数学教案多边形 数学教案
文件夹
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。
1.了解多边形及有关概念,理解正多边形及其有关概念.
2.区别凸多边形与凹多边形.
1.重点:
(1)了解多边形及其有关概念,理解正多边形及其有关概念.
(2)区别凸多边形和凹多边形.
2.难点:
多边形定义的准确理解.
一、新课讲授
投影:图形见课本p84图7.3一l.
你能从投影里找出几个由一些线段围成的图形吗?
上面三图中让同学边看、边议.
在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?
(1)它们在同一平面内.
(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.
这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?
提问:三角形的定义.
你能仿照三角形的定义给多边形定义吗?
1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.
如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)
2.多边形的边、顶点、内角和外角.
3.多边形的对角线
连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.
让学生画出五边形的所有对角线.
4.凸多边形与凹多边形
看投影:图形见课本p85.7.3―6.
5.正多边形
由正方形的特征出发,得出正多边形的概念.
各个角都相等,各条边都相等的多边形叫做正多边形.
二、课堂练习
课本p86练习1.2.
三、课堂小结
引导学生总结本节课的相关概念.
四、课后作业
课本p90第1题.
备用题:
一、判断题.
1.由四条线段首尾顺次相接组成的图形叫四边形.()
2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()
3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()
4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()
二、填空题.
1.连接多边形的线段,叫做多边形的对角线.
2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.
3.各个角,各条边的多边形,叫正多边形.
三、解答题.
1.画出图(1)中的六边形abcdef的所有对角线.
1.使学生会辨认直角、锐角和钝角;
2.通过结合生活实际的活动,在学习新知的同时培养学生的数学兴趣。
教学过程:
一、导入新课。
出示图,生活中含有角的物体。
师:“你看到了什么?谁能说一说?”
师:“如果请你们再从数学的角度去观察这些物体,你又能发现什么?”
师:“是吗?让我们来看一看。”
师:“果然如此!你观察得真仔细。”
“生活中存在着许许多多的角。通过以往的学习,你已经知道了哪些关角的知识?同桌互相说一说。”
贴上课题“角”,学生交流后回答:略。
师:“仅仅知道这些,你们就满足了吗?”
“那你们还想知道哪些有关角的知识呢?“
师:“看到同学们这么虚心好学,老师真的是非常高兴。好吧,那今天我们就继续学习有关角的知识。”
二、新课教学。
师:“请大家拿出四张卡片,用水彩笔和尺出画四个不同大小的角。每张卡片画一个。比一比谁画的又好又快!”
学生在卡片上画角。
师:“请组长将大家画的角收集起来,平铺在桌面上。比一比哪一组动作最快!”
师:“下面我们要给这些角分分类。在分类之前,老师要说几点要求:1.每人先要认真的观察这些角。2.为了提高我们小组合作学习的效度,分类前组长一定要带领大家展开充分的讨论,确定分法后再分。3.分好后,每组选一名发言人,准备向大家汇报分类的情况。”
小组合作学习,给角分类。教师巡视,做好记录。
师:“哪一组愿意汇报?”
小组汇报,汇报时请其用三角尺验证。贴出直角。
师:“你们认为他们分的怎么样?”
师:“你能给比直角小的角起一个名字吗?”
学生起名。
师:“在数学上,我们把比直角小的角叫做锐角。”
贴上“锐角”。(钝角同上。)
师:“对于这些,你们还有什么想问的问题吗?”
学生提问。
师:“通过对角的'分类,我们知道了角可以分成直角、锐角和钝角等几种。”
贴上“的分类”。
三、巩固练习。
师:“请组长将这些角分还给大家。同学们可以在角的旁边写上角的名称。”
学生写角的名称。
师:“写好的人互相说一说你刚才都画了哪些角。”
学生互说,教师指名说。
师:“如果老师给你一些角,你能分辨出是哪种角吗?请大家拿出练习纸,按要求填空。”
请一名学生在实物投影上写。集体订正。
师:“让我们回到生活中的物体。”
点击,回到生活中的物体。
师:“你能用刚才所学的知识,说一说这些角都是什么角吗?”
师:“生活中还有哪些地方有这些角?”
师:“第五个任务需要大家合作完成,大家把三角尺凑在一起试着拼一拼。”
学生合作拼。
师:“能拼成什么角?你愿意上来拼一拼吗?”
学生在黑板上用学具拼。
师:“这个角是由几个什么角拼成的?还有其他的拼法吗?”
四、小结。
师:“通过今天的学习,你又知道哪些有关角的知识?”
1.会通过列方程解决“配套问题”;
2.掌握列方程解决实际问题的一般步骤;
3.通过列方程解决实际问题的过程,体会建模思想.
教学重点 建立模型解决实际问题的一般方法.
教学难点 建立模型解决实际问题的一般方法.
学情分析 1、 在前面已学过一元一次方程的解法,能够简单的运用一元一次方程解决实际问题。
2、 培养学生分析、解决问题的能力及逻辑思维能力。
学法指导 自学互帮导学法
教 学过程
教学内容 教师活动 学生活动 效果预测( 可能出现的问题) 补救措施 修改意见
一、复习与回顾
问题1:之前我们通过列方程解应用问题的过程中,大致包含哪些步骤?
1. 审:审题,分析题目中的数量关系;
2. 设:设适当的未知数,并表示未知量;
3. 列:根据题目中的数量关系列方程;
4. 解:解这个方程;
5. 答:检验 并答话.
二、应用与探究
问题2:应用回顾的步骤解决以下问题.
三、课堂练习
四、小结与归纳
问题4:用一元一次方程解决实际问题的基本过程有几个步骤? 分别是什么?
五、课后作业
教科书第106页习题3.4 第2、3、7题; 1、教师利用复习提问的方式导入,帮助学生掌握列方程解应用题的步骤。
2、教师展示例题,并 巡视学生独立完成情况,引导学生分析问题并解决问题。
3、教师展示练习题,引导学生分析问题并解决问题,并巡视。
4、教师通过提问,让学生进行归纳小结。 1、学生回忆并独立回答。
2、学生先观看课件,先独立思考,再合作交流解决问题 。
3、学生先观看课件并解决问题。
4、学生自主归纳本节课所学内容。
不能解决问题。
教师展示解答过程。
1、使学生正确理解数轴的意义,掌握数轴的三要素;
2、使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3、使学生初步理解数形结合的思想方法。
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。
难点:正确理解有理数与数轴上点的对应关系。
一、从学生原有认知结构提出问题
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示—5℃。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):
四、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的`方法。
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。
1.知识结构
2.重点和难点分析
(1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.
3.教法建议
(1)因为本节是由相交线的模型――用钉子固定的两根木条来引入的.所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.
(2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.
(3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解对顶角和邻补角的概念,能在图形中辨认.
2.掌握对顶角相等的性质和它的推证过程.
3.会用对顶角的性质进行有关的推理和计算.
(二)能力训练点
1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.
2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.
(三)德育渗透点
从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.
(四)美育渗透点
二、学法引导
1.教师教法:教具直观演示法启发引导、尝试研讨.
2.学生学法:动手动脑、积极参与、认真研讨、学会概括.
三、重点、难点及解决办法
(一)重点
(二)难点
在较复杂的图形中准确辨认对顶角和邻补角.
(三)疑点
对顶角、邻补角的图形识别.
(四)解决办法
强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.
六、师生互动活动设计
1.通过实例创设情境,引导学生进入课题.
2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.
3.通过学生研讨、练习巩固完成性质的讲解.
4.通过学生总结完成课堂小结.
5.通过随堂练习,检测学生学习情况.
七、教学步骤
(一)明确目标
能在图形中正确辨认对顶角和邻补角,理解其概念,掌握其性质,并运用其进行推理计算.
(二)整体感知
(三)教学过程
创设情境,引入课题
投影打出本章的章前图(投影片1),然后引导学生观察,并回答问题.
学生活动:口答哪些道路是交错的,哪些道路是平行的.
教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题:
【板书】第二章相交线、平行线
学生活动:请学生举出现实空间里相交线、平行线的一些实例.
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.
1.平方差公式是由多项式乘法直接计算得出的:
与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.
2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.
只要符合公式的结构特征,就可运用这一公式.例如
在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.
3.关于平方差公式的特征,在学习时应注意:
(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.
(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).
(3)公式中的和可以是具体数,也可以是单项式或多项式.
(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.
三、教法建议
1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
这样得出平方差公式,并且把这类乘法的实质讲清楚了.
(1+2x)(1-2x)=12-(2x)2=1-4x2
(a+b)(a-b)=a2-b2.
这样,学生就能正确应用公式进行计算,不容易出差错.
另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.
教学目标
1.使学生理解和掌握平方差公式,并会用公式进行计算;
2.注意培养学生分析、综合和抽象、概括以及运算能力.
教学重点和难点
重点:平方差公式的应用.
难点:用公式的结构特征判断题目能否使用公式.
教学过程设计
一、师生共同研究平方差公式
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
回顾上学期学过的直线、线段、射线等的表示方法,我提问了三个成绩中等的学生,居然没有人能回答下来,提问三个好一点学生,什么是线段的中点、什么是角的平分线?也没有人回答得清楚。说明,这些学生在寒假里根本就没有人进行复习,可能多数学生都沉迷于游戏而不能自拔。于是复习上学期内容就干去了一节课时间。
第二节课才正式教学新课。我先让学生举例相交线的实例,有几个学生举了教室中的相交线。
由于多媒体坏了,于是只有粉笔和嘴了。由学生跟着画两条相交线,并标记角1,角2,角3和角4,接下来,让学生找到两角,有几对?生1到板板书在黑板上,也找齐了,共6组。
接下来,我让学生小组合作讨论:怎么样将这6组角进行分类。学生讨论了十分钟,但是没有哪个组能正确分类。
于是我就将它们进行了分类:角1与角3,角2与4可以归为一类;角1与角2,角1与角4,角2与角3,角3与角4。
再次讨论:这两类角它们分别有哪些共同特征?(生讨论无果)
第一类:两个角有公共的顶点,两边互为反向延长线,象这样的两个角叫做对顶角。谜语:牛打架,打一数学名词)
第二类:两个角有公共顶点和一条公共边,另一边互为反向延长线,象这样的两个角叫做邻补角。
邻补角有什么性质呢?从图可知,两个邻补角构成一个平角,因此,邻补角互补。
例:如图,两条直线相交于点0,角1=30度,求角2,角3,角4的度数。
小结:略
作业:略。
从本节课的作业完成情况来看,学生对核心的两类角的特征没有掌握。主要原因可能还是我身的表达不到位,变式练习举的例子少了,次要原因是学生的学习惯不好,不能专心听讲,导致学生不能准确识别对顶角和邻补角。
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础.
然后再次运用单项式与多项式相乘的法则,得到:
3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项:
当然,如有同类项则应合并,得出最简结果.
4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.
5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.
6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”.
三、教法建议
教学时,应注意以下几点:
积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果.
(2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.
(3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数.
(4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的等等,能够直接写出结果.
一.选择题
1、用四舍五入法取1.46348精确到百分位的值是()
a1.46b1.460c1.5d1.50
2、下列近似数精确到万位的是()
a1500b3亿5千万c4×104d3.5×104
3、如果由四舍五入得到的近似数是58,真值不可能是()
a58.01b57.88c58.50d57.49
4、下列说法正确的是()
a近似数14,0与14的精确度相同;
b近似数20000与2万的精确度相同;
c近似数5×103与5000的精确度相同;
d近似数6万与6×104的精确度相同。
二填空题
9、用四舍五入法把0.493057精确到百分位为---------;
10、近似数1.820精确到----------位;
11、近似数4.50万精确到---------位;
12、近似数3.04×105精确到-------位;
13、1325.667精确到百位的近似数约为--------------;
14、每人每小时呼出的二氧化碳约为38克,1公顷茂盛的.树林每天约可以吸收1吨的二氧化碳,若要吸收掉1万人一天呼出的二氧化碳约需要----------公顷的树林。(精确到0.1)
16、两名同学的身高都大约是1.70米,则两人的身高最多差------厘米;
17、1.8206取近似数精确到千分位是--------------;
18,有效数字是对一个近似数从左往右数第一个不是0的数字算起,有几个数有效数字是几,那么数4.6982取三位有效数字约等于---------,近似数2,38×104有------个有效数字。
三、解答题
19、用四舍五入法去下列各数的近似数
(1)0.4605(精确到千分位);
(2)23250.84(精确到千位);
(3)5.49835(精确到百分位);
(4)1.80248(保留三个有效数字).
20、指出下列各数精确到哪一位
(1)、0.3023(2)7.80
(3)、13.46亿(4)6.43×107
21、一个人在洗脸刷牙过程中一直开着水龙头,将浪费大约7杯水(每杯水约250ml)
某市月100万人口,若在洗漱过程中都一直开着水龙头,那么一个月(按30天计算)将浪费约多少ml水,精确到亿位。
22、(1)计算:22=---------,202=-------------,
2002=-----------,20002=-------;
(2)不用计算器解决问题
若2342=54756,分别求234002,2.342近似结果。保留两个有效数字。
1.5.3近似数
答案:
20、万分位;百分位;百万位;十万位21、5.25×101
知识与技能
了解并掌握数据收集的基本方法。
过程与方法
在调查的过程中,要有认真的态度,积极参与。
情感、态度与价值观
体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。
【教学重难点】
重点:掌握统计调查的基本方法。
难点:能根据实际情况合理地选择调查方法。
【教学过程】
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling)。
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。
学生小组合作、讨论,学生代表展示结果。
教师指导、评论。
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答。
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;
(3)某种玉米种子的发芽率;
(4)学校门口十字路口每天7:00~7:10时的车流量。
学生讨论,并举手回答。
学生讨论,并回答。
生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等。
师:很好!下列问题也适合采用普查方式来收集数据吗?
(1)了解某批次炮弹的杀伤半径;
(2)某一天全国牛肉的平均价格;
(3)一批罐头产品的质量检查;
(4)对某条河的河水的污染情况的调查。
学生讨论、分析,并举手回答。
师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
(2)对本年级同学是否喜欢某电视节目的调查结果不能代表
2。下列事件中最适合使用普查方式收集数据的是()
a。为制作校服,了解某班同学的身高情况
b。了解全市初三学生的视力情况
c。了解一种节能灯的使用寿命
d。了解我省农民的年人均收入情况
答案:a
解析:解答:a。人数不多,适合使用普查方式,所以a正确;
b。人数较多,结果的实际意义不大,因而不适用普查方式,所以b错误;
c。是具有破坏性的调查,因而不适用普查方式,所以c错误;
d。人数较多,结果的实际意义不大,因而不适用普查方式,所以d错误。
故选:a。
分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。此题考查了抽样调查和全面调查,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查选用普查。
1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()
a、选取该校一个班级的学生
b、选取该校50名男生
c、选取该校50名女生
d、随机选取该校50名九年级学生
2、(题型二)下列调查适合用抽样调查的是()
a、了解义乌电视台“同年哥讲新闻”栏目的收视率
b、了解禽流感h7n9确诊病人同机乘客的健康状况
c、了解某班每个学生家庭电脑的数量
d、“神七”载人飞船发射前对重要零部件的检查
3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是()
a、查阅外地200名八年级男生的身高统计资料
b、测量该市一所中学200名八年级男生的身高
c、测量该市两所农村中学各100名八年级男生的身高
数学初一教案多边形 初一数学教案(优质10篇)
文件夹