最新数据句话 数据结构
文件夹
心得体会是我们在生活中不断成长和进步的过程中所获得的宝贵财富。我们应该重视心得体会,将其作为一种宝贵的财富,不断积累和分享。下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。
通过两周的课程设计,完成了预定的目标,其中有很多的随想。老师的题目发下来的很早,大概提前了3周,当时就着手搜索有关线索二叉树的思想,思路,借了一本《数据结构-c语言描述》,在大体上就有了一个轮廓,先是输入二叉树,在对二叉树进行线索化,依次往下,但在具体实现时,遇到了很多问题:首先是思想的确定,其非常重要,以前有了这个想法,现在愈加清晰起来,因此,花了大量的时间在插入删除的具体操作设计上,大概三个晚上的时间,对其中什么不清晰明确之处均加以推敲,效果是显著的,在上机上相应的节约了时间。
通过具体的实验编码,思路是对的,但是在小问题上摔了一次又一次,大部分时间都是花在这方面,这个节点没传过来啊之类的,以后应该搞一个小册子,记录一些错误的集合,以避免再犯,思想与c语言联系起来,才是我们所需要的,即常说的理论与实践的关系。
数据结构是基础的一门课,对于有过编程经验的人,结合自己的编程体会去悟它的思想;而且我觉得随着编程经历的丰富对它的体会越深入,最初接触是对一些思想可能只是生硬的记忆,随着学习的深入逐渐领悟了很多。看了这次课程设计的`题目,虽然具体要求没有看清,但是总结一下,可以看出,其需要我们能把一个具体案例或一件事情反映为程序来表达,数据结构就是桥梁,通过自己的设计,使应用能力得以融汇,对与问题,具有了初步的分析,继而解决之的能力,感觉对以后的学习会有很大的帮助,学习无非是用于实践。
认识到自己的不足,希望能有进一步的发展。
假数据,指的是在实验科学、统计学和计算机科学等领域中使用的模拟测试数据,其目的是为了进行模型验证、算法优化和系统调试等工作。通过模拟的方式生成的假数据可以在很大程度上降低实验成本和风险,提高系统的鲁棒性和稳定性。在接触假数据的过程中,我不仅深刻体会到了假数据的重要性,也发现了一些需要注意的问题。以下是我对于假数据的心得体会。
首先,假数据是模拟实际情况的重要工具。在许多场景下,我们很难获得足够的真实数据来进行测试和分析。此时,假数据可以起到填补空白的作用。通过合理构造和模拟,我们可以生成具有各种特征和分布的数据,以覆盖实际情况下的各种可能性。这样一来,我们就可以在没有真实数据的情况下进行系统调试和性能测试,大大提高了工作的效率和准确性。
其次,假数据应当具有真实性可靠性。生成假数据的过程中,我们需要根据实际情况和已知的背景知识来确定数据的生成规则和参数设置。这需要对待模拟的对象进行充分了解和研究。仅凭主观臆测和随意设置参数所生成的假数据可能是不准确甚至误导性的。因此,我们在生成假数据时必须注重其真实性和可靠性,尽量接近真实情况,保证模拟结果的准确性和可信度。
第三,假数据应当涵盖全面。假数据是模拟实际情况的工具,但并不意味着模拟的结果就是完全准确的实际情况。在生成假数据时,我们需要充分考虑实际情况下可能出现的各种因素和变动。例如,在模拟人口流动情况时,除了要考虑人口数量和分布的变化外,还要考虑到人口迁移、交通流量、自然灾害等影响因素。只有从多个角度和多个方面进行模拟,才能更加接近实际情况,提高假数据的可靠性和可行性。
第四,假数据应当与实际情况相匹配。尽管假数据是模拟生成的,但我们在进行模拟时必须尽量与实际情况保持一致。例如,在模拟商品销售情况时,我们需要考虑到不同产品的特性、市场需求、销售渠道等各种因素。只有假数据与实际情况相匹配,我们才能通过对假数据的分析和预测,得出对真实情况的有益启示,为实际工作提供参考和支持。
最后,要善于利用和分析假数据。假数据生成完成后,我们需要对其进行详细的分析和研究,从中获取有益的信息和结论。通过对假数据的比较、统计和建模等分析手段,我们可以了解到模拟情况下的整体趋势和变化规律,为实际工作的决策和安排提供依据。同时,对假数据的分析和发现也会不断促进我们对实际情况的认识和理解,使我们的工作更加科学和有效。
综上所述,假数据作为一种模拟工具,在实验科学、统计学和计算机科学等领域中发挥着重要作用。通过对假数据的生成、分析和应用,我们可以在一定程度上弥补真实数据的不足,提高工作效率和准确性。因此,在使用假数据时,我们需要注重其真实性可靠性、全面性和与实际情况的匹配度。只有善于利用和分析假数据,我们才能更好地应对实际工作的挑战,为科学研究和技术创新提供有力支持。
完成了这次的二元多项式加减运算问题的课程设计后,我的心得体会很多,细细梳理一下,有以下几点:
因为我在解决二元多项式问题中,使用了链表的方式建立的二元多项式,所以程序的空间是动态的生成的,而且链表可以灵活地添加或删除结点,所以使得程序得到简化。但是出现的语法问题主要在于子函数和变量的定义,降序排序,关键字和函数名称的书写,以及一些库函数的规范使用,这些问题均可以根据编译器的警告提示,对应的将其解决。
我在设计程序的过程中遇到许多问题,首先在选择数据结构的时候选择了链表,但是链表的排序比较困难,特别是在多关键字的情况下,在一种关键字确定了顺序以后,在第一关键字相同的时候,按某种顺序对第二关键字进行排序。在此程序中共涉及到3个量数,即:系数,x的指数和y的指数,而关键字排是按x的指数和y的指数来看,由于要求是降幂排序且含有2个关键字,所以我先选择x的指数作为第一关键字,先按x的降序来排序,当x的指数相同时,再以y为关键字,按照y的指数大小来进行降序排列。
另外,我在加法函数的编写过程中也遇到了大量的问题,由于要同时比较多个关键字,而且设计中涉及了数组和链表的综合运用,导致反复修改了很长的时间才完成了一个加法的设计。但是,现在仍然有一个问题存在:若以0为系数的项是首项则显示含有此项,但是运算后则自动消除此项,这样是正确的。但是当其不是首项的时候,加法函数在显示的时候有0为系数的项时,0前边不显示符号,当然,这样也可以理解成当系数为0时,忽略这一项。这也是本程序中一个不完美的地方。
我在设计减法函数的时候由于考虑不够充分就直接编写程序,走了很多弯路,不得不停下来仔细研究算法,后来发现由于前边的加法函数完全适用于减法,只不过是将二元多项式b的所有项取负再用加法函数即可,可见算法的重要性不低于程序本身。
我在调试过程中,发生了许多小细节上的问题,它们提醒了自己在以后编程的时候要注意细节,即使是一个括号的遗漏或者一个字符的误写都会造成大量的错误,浪费许多时间去寻找并修改,总结的教训就是写程序的时候,一定要仔细、认真、专注。
我还有一个很深的体会就是格式和注释,由于平时不注意格式和注释这方面的要求,导致有的时候在检查和调试的时候很不方便。有的时候甚至刚刚完成一部分的编辑,结果一不注意,就忘记了这一部分程序的功能。修改的时候也有不小心误删的情况出现。如果注意格式风格,并且养成随手加注释的习惯,就能减少这些不必要的反复和波折。还有一点,就是在修改的时候,要注意修改前后的不同点在哪里,改后调试结果要在原有的基础上更加精确。
第一段:引言 (120字)
数据是当代社会中不可或缺的资源之一。在日常生活和工作中,我们经常需要记录数据以进行分析和决策。然而,数据录入工作并非简单的事情,需要耐心和细心。在我过去的工作经验中,我学到了很多关于录数据的心得体会,以下是我分享的几点。
第二段:事前准备 (240字)
在进行数据录入之前,事前准备是至关重要的。首先,我们需要明确录入哪些数据。这需要对项目或工作的需求有充分的了解,并与上级或团队成员进行沟通。其次,我们应该熟悉数据录入软件或工具的使用,掌握快捷键和自动填充功能等。此外,合理安排工作时间和工作环境也会提高效率。我通常在工作时寻找一个安静、宽敞且没有干扰的地方,以确保专注并且不容易出错。
第三段:注意细节 (240字)
数据录入是一个需要高度注意细节的工作。一个粗心的错误可能会导致整个数据分析的错误。因此,我时刻保持专注,并逐个输入数据。同时,我会经常检查自己输入的数据,确保正确无误。如果遇到数据缺失或者格式不符合要求的情况,我会首先与相关人员沟通,并寻求解决方案。此外,为了保证数据的准确性,我通常会使用验证功能,例如双重输入或逻辑验证。
第四段:记录技巧 (240字)
在数据录入的过程中,有一些技巧可以大大提高效率。首先,我会使用Excel的快捷键,如Ctrl+C进行复制,Ctrl+V进行粘贴,以及Shift+方向键进行选择。这些操作能够大大减少鼠标的使用,提高工作速度。其次,我会使用筛选和排序功能,以便更方便地查找和分析数据。另外,我还会掌握一些Excel的高级函数,如VLOOKUP和SUMIF等,来进行更复杂的数据分析。通过不断学习和实践,我逐渐掌握了一些高效的数据录入技巧。
第五段:总结与展望 (360字)
数据录入是一项需要耐心和细心的工作,但也是非常有意义的。通过数据录入,我们可以收集和整理大量的信息,为决策提供依据。在我过去的工作中,我不仅学会了如何高效地进行数据录入,还学到了如何正确解读数据。数据是一个宝贵的资源,它可以帮助我们了解现状、发现问题并作出正确的决策。未来,我将继续提高自己的数据录入能力,并进一步学习数据分析和数据可视化的技巧,以更好地应对复杂的数据录入和分析任务。
总结:本文讨论了数据录入的心得体会。首先是事前准备的重要性,包括明确录入哪些数据和熟悉使用的工具。接着是注意细节,保持专注并经常检查输入的数据。然后是一些数据录入的技巧,如使用快捷键和掌握Excel的高级函数。最后是对数据录入工作的总结与展望,强调数据的重要性以及继续学习的目标。在今后的工作中,我们将更加注重数据录入的质量,提高自己的工作效率和数据分析能力。
这学期开始两周时间是我们自己选题上机的时间,这学期开始两周时间是我们自己选题上机的时间,虽然上机时间只有短短两个星期但从中确实学到了不少知识。上机时间只有短短两个星期但从中确实学到了不少知识。数据结构可以说是计算机里一门基础课程,据结构可以说是计算机里一门基础课程,但我觉得我们一低计算机里一门基础课程定要把基础学扎实,定要把基础学扎实,然而这次短短的上机帮我又重新巩固了c语言知识,让我的水平又一部的提高。数据结构这是一门语言知识让我的水平又一部的提高。数据结构这是一门知识,纯属于设计的科目,它需用把理论变为上机调试。
纯属于设计的科目,它需用把理论变为上机调试。它对我们来说具有一定的难度。它是其它编程语言的一门基本学科。来说具有一定的难度。它是其它编程语言的一门基本学科。我选的.上机题目是交叉合并两个链表,对这个题目,我选的上机题目是交叉合并两个链表,对这个题目,我觉得很基础。刚开始调试代码的时候有时就是一个很小的错觉得很基础。刚开始调试代码的时候有时就是一个很小的错调试代码的时候误,导致整个程序不能运行,然而开始的我还没从暑假的状导致整个程序不能运行,态转到学习上,每当程序错误时我都非常焦躁,态转到学习上,每当程序错误时我都非常焦躁,甚至想到了放弃,但我最终找到了状态,一步一步慢慢来,放弃,但我最终找到了状态,一步一步慢慢来,经过无数次的检查程序错误的原因后慢慢懂得了耐心是一个人成功的必然具备的条件!
同时,通过此次课程设计使我了解到,必然具备的条件!同时,通过此次课程设计使我了解到,硬件语言必不可缺少,要想成为一个有能力的人,必须懂得件语言必不可缺少,要想成为一个有能力的人,硬件基础语言。在这次课程设计中,硬件基础语言。在这次课程设计中,虽然不会成功的编写一个完整的程序,但是在看程序的过程中,个完整的程序,但是在看程序的过程中,不断的上网查资料以及翻阅相关书籍,通过不断的模索,测试,发现问题,以及翻阅相关书籍,通过不断的模索,测试,发现问题,解决问题和在老师的帮助下一步一步慢慢的正确运行程序,决问题和在老师的帮助下一步一步慢慢的正确运行程序,终于完成了这次课程设计,于完成了这次课程设计,虽然这次课程设计结束了但是总觉得自已懂得的知识很是不足,学无止境,得自已懂得的知识很是不足,学无止境,以后还会更加的努力深入的学习。力深入的学习。
数据在当今社会中扮演着日益重要的角色,数据分析和处理成为了各行业都需要关注的领域。作为从业者,我有幸从事了多年的数据相关工作,积累了一些独特的心得体会。在此,我愿意与大家分享我在数据领域中的一些思考与感悟。
首先,对数据的敏感性至关重要。在现代社会中,数据可以说是无处不在。然而,我们必须明确意识到数据的真实性和敏感性。对于一个数据分析师来说,我们需要始终保持警惕,确保所用数据是准确可靠的,同时要尽力去保护用户的个人隐私。在处理敏感数据时,必须符合法规和道德规范,不得滥用数据权力。数据的敏感性要求我们谨慎对待,以免引发不必要的争议和风险。
其次,数据背后才是核心。数据分析的真正价值在于能够从数据背后的信息中找到规律和策略。只有充分挖掘数据背后的深层含义,才能真正提高数据的可利用性。因此,我们在做数据分析时,要注重数据的全面性和相互关联性,深入分析数据背后的因果关系,以便能够在决策时提供可信的建议和战略。
第三,数据可视化是提高数据分析效果的有力工具。数据可视化是将抽象的数据通过图形化的方式进行展示,可以帮助人们更直观地理解和分析数据。在我的实践中,我发现数据可视化可以有效提高数据分析的效果,使信息更加易于消化和理解。通过可视化,我们可以更好地发现数据之间的关联和趋势,帮助我们在决策时更加明晰和有效。
此外,数据的分析和处理需要不断学习和更新知识。数据分析是一个快速发展的领域,新的技术和方法不断涌现。作为数据从业者,我们需要主动学习和不断更新自己的知识,以便能够跟上时代的发展。我们需要密切关注新兴技术和趋势,通过不断学习和实践,提升自己的技能和能力。只有不断进步,才能在数据分析领域中立于不败之地。
最后,数据分析不仅仅是技术活,也需要人文关怀。数据分析不仅要关注数字和趋势,也需要关注人性和社会。在做数据分析时,我们要从人的角度出发,更加关注用户的需求和体验。我们需要通过数据分析来为用户提供更好的服务和提升用户体验。在数据处理中,我们需要注重数据的质量和准确性,尽量减少对用户的打扰和干扰。只有注重人文关怀,数据分析才能真正为社会和个人带来积极影响。
综上所述,我在数据领域的经验告诉我,要做好数据分析和处理,需要具备对数据的敏感性、发掘数据背后的因果关系、运用数据可视化工具、持续学习和更新知识,以及注重人文关怀。这些心得与体会在我个人的实践中得到了验证,希望能够对其他从业者有所启示和借鉴。
我们是20**年3月7号进入宏天实训公司参加软件开发实训的,在此次实训中,除了让我明白工作中需要能力,素质,知识之外,更重要的是学会了如何去完成一个任务,懂得了享受工作。当遇到问题,冷静,想办法一点一点的排除障碍,到最后获取成功,一种自信心就由然而生,这应该就是工作的乐趣。有时候不懂的就需要问别人了,虚心请教,从别人的身上真的能学到自己没有的东西,每一次的挫折都会使我更接近成功。还有学会了在工作中与人的合作与交流,同乐同累,合作互助,这是团体的精神,也是必须学习的东西。
经过之前的在校学习,对程序设计有了一定的认识与理解。在校期间,一直都是学习理论知识,没有机会去参与项目的开发。所以说实话,在实训之前,软件项目开发对我来说是比较抽象的,一个完整的项目要怎么分工以及完成该项目所要的步骤也不是很明确。 而经过这次实训,让我明白了一个完整项目的开发,必须由团队来分工合作,并在每个阶段中进行必要的总结与论证。
一个完整项目的开发它所要经历的阶段包括:远景范围规划和用例说明、项目结构和风险评估、业务功能说明书、详细设计说明书、代码实现、测试和安装包等等。一个项目的开发所需要的财力、人力都是很多的,如果没有一个好的远景规划,对以后的开发进度会有很大的影响,甚至会出现在预定时间内不能完成项目或者完成的项目跟原来预想的不一样。一份好的项目结构、业务功能和详细设计说明书对一个项目的开发有明确的指引作用,它可以使开发人员对这个项目所要实现的功能在总体上有比较明确的认识,还能减少在开发过程中出现不必要的麻烦。代码的实现是一个项目开发成功与否的关键,也就是说,前期作业都是为代码的实现所做的准备。
我深刻的认识到要成为一名优秀的软件开发人员不是一件容易的事情,不仅要有足够的干劲和热情,还要有扎实的编写代码基础,必须要有事先对文档进行可靠性报告,功能说明书,详细设计说明书等的编写和一些风险评估的编写的能力。
除了图书馆,最能让我感觉到身在大学的就是实训机房,在匆匆过去的两个月内,我往返于实训机房与宿舍之间,使我享受了一个充实的学习时期,让我感受到了大学的魅力,对自己充满信心,对大学充满信心,以积极的心态迎接明天挑战。
实训中要求有扎实的理论基本知识,操作起来才顺心应手,我这时才明白什么是“书到用时方恨少”。这就激发了学习的欲望。
“学以致用”,就是要把学来的知识能运用到实际操作当中,用实践来检验知识的正确性。我想,这是实训的最根本目的。
“纸上得来终觉浅,绝知此事要躬行!”,在短暂的实训过程中,让我深深感受到自己在实际运用中专业知识的匮乏。以前总以为自己学的还不错,一旦应用到实际就大不一样了,这时才真正领悟“学无止境”的含义。
经过为期两个月的电子政务服务平台系统开发的实训,我对visual 软件开发平台有了更深一步的了解,对微软基础类库的认识与使用也有了大大的提高。以及如何使用sql server数据库进行连接操作方面有了本质的提高。
短短的实训结束了,为我将来的就业打下了良好的基础,也提高了我的软件开发的水平,今后我将会更加努力的学习,不断提高自身素质,开拓创新,与时俱进,做一个优秀的软件开发工程师。
这个星期是我们sql server 数据库管理课的实训,经过一个星期的实训,让我将书本上的理论与实践相结合,领会到了许多平时课堂上所没有接受的课外知识课外训练,懂得如何去运用自己学到的书本上的知识,而进行的一次分析设计综合的训练。而本次实训的目的是让我们掌握数据库系统的原理、技术,将理论与实际相结合,应用现有的`数据库管理系统软件,规范、科学地完成一个设计与实现。
其实说心里话,在实训数据库之前我对数据库这门课程是既抗拒又害怕的。从第一节课开始,我在很认真的听老师讲课,而且自己也非常有信心学好这门课程。但是上了一个月的课程后我发现,对于数据库我学的完全是迷迷糊糊,对于查询命令学的也是似懂非懂,后来老师授课的内容开始越积越多,我不会的没弄懂的也越积越多,最后开始害怕这门课上课,更害怕这门课考试。
抱着不想挂科的心理,在数据库实训之前,我抽了一个星期的时间仔细地看了书,并且把课后习题仔仔细细地重新做了一遍,对这本书的整个知识体系在脑袋里面有个大概的印象,后来老师告诉我们这次实训的目标,于是我对这次实训工作胸中就开始有大致的轮廓。 这次我们实训的内容是从数据库、数据表的创建和修改开始的,我知道了:
表是建立关系数据库的基本结构,用来存储数据具有已定义的属性,在表的操作过程中,有查看表信息、查看表属性、修改表中的数据、删除表中的数据及修改表和删除表的操作。从实训中让我更明白一些知识,表是数据最重要的一个数据对象,表的创建好坏直接关系到数数据库的成败,表的内容是越具体越好,但是也不能太繁琐,以后在实际应用中多使用表,对表的规划和理解就会越深刻。
我们实训的另一个内容是数据库的约束、视图、查询。
查询语句的基本结构,和简单select语句的使用,多表连接查询。而在视图的操作中,也了解到了视图是常见的数据库对象,是提供查看和存取数据的另一种途径,对查询执行的大部分操作,使用视图一样可以完成。使用视图不仅可以简化数据操作,还可以提高数据库的安全性,不仅可以检索数据,也可以通过视图向基表中添加、修改和删除数据。
存储过程、触发器也是我们实训的内容之一, 在操作中有建立存储过程,执行存储过程,及查看和修改存储过程,这些都是非常基础的东西,但对用户却是非常重要的呢,只有熟悉了t_sql语言,才能更好的掌握更多的东西。
我们还学习了,sql管理、数据的导入、导出、备份和还原。有sql server 安全访问控制;登录账户的管理;数据库角色的管理;用户权限管理。维护数据库的安全是确保数据库正常运行的重要工作。数据的备份是对sql server数据事务日志进行拷贝,数据库备份记录了在进行备份操作的数据库中所有数据的状态。而数据的备份还分为数据库完整备份、差异备份、事务日志备份、文件及文件组备份。做数据备份就是为了以后的数据库恢复用。在实训内容上我们还做了仓库管理数据库,其中的要求包含了许多数据库的对象,综合了我们所学的许多知识,让我们更努力的把所学到的东西运用上去。
实训课是在学习与探索中度过的,短暂的一星期实训是结束了,但其中让我们学到了许多知识,出现许多未知的为什么,如数据备份与还原的步骤,如何建立视图、触发器等一系列的问题,正是在老师和同学的共同努力之下,我们才一步步把问题解决了,最终完成了自己一个人不可能完成的任务。
的时候我俩会一起看书一起商量着做,当做出来的命令还是不对的时候会请老师帮忙。有的时候是自己太粗心,写错了一个单词执行不出来你工龄的时候就以为自己写的命令语法有问题,老师看到了会耐心的指出来是我单词写错了。于是我认识到在以后的工作中不仅要有头脑还应该认真仔细有耐心。
在当今的信息时代,数据化已经成为一种趋势和必备能力。无论是在工作上还是在生活中,我们都需要依赖数据来分析和决策。数据化不仅是高科技行业的重要工具,也在渐渐应用到其他领域中来。通过对数据的揭示和分析,我们可以更加深刻地了解现实,以此优化生产过程或生活方式,做出更加明智的决策。
第二段:数据化的意义和方法
数据化与统计分析、机器学习、人工智能等概念有所交汇,但还是有其特定的意义。数据化带来的最大好处是,它让我们拥有了更强的预判能力。通过对数据的分类、整理、存储和加工,可以提炼出有用的信息,为企业、政府或个人的决策提供支持。数据化不单纯只是收集数据,还需要下功夫去挖掘数据中蕴含的深层次的价值。而要实现这一点,就需要依靠大数据分析领域的专业技能,包括数据挖掘、数据可视化和机器学习等技术手段。
第三段:数据化的优势和挑战
数据化带来了很多优势,也需要我们面对挑战。数据化可以帮助我们快速了解和掌握生产、营销、交通等方面的信息,让我们对未来趋势有更准确的预测,从而为未来做出更好的决策。但数据化过程中也存在着很多挑战,例如,数据的缺失、失真或无法获取等问题,还有数据安全和隐私的问题等,这些问题都会影响到数据的质量和可信度。如何在保证数据质量的同时,有效地进行分析和利用,是我们需要面对的难题。
第四段:个人心得
推进数据化的过程中,作为从业者或者个人来说都需要注重一些事项。尤其是对于普通人,我们可以通过学习、掌握一些基础的数据分析技能,例如利用 Excel 对数据进行可视化呈现,或者通过一些在线数据分析工具来处理和分析数据。同时,还需要注重数据的质量和可信度,对于不确定的数据需要多加验证和确证。这些都需要个人有自我培养和研究的思想,否则我们会发现,数据化的价值得不到充分的发挥。
第五段:未来趋势和展望
数据化的趋势将会快速发展,更多重要的行业都将涉及数据化,并吸引了越来越多的投资和创业企业,数据分析领域也将催生更多的精英和专家。大家可以多尝试一些新的数据分析工具和技术,探寻新的应用场景和商业模式。同时,对于个人而言,也需要不断创新和孜孜不倦地钻研学习。只有用心去了解和探求数据化的本质,才能更好地跟着时代的步伐前行。
总结:
数据化虽然是一种新型的能力和趋势,但它正日益融入生活和工作中来,我们需要不断学习和探索所需的技能和知识。我们需要注重数据质量和可信度,并时刻关注数据化的未来发展趋势。这样,我们才能真正掌握数据化所带来的巨大价值,并为我们自己和社会创造更多的价值。
如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。
一读
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分“大数据时代的思维变革”中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。“大数据的简单算法比小数据的复杂算法更有效。”更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。“不是因果关系,而是相关关系。”不需要知道“为什么”,只需要知道“是什么”。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出“不是因果关系,而是相关关系。”这一论断时,他在书中还说道:“在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。”[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可“量化”,大数据的定量分析有力地回答“是什么”这一问题,但仍然无法完全回答“为什么”。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节“掌控”中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:“大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。”谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
再读
概念是研究的逻辑起点,“大数据”到底是什么?在百度上搜索到的解释是,“大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”大数据的4v特点:数量(volume)、速度(velocity)、品种(variety)和真实性(veracity)。但舍恩伯格认为大数据并非一个确切的概念。他在书中的一段诠释更具人文色彩和社会意义:“大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”[ii]其实,概念的界定要看研究者从哪个角度来研究它而定。
科学家的治学态度是严谨的,而人文学家更具有想象力。一些对大数据不甚了然的人往往夸大了它的作用,甚至把它神化。舍恩伯格认为大数据的核心是预测。“大数据不是要教机器像人一样思考。相反,把数学算法运用到海量的数据上来预期事情发生的可能性。”[iii]舍恩伯格甚至不回避大数据所产生的负面影响,他在第七章里谈到让数据主宰一切的隐忧。我觉得这是实事求是的科学态度。在量子力学里有一个测不准原理:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。它是解释微观世界的物理现象,信息社会中的大数据会不会也有类似情况呢?如果我们再把凯文·凯利的《失控》对比来读的话就更有意思了,这样我们对整个物质世界及至人类社会就有了更全面更深刻的洞察,从物理王国到生物世界,再到信息社会。从公共卫生到商业应用,从个人隐私到政府管理,大数据无处不在。与此同时,从哪个角度探讨用什么方法研究,舍恩伯格都不会忘记大数据服务人类造福人类的终极目的和价值所在。“大数据并不是一个充斥着运算法则和机器的冰冷世界,其中仍需要人类扮演重要角色。人类独有的弱点、错觉、错误都是十分必要的,因为这些特性的另一头牵着的是人类的创造力、直觉和天赋。偶尔也会带来屈辱或固执的同样混乱的大脑运作,也能带来成功,或在偶然间促成我们的伟大。这提示我们应该乐于接受类似的不准确,因为不准确正是我们之所以为人的特征之一。”[iv]用中国话来说就是“人无完人”,人类在收获大数据带来的红利的同时也要承受它带来的危害。这不是对立统一的辩证唯物主义?我把它看作带着欧洲批判学派色彩的科学发展观。
问题是研究的价值基点,“大数据”不是舍恩伯格研究的问题,而是研究对象,他研究的是数据处理和信息管理问题,同时也讨论信息安全和网络伦理问题,还引发哲学上的思考,哲学史上争论不休的世界可知论和不可知论转变为实证科学中的具体问题。可知性是绝对的,不可知性是相对的。“大数据”之所以为大是因它引发人类生活、工作和思维的大变革,从这个意义上来看,《大数据时代》的意义不仅在于它讨论了若干重大问题,而且对研究者开出了一个问题清单,从而引发更多人来探讨这些有趣的问题。
《大数据时代》实际上主要是一本讨论数据挖掘的书,数据挖掘与数据分析是不同的概念,数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。而数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。数据挖掘主要运用计算机来进行处理,而数据分析既要用计算机也要人工分析,是计算机科学与人文价值判断的统一结合。换言之,《大数据时代》并不是一本讨论大数据所有问题的书。
《大数据时代》也是一本讨论互联网发展的书,从数字化到数据化,同时有浓厚的未来学色彩。当文字变成数据,我们进入了互联网;当方位变成数据,我们进入了物联网;当沟通变成数据,我们进入了下一代互联网。一切可量化,万物皆数据,正是当今互联网世界的真实写照。面对于这样的世界及世界的未来,在《大数据时代》出现最多的词是“思维”和“方法”,因此也可以把这本书视为思维科学应用研究的书。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
三读
今年国庆节前一天,中共中央政治局们来到中关村搞集体学习,调研、讲解、讨论创新驱动发展战略。包括、在内的七位全部出动来到中关村,这是历史上没有过的,百度、联想和小米的负责人,有了一次直面最高层汇报工作的机会。雷军和柳传志,讲解的都是本公司的各种情况,李彦宏则没有讲百度的广告业务发展得如何好,而是讲起了大数据。在讲解中,李彦宏认为大数据有两个重要价值,一是促进信息消费,加快经济转型升级;二是关注社会民生,带动社会管理创新。这些价值也是目前党和国家领导人最为重视的,可见《大数据时代》既有理论价值也有现实意义。
当今大数据正在影响着新闻传媒业,大数据新闻、大数据营销、舆情分析、受众(用户)研究……数据分析师变身新闻编辑,大数据正改变新闻生产流程、大数据在创造传媒新业态。“不妨想象一下,随着数据的进一步增加,坐拥用户资源的新媒体们完全有能力通过数据挖掘,分析用户癖好,向电视台定制一部电视剧甚至向好莱坞定制一部电影。到那个时候,电视台一如那些家电厂商们,曾经产业链的上游‘王者’,将彻底成为一个产业链最低端的内容代工厂。”[v]然而,情形也远没有人们想象的那么乐观,李彦宏指出目前多数所谓的大数据公司其实还是空壳子,因为数据还没有完全开放。他认为必须在政府层面上推动才能真正实现大数据的开发与利用。我在讨论大数据时代的舆情监测与预警时说道:“经典自由主义传播学说对媒体的定位:秉持公正、客观立场的媒体被称为代表公众监督政府行为的‘看门狗’。其实,媒体既是公众利益也是国家利益的‘看门狗’。要看好门就要瞭望、洞察社情民意,传统媒体信息反馈渠道单一,视野、人力十分有限。而开放互动的新媒体平台却大有可为。作为公共信息发布平台的微博可以成为政府及时了解社情民意,从而选择正确治理路径的‘导盲犬’。”[vi]遗憾的是目前我国的数据平台还没有完全开放,真正的大数据时代还没有到来。
与国内不少教科书写法的专著相比,国外的书写得更有趣,尤其是大学者写的,不仅视野开阔,而且能够深入浅出。《大数据时代》不到22万字,却有上百个学术和商业的实例,丰富翔实的例子让读者感到通俗易懂,深奥的理论看起来也不费劲。这恐怕与舍恩伯格既是学者也是专家,既有理论又有实践有关。反观我们些学者故弄玄虚而示高明,实际上是把读者拒之门外。我觉得优秀的科学家也应该是一个科普作家,优秀的学者也应该是一个不错的传播者。当然国外学术著作也有一个翻译问题,这本书译得还不错。此外,《大数据时代》还附有不少it界名流的推荐意见,虽是出版商的发行所为,对解读此书也不无益处。
除了《大数据时代》,舍恩伯格还有一本《删除》也值得一读。要研究大数据不能只读一本书,该书译者周涛教授还推荐了三部国内出版的大数据方面的专著:《证析》、《大数据》、《个性化:商业的未来》。相比《大数据时代》的宏大视野,这些书就大数据某一局部问题给出深刻的介绍和洞见。我也推荐读一读中国工程院李国杰院士和中科院计算所副总工程学旗合写的文章《大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考》。
虽说开卷有益,但是由于每个人的时间精力有限,对于一个研究者来说,不读什么书甚至比读什么书更重要。我认为书有三种:有用的书,主要是应用类的专业书;无用的书,主要是形而上的思想类;无字的书,人间百态,社会现实。可偏重但不应偏废。对于学生来讲这三类“书”都该读一些,对于研究者则要读哪些解决关键问题的书,《大数据时代》就是这样一部书。当然,并非第一个读者都是研究大数据的,但进入大数据时代,还有什么东西与数据完全没有关系呢?麦肯锡全球研究机构认为,未来十年里有12项对经济发展产生重大影响的技术,其中包括三项新媒体技术:移动互联网、物联网和云计算。这三项新媒体技术都与大数据密切相关,而这些新媒体新技术的发展都影响着当今的新闻传播业。阅读此书至少给我们研究新闻传播学带来一些启迪。我觉得一本书的价值不在于让你顶礼膜拜,而是引发广泛而深入的讨论。
“凡是过去,皆为序曲。”读完此书,我们对大数据的认识才刚刚开始。
第一段:引言(字数:150字)
在当今信息化时代,数据成为了重要的资源和驱动力。无论是个人、企业还是社会组织,都会涉及大量的数据收集、整理和分析工作。作为一个数据录入员,我深感自己肩上的责任和压力。在这个主题下,我想分享我在录数据工作中的体验和感悟。录数据不仅是一项机械性的工作,更是需要专注、细致和耐心的工作。在这个过程中,我学会了如何高效地录入数据,也意识到了数据的重要性和价值。
第二段:控制录入速度(字数:250字)
录入数据时,控制录入速度是很重要的。一开始我总是急于完成任务,常常犯错和错漏。后来我意识到,只有保持稳定的速度,才能确保高质量和准确性的数据。在录数据之前,一定要仔细阅读相关的操作指南,熟悉数据字段和录入规则。在实际操作中,我逐渐形成了自己的录入节奏。慢而稳的速度,既保证了数据的准确性,又提高了效率。此外,我还会定期检查我录入的数据,以及时发现和纠正错误。
第三段:注意数据的完整性(字数:250字)
录入数据的另一个重要方面是保持数据的完整性。数据的完整性是指数据不缺失、不重复和不冗余。在录数据过程中,我常常会遇到一些数据字段是必填项的情况。这时我会仔细核对数据,确保没有漏填任何必填字段。同时,我还会注意数据中是否有重复或冗余的信息,及时进行清理和整理。保持数据的完整性不仅能提高数据的可信度和准确性,还有利于后续数据分析和应用。
第四段:数据的重要性和价值(字数:250字)
数据在现代社会已经变得无处不在,且不可或缺。在记录数据的过程中,我深深意识到了数据的重要性和价值。数据是信息的载体,它可以帮助我们了解事实、分析问题、做出决策。因此,准确、完整和可靠的数据对于个人、企业和社会组织都有重要意义。在录数据的同时,我也体会到了责任的沉重。不仅要保证数据的准确性,还要作为数据的守护者,保护数据的隐私和安全。
第五段:对未来的展望(字数:300字)
通过录数据的工作,我不仅学到了很多专业知识和技能,也认识到了数据领域的广阔前景。未来,在数据时代的浪潮下,数据录入员这一职业将越来越重要和受重视。在追求高效和准确的同时,我还希望能进一步学习数据分析和挖掘的知识,提升自己在数据管理和应用方面的能力。我相信,数据会持续地成为推动社会进步和创新的重要力量,而我作为一名数据录入员,将继续发挥自己的作用,为数据的发掘和应用贡献自己的力量。
总结(字数:100字)
录数据心得体会,不仅是对录数据工作的回顾和总结,更是对数据的认识和理解。通过这次经历,我深刻体会到了数据的重要性和价值,也明白了自己在其中的责任和使命。随着社会的发展,数据工作将面临更多的挑战和机遇。我将继续不断学习和提升自己,在这个充满活力和创新的领域中发挥自己的才能。
最新数据心得体会一句话 数据结构心得体会(模板10篇)
文件夹