,达到一定程度产生火花放电,容易引爆燃油,引起事故,所以要用一根铁链拖到地上,以导走产生的静电。
另外,静电的吸附性会使印染行业的染色出现偏差,也要注意防止。
2、防止静电的主要途径:
(1)避免产生静电。如在可能情况下选用不容易产生静电的材料。
(2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。
1.定义:电流流过导体产生的热量跟电流的平方、导体的电阻和通电时间成正比。
2.意义:电流通过导体时所产生的电热。
3.适用条件:任何电路。
二、电阻定律。
1.电阻定律:在一定温度下,导体的电阻与导体本身的长度成正比,跟导体的横截面积成反比。
2.意义:电阻的决定式,提供了一种测电阻率的方法。
3.适用条件:适用于粗细均匀的金属导体和浓度均与的电解液。
三、欧姆定律。
1.欧姆定律:导体中电流i跟导体两端的电压u成正比,跟它的电阻r成反比。
2.意义:电流的决定式,提供了一种测电阻的方法。
3.适用条件:金属、电解液(对气体不适用)。适用于纯电阻电路。
四、库伦定律。
五、电阻率。
1.意义:电阻率是反映导体材料导电性能的物理量。材料导电性能的好坏用电阻率p表示,电阻率越小,导电性能越好,电阻率越大,表明在相同长度,相同横截面积的情况下,导体电阻就越大。
2.决定因素:由材料的种类和温度决定,与材料的长短、粗细无关。一般常用合金的电阻率大于组成它的纯金属的电阻率。
3.与温度的关系:各种材料的电阻率都随温度的变化而变化。金属的电阻率随温度的升高而增大(可用于制造电阻温度计);半导体和电介质的电阻率随温度的升高而减小(半导体的电阻率随温度的变化较大,可用于制造热敏电阻)。
首先、要将教材通读一遍,了解知识的来龙去脉,知道定理定律的适用条件,注意事项,这些都做到了之后,要把公式、概念背的滚瓜烂熟,这是解决一切问题的基础。如果记不准,那列方程求解就是错的。做一道题目错一道题目。背的时候眼看、口念、手抄,让各个感官都收到刺激,以多种方式作用于大脑,这样记得快、牢。考试时用错公式是最冤枉、最徒劳无益的,就象出差时坐错了火车,怎么开也到不了目的地。
二、公式理解记忆。
学生在高中物理的学习中,会接触很多的高中物理公式,怎么才能够记住这些公式呢!高中的物理公式比较多,而且很多的公式非常的相近,学生要想学好高中物理,想要提高自己的分数,就必须要对这些物理公式理解性的记忆。相同的符号可能代表不同的物理量,就需要这些学生把这些物理公式理解性的记忆之后,才能够灵活地应用于物理题目中。
三、大量练习物理题。
有的物里知识点在老师讲解的过程中,学生基本上能够理解。但是要真正地应用到屋里体重,这些学生会感觉非常的困难。就是这些学生理解了公式的含义,理解了这些知识点的含义,但是没有办法真正的灵活应用到物理题目中,就需要这些学生大量的练习物理题。
四、复习。
有的同学课后总是急着去完成作业,结果是一边做作业,一边翻课本、笔记。而在这里我要强调我们首先要做的不是做作业,而应该静下心来将当天课堂上所学的内容进行认真思考、回顾,在此基础上再去完成作业会起到事半功倍的效果。
复习的方法我们可以分成以下两个步骤进行:首先不看课本、笔记,对知识进行尝试回忆,这样可以强化我们对知识的记忆。之后我们再钻研课本、整理笔记,对知识进行梳理,从而使对知识的掌握形成系统。
4、机械振动的特点:
(1)往复性;
(2)周期性;
(1)回复力的大小与位移成正比;
(2)回复力的方向与位移的方向相反;
(3)计算公式:f=-kx;
如:音叉、摆钟、单摆、弹簧振子;
例1:从a至o,从o至a/,是一次全振动吗?
例2:振动物体从a/,出发,试说出它的一次全振动过程;
1、振幅用a表示;
2、回复力f大=ka;
3、物体完成一次全振动的路程为4a;
4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;
1、t=t/n (t表示所用的总时间,n表示完成全振动的次数)
2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于t/4;
1、f=n/t;
2、f=1/t;
3、固有频率:由物体自身性质决定的频率;
1、若从平衡位置开始计时,其图像为正弦曲线;
2、若从最远点开始计时,其图像为余弦曲线;
3、简谐运动图像的作用:
(1)确定简谐运动的周期、频率、振幅;
(2)确定任一时刻振动物体的位移;
(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动
1、当单摆的摆角很小(小于5度)时,所作的运动是简谐运动;
2、单摆的周期公式:t=2π(l/g)1/2
1、产生机械波的条件:
(1)有波源;
(2)有介质;
3、波在传播时,各质点所作的运动形式:在波的传播过程中,各质点只在平衡位置两侧作往复运动,并不随波的前进而前移。
4、波的'作用:
(1)传播能量;
(2)传播信息
本专业主要培养掌握物理学基本理论与方法,具有良好的数学基础和基本实验技能,掌握电子技术、计算机技术、光纤通信技术、生物医学物理等方面的应用基础知识、基本实验方法和技术,能在物理学、邮电通信、航空航天、能源开发、计算机技术及应用、光电子技术、医疗保健、自动控制等相关高校技术领域从事科研、教学、技术开发与应用、管理等工作的高级专门人才。
物理学专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。
声学是物理学的一个二级学科,是研究媒质中机械波(即声波)的科学,研究范围包括声波的产生,接受,转换和声波的各种效应。同时声学测量技术是一种重要的测量技术,有着广泛的应用。最简单的声学就是声音的产生和传播,这也是声学研究的基础。
材料物理专业培养较系统地掌握材料科学的基本理论与技术,具备材料物理相关的基本知识和基本技能,能在材料科学与工程及与其相关的领域从事研究、教学、科技开发及相关管理工作的材料物理高级专门人才。
要求有坚实的物理、数学基础,对本学科的现状和发展趋势有一定了解,并有较好的专业理论和专业技术。应较为熟练地掌握一门外国语,能阅读本专业的外文资料。具有一定的运用计算机及先进仪器设备在光学某一领域独立从事科学研究的能力,既有严谨求实的科学态度又有开拓进取的精神。可以胜任高等学校和研究单位的教学、研究及高技术开发工作。
一、磁场:
1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用;。
2、磁铁、电流都能能产生磁场;。
3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;。
4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;。
1、磁感线是人们为了描述磁场而人为假设的线;。
2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;。
3、磁感线是封闭曲线;。
三、安培定则:
四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);。
五、磁感应强度:磁感应强度是描述磁场强弱的物理量。
2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)。
3、磁感应强度的国际单位:特斯拉t,1t=1n/a。m。
六、安培力:磁场对电流的作用力;1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力f等于磁感应强度b、电流i和导线长度l三者的乘积。
3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;
如:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;
(1)位移为零、路程不一定为零;路程为零,位移一定为零;
(2)只有当质点作单向直线运动时,质点的位移才等于路程;
(3)位移的国际单位是米,用m表示。
5、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;
(1)匀速直线运动的位移图像是一条与横轴平行的直线;
(2)匀变速直线运动的位移图像是一条倾斜直线;
(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;
6、速度是表示质点运动快慢的物理量;
(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;
(2)速率只表示速度的大小,是标量;
7、加速度:是描述物体速度变化快慢的物理量;
(1)加速度的定义式:a=vt-v0/t。
(2)加速度的大小与物体速度大小无关;
(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;
(5)加速度是矢量,加速度的方向和速度变化方向相同;
(6)加速度的国际单位是m/s2。