2023年函数的奇偶性教学反思 数的奇偶性教学反思(精选5篇)
文件格式:DOCX
时间:2023-09-14 00:00:00    小编:高工要跑路

2023年函数的奇偶性教学反思 数的奇偶性教学反思(精选5篇)

小编:高工要跑路

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

函数的奇偶性教学反思篇一

“数的奇偶性”这课共有2课时内容,其中第1课时主要是引导学生运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

我的教学如下:

一、独立解决。这是一道生活问题,从字面上看,是很难想到它与“数的奇偶性”有任何联系的。教学时,发现学生解决问题的方法有很多种,有用“摆头”或“摆手”的方式模仿摆渡、有在纸上画图的……大部分学生都能解决。

二、观察分析——透过现象看本质。在引导学生观察并得出摆渡偶数次时船在南岸,奇数次时船在北岸的规律后,我追问:“如果这只小船是从南岸到北岸最后再回东岸,如此不断往返,我们发现的这个规律还成立吗?为什么?”学生在再次探索后发现规律不适应,而对于其本质原因却无法准确阐述。为什么用“数的奇偶性”可以解决小船在南北岸往返摆渡却无法解决小船在南北东岸往返摆渡的问题?在教师的进一步引导下,学生发现数与小船摆渡存有共性,即“数要不是奇数要不是偶数与小船要不在南岸要不在北岸”,也就是结果都是“二选一式的”,而当出现小船经过南北岸后还得过东岸时,这种共性就被打破了,因此规律也就不适应了。

三、策略运用的拓展延续与拓展。深究后,学生对“数的奇偶性”解决问题策略的应用,有一个更为深入的认识。他们充分认识到事件发生的可能如果是“二选一式的”的生活问题,都能运用数的奇偶性特性加以解决。最后我再要求学生“想想,生活中还有哪些事件发生的可能也是属于‘二选一式的’”,让学生寻找存有“共性”的问题,为方法策略的运用迁移做好储备。

函数的奇偶性教学反思篇二

1.数形结合,帮助学生建构数学模型。

数形结合就是用图形与数联系起来,通过图形,促进形象思维与抽象思维有机结合,化繁为简,化难为易,让学生用多种感觉器官充分感知,在形成表象的基础上进行想象、联想。从学生已有生活经验出发,让学生亲历将实际问题抽象成数学模型,理解数学概念,同时在思维能力、情感态度等方面都得到发展。

2.实践操作,让学生自主探索规律。

在新课标理念下,依据学生的学习和成长需求,合理设计教学活动,使学生加深对知识的理解,提高实践能力。而不是被动接受外界刺激,对新的知识信息进行加工理解,让每个学生依据自己的体验,用自己的思维方式,去探索,去发现,去再创造。例如:在探索前,通过学生剪一剪、拼一拼、补一补等活动,观察能否拼成长方形的手段来认识这一特性,避免数与数抽象枯燥的比较。教学中教师应多给学生创设一些机会,让学生全面参与到实践活动中去,自主、平等、开放地去探索,让他们去做自己想做的,在做中学,做中发现创造。

3.联系生活,让学生自己解决问题。

数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境。

函数的奇偶性教学反思篇三

“数的奇偶性”是义务教育课程标准实验教科书北师大版五年级上册第一单元的教学内容。教学是在学生学习了质数、合数等知识,认识了相关的奇数、偶数概念的基础上展开的,旨在引导学生开展自主探究活动,去发现数的奇偶性及其在加、减法运算中的变化规律,并能运用规律去解释(或解决)生活中的一些现象和问题。

数的奇偶性比较抽象,教材将这一学习内容安排为用数学活动的形式教学,不仅能调动学生学习的积极性,而且能使学生在活动中体验数学问题的探索性和挑战性,培养学生科学的研究态度和学习方法。数的奇偶性的变化规律对于五年级的学生而言不难掌握。因此,本节课的着力点应放在规律探索及发现过程,在教学中积极渗透解决问题的数学思想及方法。 为此,本节课围绕以下两个活动展开。

“活动1”的目的是引导学生从自身的生活经验出发,结合生活情境,发现加减运算中和与差变化的奇偶性规律,进而使数学知识回归生活,解决简单的实际问题。

学生用——列举或画示意图的方法很快就判断出第11次小船摆渡的位置,但当人次扩大到几十甚至上百次后,直觉告诉他们,继续“列举”将会很麻烦,这就迫使学生不得不重新思考解决问题的方法,由此将学生的思维水平推向更高的层次。在这一环节中,通过开展小组合作学习,使学生思维的火花在与同伴交流中相互碰撞、相互启发,逐渐将列举法规范为列表法,并从表中很快发现规律:摆渡次为奇数时,与初始位置是相对的,摆渡为偶数次时,与初始位置是相同的。

“活动 2”。这一环节,我给学生足够的时间去观察、研究、讨论、验证。通过反复的推理、验证、总结出“奇数+偶数=奇数、奇数+奇数=偶数、偶数+偶数=偶数”等规律。

数的奇偶性在加法运算中的变化规律被发现和验证后,有的同学急切地想知道数的奇偶性在减法以及乘、除法中又会有怎样的变化规律。对此,我们放手让学生用本节课上学到的科学方法去进一步探究,如讨论、查阅资料等,使学习内容从课内向课外延伸,有效拓展了学生的认知领域。

函数的奇偶性教学反思篇四

“数的奇偶性”这课共有2课时内容,其中第1课时主要是引导学生运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

我的教学如下:

一、独立解决。这是一道生活问题,从字面上看,是很难想到它与“数的奇偶性”有任何联系的。教学时,发现学生解决问题的方法有很多种,有用“摆头”或“摆手”的方式模仿摆渡、有在纸上画图的……大部分学生都能解决。

二、观察分析——透过现象看本质。在引导学生观察并得出摆渡偶数次时船在南岸,奇数次时船在北岸的规律后,我追问:“如果这只小船是从南岸到北岸最后再回东岸,如此不断往返,我们发现的这个规律还成立吗?为什么?”学生在再次探索后发现规律不适应,而对于其本质原因却无法准确阐述。为什么用“数的奇偶性”可以解决小船在南北岸往返摆渡却无法解决小船在南北东岸往返摆渡的问题?在教师的进一步引导下,学生发现数与小船摆渡存有共性,即“数要不是奇数要不是偶数与小船要不在南岸要不在北岸”,也就是结果都是“二选一式的”,而当出现小船经过南北岸后还得过东岸时,这种共性就被打破了,因此规律也就不适应了。

三、策略运用的拓展延续与拓展。深究后,学生对“数的奇偶性”解决问题策略的应用,有一个更为深入的认识。他们充分认识到事件发生的可能如果是“二选一式的”的生活问题,都能运用数的奇偶性特性加以解决。最后我再要求学生“想想,生活中还有哪些事件发生的可能也是属于‘二选一式的’”,让学生寻找存有“共性”的问题,为方法策略的运用迁移做好储备。

函数的奇偶性教学反思篇五

1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单的问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现计算中数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

3、在学习“数的奇偶性”的活动中,能组织学生积极参与数学学习活动,用我的情感塑造学生的情感。

教学重点:发现加减法中数的奇偶性的变化规律

教学难点:能应用数的奇偶性分析和解释生活中一些简单问题

一、创设情景,激发学生的求知欲望

二、探索新知

活动一:师生互动,组织学生通过多种方法发现规律(在游戏——翻手掌中发现规律)

1、让全体学生做游戏(翻手掌)

课件出示游戏规则:所有学生手心向下,然后依次手心向上还是向下,再把手心向下,这样来回翻。

2、思考你翻5次后,手心向下还是向上?开始游戏

学生交流:你是怎样想的?

3、思考你翻11次后,手心向下还是向上?开始游戏

学生交流:你是怎样想的?

4、思考你翻100次后,手心向下还是向上?开始游戏

(为什么有的同学停下来了,要翻1000次、9999次怎么办呢?)

5、思考:要解决翻100次后你的手心向下还是向上?该怎么办?

(1)独立思考

(2)集体汇报交流

(3)老师进行解决问题方法的指导:列表或画图。

6、通过解决这些问题,观察板书,你有什么发现?

翻奇数次后,手心朝 。

翻偶数次后,手心朝 。

9思考:有人说手心翻了999次后,手心向下,这种说法对吗?为什么?

10、同桌问一问:手心翻了()次后,手心向(),为什么?

活动二:扩展延伸、巩固所学

1、原来利用数的奇偶性可以帮助我们解决一些问题。

(1)请同学用手里的杯子,完成第14页的试一试 (课件出示:一个杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上。翻动10次后,杯口朝 ,翻动19次后杯口朝。尝试说说理由)

a、独立思考

b、集体交流,指名说说自己的想法

(2)体会奇偶数的相对性

改变杯子开始状态杯口朝下,看有什么规律

质疑 :为什么刚才奇数次杯口朝下,现在奇数次的杯口确向上呢?

小结:因为每次的起点不一样。所以的奇数次位置也会发生改变。但我们只要记住第一次的位置,就可以以不变应万变。

2、结合生活实际,运用所学解决问题

根据你的生活经验,你能举出和今天学习的类似的例子吗?

(二)自主探究奇偶性在计算中的作用

1、出示下面的数,让学生判断圈里、方框框里的数各是什么数?

1、11、21、49、21、25、37、3、101、87

2、12、18、20、6、34、80、16、52

偶数

奇数

2、探究奇偶性的规律:

(1)你们从圆中任意选两个数相加或相减,我就能判断它们的和或差是奇数还是偶数?(不信或信)

想知道老师这么快说出来的奥秘吗?

(2)让学生从正方形中任选2个数相加或相减,看你能发现什么规律?

(3)再写几组两个偶数相加减的算式,进行验证.

(4)得出结论:当两数都是偶数时,加减后的结果一定是偶数。

(5)如果从圆中任选两个数他们的和或差是奇数还是偶数?尝试验证并得出结论。

当两数都是偶数时,加减后的结果一定是偶数

(6)如果要使两个数他们的和或差是奇数,该怎么办?

个别学生可能说:我想从圆中任选一个数再从正方形中任选一个数,他们的和是奇数。

(三步的设计意图:教师由扶到半扶半放最后到放手让学生发现数学计算中的奇偶变化规律。)

3、总结:通过刚才的研究,你们发现了什么规律?(能用一句话概括吗?

(1)、对于确定的两个数,无论加法还是减法,运算后的奇偶性是一样的。

(2)、当两数的奇偶性相同时,加减后的结果一定是偶数;当两数的奇偶性不同时,加减后的结果一定是奇数。

10389+20xx 11387+131 268+1024

思考:你是怎样判断的?

5、你敢来挑战吗?

2+4+6+8+10……+998+1000

2+4+6+8+10……+998+1000+1

同学们学得很好,掌握了这些规律,我们就可以发现生活中的一些小秘密。

三、实践应用,解决问题

1、小 小 编 辑

你能从我们天天翻看的数学书里发现有关数的奇偶性的问题吗?

a、独立思考。

b、集体交流。

打开和闭合书分别对应着翻的次数;奇数页在正面,偶数页在背面……

2、开关的秘密

(1)独立思考,同桌讨论。

(2)集体交流。

四、畅谈收获

你学到了什么?

五、实践作业的布置

判断结果的奇偶性,并说说你发现了什么?

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
2023年函数的奇偶性教学反思 数的奇偶性教学反思(精选5篇) 文件夹
复制