2024年百分数的应用教案(通用10篇)
文件格式:DOCX
时间:2023-09-19 00:00:00    小编:你好打工人采访

2024年百分数的应用教案(通用10篇)

小编:你好打工人采访

教案是教师根据教学目标和教学要求所设计的一系列教学活动的计划和指南。教案的编写过程中需要考虑学生的特点和实际情况。教案范文中的教学设计和教学活动的选择,结合了学科知识的传授和学生的实践操作。

百分数的应用教案篇一

在六年级(上册)“认识百分数”里,教学了百分数的意义,并联系后项是100的比,体验了百分数又叫做百分比或百分率;教学了百分数与分数、小数的互化,尤其是百分数与小数的相互改写,为应用百分数解决实际问题做了必要的准备;还教学了简单的求一个数是另一个数的百分之几的问题,初步应用了百分数。在此基础上,本单元继续教学百分数的应用,包括四个内容,依次是求一个数比另一个数多(或少)百分之几的实际问题,根据已知的税率求应缴纳的税款以和根据已知的利率求应得的利息,与折扣有关的实际问题,较复杂的已知一个数的百分之几是多少,求这个数的实际问题。编排了六道例题、四个练习,把全单元的内容分成四段教学,最后还有单元的整理与练习。

1.以实际问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。

解答例1的关键是理解问题的具体含义,教材借助直观的线段图,让同学考虑“实际造林比原计划多百分之几”应该怎样理解。明确这个问题是求实际造林面积超越原计划的公顷数相当于计划造林公顷数的百分之几,从而发生先算出实际造林比原计划多4公顷,再求4公顷是计划造林面积16公顷的百分之几这样的思路。或者先算出实际造林面积是原计划的125%,再得出实际造林比原计划多25%的结论。两条思路、两种算法都是把原计划造林公顷数看作单位“1”(即100%),在线段图上能清楚地看到,两种解法最终都是求实际造林比原计划多的局部是原计划的百分之几。练习一第1题利用已知的“是百分之几”求“增加百分之几”,或者利用已知的“增加百分之几”求“是百分之几”,通过百分数之间的相互转化,进一步理解“增加百分之几”的含义,还带出了“下降百分之几”这个概念。

实际造林比原计划多百分之几与原计划造林比实际少百分之几是两个不同的问题,前者是实际造林比原计划多的公顷数与原计划造林公顷数相比,后者是原计划造林比实际造林少的公顷数与实际造林公顷数相比,解决两个问题的算式中,被除数的意义不同,除数也不同。教材编写“试一试”的目的就是要突出这些不同,要求教师在适当的时候组织同学将“试一试”和例题的计算结果进行比较,研究为什么得数不同,进一步理解这两个问题的含义与数量关系。练习一第5题里,第(1)、(2)题的条件相同,问题不同,第(2)、(3)题的条件不同,问题也不同。通过解题与比较,能使同学更正确地理解“是百分之几”与“高百分之几”的含义。第7题分别求巧克力的单价比奶糖、水果糖和酥糖贵百分之几,要依次把巧克力比奶糖、水果糖、酥糖贵的单价与奶糖、水果糖、酥糖的单价相比,反复体验求一个数比另一个数多百分之几的解题思路与方法。第8题以表格形式出现求百分数的问题,首次把百分数应用于统计表中。

2.把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。

例2结合纳税教学求一个数的百分之几是多少的问题,先找到数学问题“60万元的5%是多少”,然后把求一个数的几分之几是多少的经验迁移过来,得到“求一个数的百分之几是多少,也用乘法计算”,于是列出算式60×5%。在上面的过程中,关键在于寻找数学问题,只要理解了缴纳的营业税是60万元的5%,同学就会想到用乘法计算,把求一个数的百分之几纳入原有的经验系统,从而发展认知结构。在计算60×5%时,可以把5%化成5/100,也可以化成0.05,前一种算法又一次体验了求一个数的百分之几与求一个数的几分之几是一致的,用乘法计算是合理的。在“练一练”里,由于6.2×5/100的计算比6.2×0.05麻烦,所以计算含有百分数的乘法一般把百分数化成小数。

百分数的应用教案篇二

1.使学生联系百分数的意义认识折扣的含义,了解打折在日常生活中的应用,并联系对“求一个数的百分之几是多少”的已有认识,学会列方程解答“已知一个数的百分之几是多少,求这个数”以及与打折有关的其他实际问题,进一步体会有关百分数问题的内在联系,加深对百分数表示的数量关系的理解。

2.使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,体验成功的乐趣,增强学好数学的信心。

百分数的应用教案篇三

北师大版小学数学第十一册第二单元p41,p42“百分数的应用(四)”

教学目标。

1,能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。

2,结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

教学重,难点。

进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。

教学过程。

准备。

1,口算。

20÷10%=120×90%=1—100%=50÷20%=。

40×20%=200×9%=200%+120%=70×5%=。

2,课前布置学生分小组到银行去调查利率并了解有关储蓄的知识(对利率进行板书)。

3,师小结,引出课题。

二,探究思考。

(1)学生要自己个人的意愿分别存款。(并且进行板书)。

(2)师小结:同学们想得很周到,我们存钱时应该根据自己的实际情况,确定怎样存,刚才同学们说的存款方式,到期后利息究竟是多少呢(教师给出计算利息公式:税后利息=本金×年利率×年限,并给出年利率表,学生计算300元存一年和三年整存整取的利息。)。

师:从去年开始,个人在银行存款所得利息应按5%纳税,这就是利息税。国家将这部分税收用于社会福利事业。

师:下面大家再算一算300元存一年和三年整存整取各应交多少利息税。

学生写完后汇报:

师:只有国债和教育储蓄是不需要交利息税的。

练习:41页试一试1。

三,练习巩固。

四,课堂总结。

通过今天的学习你有什么收获。

百分数的应用教案篇四

1、掌握分数、百分数应用题的结构特点和解题方法,会解答一至三步计算的分数、百分数应用题,会有条理地说明它们的思路,会按照题目的具体情况选择简便的解答方法,能应用所学的知识解决生活中的一些简单的实际问题。

3、正确判断作为单位“1”的量是学习的重点。

5、在发芽率的公式中为什么要乘以100%是学习的难点。

6、在工程问题中,用“1”表示工作总量,用单位时间。

内完成工作总量的几分之几表示工作效率,是学习。

的难点。

7、有条理地说明解题思路是学习的难点。

第一课时:10、30。

一、复习分数乘法的意义。

一个数乘以分数就是求这个数的几分之几。

如:

二、要解决的问题。

1、求一个数的几分之几(百分之几)。

2、已知一个数的几分之几,求这个数。

如:(1)15的是多少?

(2)已知一个数的是12,这个数是多少?

例1、一条公路长2400米,已修了全长的,还剩。

下多少米?

分析:根据题意,已修了全长的,是把全长(2400米)看作“单位1”,未修的路程是全长的(1-),要求还剩下多少米就是求2400米的(1-)是多少。

答:还剩下960米。

例2、修路队要修一条公路,已修了1440米,正好占。

全长的,还要修多少米?

分析:已修的正好占全长的,是把全长看作“单位1”,

答:还要修960米才完成任务。

百分数的应用教案篇五

“学生能尝试,尝试能成功。”本节课采用五步六环节的尝试教学法,始终坚持先练后讲,先试后导,先学后教的理念,尊重学生已有的知识水平。在此基础上借鉴课堂实录中的一些设计把学生想要学的想要理解的全部交待清楚了。

百分数的应用教案篇六

使学生进一步掌握用所学知识解答有关百分数问题的方法。

用所学知识解决生活中的实际问题,使学生爱学习,愿意合作。

进一步学习用方程和用算术方法解决百分数除法应用题的方法。

引导学生根据分数乘法的意义找出等量关系式,再根据乘除法的.关系列出除法算式,或者直接根据关系式列方程解答问题。

教学准备:写有试题的小黑板。

1、复习百分数、小树、分数间的互化方法。在填写表格中的空格,对学困生进行辅导。

2、做第2题,用颜色涂出62.5%要指导学生把百分数化成分数再涂。

3、做第3题,要学生说出命中率的含义,再求命中率。

4、做第5题,先提问:百分号前面保留一位小数,应除到哪一位?并指导学困生练习除。

5、做第6题,先让学生估计一天中睡眠时间有几小时,在校时间有几小时,一天共有几小时。再实际算一算。

谈一谈自己的收获,说说自己有什么新的发现。

练习六。

把百分数化成小数:62.5%=625/1000=5/8。

命中率:命中的次数占射击总次数的百分之几。

百分数的应用教案篇七

2.理解算理,使学生学会计算定期存款的利息.。

3.初步掌握去银行存钱的本领.。

教学重点。

1.储蓄知识相关概念的建立.。

2.一年以上定期存款利息的计算.。

教学难点。

“年利率”概念的理解.。

教学过程。

一、谈话导入。

教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?

教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.。

二、新授教学。

(一)建立相关储蓄知识概念.。

1.建立本金、利息、利率、利息税的概念.。

(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.。

(2)教师板书:

存入银行的钱叫做本金.。

取款时银行多支付的钱叫做利息.。

利息与本金的比值叫做利率.。

2.出示一年期存单.。

(1)仔细观察,从这张存单上你可以知道些什么?

(2)我想知道到期后银行应付我多少利息?应如何计算?

3.出示二年期存单.。

(1)这张存单和第一张有什么不同之处?

(2)你有什么疑问?(利率为什么不一样?)。

4.出示国家最新公布的定期存款年利率表.。

(1)你发现表头写的是什么?

怎么理解什么是年利率呢?

你能结合表里的数据给同学们解释一下吗?

(2)小组汇报.。

(3)那什么是年利率呢?

(二)相关计算。

1.帮助张华填写存单.。

2.到期后,取钱时能都拿到吗?为什么?

教师介绍:自11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)。

3.算一算应缴多少税?

4.实际,到期后可以取回多少钱?

(三)总结。

请你说一说如何计算“利息”?

三、课堂练习。

1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息。

2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:

(1)800×11.7%。

(2)800×11.7%×2。

(3)800×(1+11.7%)。

(4)800+800×11.7%×2×(1-20%)。

四、巩固提高。

(一)填写一张存款单.。

1.预测你今年将得到多少压岁钱?你将如何处理?

2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?

五、课堂总结。

通过今天的学习,你有什么收获?

六、布置作业。

百分数的应用教案篇八

今天这节课,老师准备与同学们一起应用百分数的知识来解决一些实际问题。(出示课题:百分数的综合应用)。

二.基本练习。

师:老师想向大家了解一些情况,你们愿意吗?

生:愿意。

师:你的身高是多少?

生1:我的身高是1米58。

生2:我的身高是152厘米。

生3:我的身高是145厘米。

师:你的体重是多少千克?

生1:我的体重是43千克。

生2:我的体重是38.5千克。

师:自己的身高和体重都知道,但你知道自己体内大约有多少千克的血液在流动吗?(生茫然并窃窃私语。)。

师:你们称过吗?(生:没有)能称吗?(生:不能)。

学生根据自己的体重来计算体内的血液重量。

反馈:

生:我的体内有4.7千克的血液。

师:是怎样计算的?

生:用自己的体重乘以7%。

师:你们都是这样来算的吗?

生:是。

(学生讲述计算过程,教师板书算式。)。

生:我的体重是44千克,所以是44×7%。

生:能知道自己的头有多高。

师:你想知道自己的头高吗?(生:想)请算一算吧!(学生计算,师巡回。)。

反馈:

生:我的身高是155厘米,头高就是155×14.28%=22.134厘米。

生:我的身高是141厘米,头高就是141×14.28%=20.13厘米。

师:与上面同学的计算结果比较一下,我们的头高都一样吗?为什么?

生:头高不一样,是因为身高不相同。

师:老师的头高是21.7厘米,你能帮老师算算身高吗?(课件同步出示)。

(学生计算,师巡回。)。

反馈:

生:老师的身高是21.7÷14.28%=151厘米。

师:都一样吗?(生:一样)噢,老师谢谢你们啦!(个别学生开始举手)你想说什么?

生:不对,这里是12岁左右的少年头高是身高的14.28%,老师是成年人了。

胎儿的头高约占身高的33.3%。

婴儿的的头高约占身高的25%。

12岁左右的少年,头高约占自己身高的14.28%。

成人的头高约占身高的12.5%。

请你选择合适的条件,再为老师算算身高。(学生计算)。

生:老师的身高应该是21.7÷12.5%=173.6厘米。

师:大家一样吗?(生:一样)这才差不多,虽然第一次计算身高时选择的条件是错误的,但是思考的方法是(生:正确的)。

生:商店打折的折扣。

生:银行的存款利率。

生:小麦的发芽率。

生:产品的合格率。

三.巩固深化。

师:看样子,百分数的知识作用可不小啊!老师也收集了一些这方面的材料(课件出示)这些问题你们有信心解决吗?(生:能)。

如果在解决过程中碰到困难可以同桌讨论,也可以向老师求援,能用多种方法解决那就更好了。

(学生练习,巡回指导。)。

反馈讲评:

(1)某班有男生25人,女生20人,男生人数比女生多百分之几?

反馈时提问:为什么除以20,而不除以25呢?还有其它方法吗?

反馈时提问:你是怎样思考的?

(2)小明家刚买了一套新房,向银行贷款40000元,月利率是0.466%,期限。

一年,到期时应付利息多少元?

反馈时提问:利息如何算?12从哪里而来?

(4)如右图,练市到南昌的总路程约是985千米,其中练市。

到杭州约占总路程的10%,老师坐汽车从练市到杭州用了2小时。

照这样计算,从练市到南昌要多少小时?

解法一:985÷(985×10%÷2)=20小时。

你是怎样思考的?

解法二:2÷10%=20小时。

师:这样简单,你解释一下好吗?

生:路程是全程的10%,在速度不变的情况下,那么从练市到杭州所用的时间应是全部时间的10%。

(学生讨论,同组互说。)。

归纳:一般是先找关键句,确定单位“1”的量,再根据具体情况,进行具体地分析。

四.综合练习。

1.课件出示:练市小学的基本概况。

练市小学创办于19,已有80多年的历史。创办初期只有13位教师,8个班级,而现在已有25个班,占地8400平方米,其中绿化面积占总面积的20%,学校教师数比创办初期增加了400%,现在在校学生1220人,相当于创办初期的488%。

师:根据这些情况,你还能知道一些其它的问题吗?

生:可以知道练市小学现在有多少位教师。

生:可以知道练市小学的绿化面积是多少。

生:可以知道练市小学创办初期有多少学生。

师:请把你最想知道的问题计算出来。

反馈:

师:(指着8400×20%=1680平方米)能说一说你算的是什么吗?

生:我算的是绿化面积有多少平方米。

师:指着“13×(1+400%)=65(人)”你猜一猜他算的是什么?

生:他计算的是现在学校教师的人数。

师:还有其它的吗?

师:讲的真不错,从这里我们可以看出练市小学在不断地发展,为了给我们同学更好的学习环境,我校正在新建一座现代化的新校。(出示新校设计效果图)。

课件出示:

有62吨砂子准备运往建校工地,甲乙两人都想承运这批砂子。

甲说:我有一辆载重10吨的大卡车,每次运费元。如果这些砂子全部由我运,运费可以打九折。

乙说:我有一辆载重4吨的小卡车,每次运费90元。如果这些砂子全部由我运,运费可以打八五折。

师:根据这样的情况,请你们设计几种不同的运货,并算出总运费。(同桌合作)。

生:我们决定全部由甲运:总运费是:62÷10≈7次;7××90%=1260元。

生:我们决定由甲乙合运:甲运5次,乙运3次,总运费是:5×+3×90=1270元。

师:你怎么会想到由甲运5次,乙运3次呢?

生:这样运可以不运半车的,效率比较高。

师:上面有三种不同的运货,你们最喜欢哪一种?请说明理由。

生:我喜欢第二个,运费比较省。

生:我喜欢第三种,同时合运比较快。

百分数的应用教案篇九

教学内容:

教学目标:

1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。

2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

教学重点:

进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。

教学过程:

一、谈话引入。

课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。

师:课前同学们到银行调查了有关储蓄的知识,哪个小组愿意和大家交流你们的调查情况。

组1:我知道人们把钱放到银行是有好处的。可以得到一些利息。

组3:我们调查了存款的年利率。

存期(整存整取)。

年利率%。

一年2.25。

二年2.70。

三年3.24。

五年3.60。

组4:我们知道国债和教育储蓄不收利息税,其他的要交20%的利息税。„„。

生:当然是存到银行了。

二、探究思考。

生:我想存三年整存整取,时间长一些利息就会多。

生:我存一年的整存整取,如果时间太长,需要用钱时取出来,就按活期存款计算利息了,那样利息就少了。

师:你知道得真多,活期存款的利率低一些。„„。

师:同学们想得很周到,我们存钱时应该根据自己的实际情况,确定怎样存,刚才同学们说的存款方式,到期后利息究竟是多少呢?我们一起来计算。

(教师给出计算利息公式:利息=本金x年利率x年限,并给出年利率表,学生计算300元存一年和三年整存整取的利息。)。

板书。

300x2.25%x1。

=6.75(元)。

300x3.24%x3。

=29.16(元)。

师:从1999年11月1日起,个人在银行存款所得利息应按20%纳税,这就是利息税。国家将这部分税收用于社会福利事业。

师:下面大家再算一算300元存一年和三年整存整取各应交多少利息税?

学生汇报。

6.75x20%=29.16x20%=。

师:那有没有不用交利息税的呢?

生:

师:对,只有国债和教育储蓄是不需要交利息税的。

三、练习巩固。

四、课堂总结。

通过今天的学习你有什么收获?

课前布置学生分小组到银行调查利率并了解有关储蓄的知识。

激发学生学习的兴趣,让学生在调查活动中,接触到更多的实际生活中的百分数,认识到数学应用的广泛性。

提出“怎样处理这些钱”“存入银行有什么好处”等问题,使学生从中了解储蓄的意义。

学生己有了储蓄的知识基础,对于存款的方式让学生自己讨论,在讨论交流中,学生感受到,需要根据实际情况选择合理的储蓄方式。再引出计算利息的方法。

由于讨论的问题和数据都来自于学生,这样就使计算利息更具有实际意义,学生的学习兴趣和积极性也会大大提高。

拓展学生的思维。综合应用所学的知识解决实际问题。

结合实际对学生进行思想道德教育,珍惜现在的学习机会,支援贫困地区的失学儿童。

百分数的应用教案篇十

教学目标:

1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。

3、在解决问题的过程中体会百分数与现实生活的密切联系。

教学重点:

在具体的情境中理解“增加百分之几”或“减少百分之几”意义。

教学难点:

能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力。

教学关键:

充分利用学生已有的知识基础,集合具体的实例让学生理解“增加百分之几”或“减少百分之几”的意义。

教学过程:

一、复习引入。

1、复习。

师:关于百分数,你们已经学过那些知识?

指名回答,引导学生回忆已学的有关百分数的知识。根据学生的回答,教师板书百分数的意义小数、百分数、分数之间的互化百分数的应用利用方程解决简单的百分数问题。

2、引入。

师:从这节课开始,我们继续学习有关百分数的知识。

二、探索新知。

1、创设情景,提出问题。

根据这一情景,你能获得哪些信息?

指名回答,引导学生认识“水结成冰,体积会增加”这种物理现象。

师:你认为“增加百分之几”是什么意思?

指名回答,如果学生感到困难,教师可以通过画以下线段图帮助学生理解“增加百分之几”的意思是“冰的体积比原来水的体积多的部分是水体积的百分之几”

师:你能独立解决这一问题么?那就请你试一试。

2、自主探索解决问题。

(1)自主探索。

让学生独立思考,解决情景图中提出的问题。教师巡视,及时了解学生中典型的算法。

(2)合作交流。

指名板演,学生可能会提供以下两种算法。

=5÷45。

≈11%。

方法2:50÷45=111%。

111%-100%=11%。

全班交流时,教师要让学生说一说具体的想法。通过交流,引导学生认识。

方法1:先算增加了多少立方厘米,再算增加了百分之几。

方法2:先算冰的体积是原来水的体积的百分之几;再算增加百分之几。

3、即时练习。

先让学生独立解决问题,再组织全班学生交流。全班交流时,教师重点引导学生理解“降低百分之几”的意义。在本题中,“降低百分之几”的意思是降低的钱数占原来的百分之几。

三、巩固练习。

指导学生完成课本练一练中的第1题至第5题。

免责声明:除正式文件通知外,好研网所有文章及所有评论只代表作者个人观点,不代表好研网及海南省教育研究培训院任何观点,所有文章文责自负,若有任何非法及不当信息,请与我们联系,我们会在第一时间作出相应的处理。

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
2024年百分数的应用教案(通用10篇) 文件夹
复制