数据挖掘论文摘要
文件夹
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
数据挖掘的概念和应用已经渗透到社会生活和工业生产的各个领域。作为数据挖掘的实践者,本人在读数学专业的同时,也兴趣盎然地涉足了数据科学和机器学习领域。在一次数据挖掘课程中,我完成了一篇论文,能让我对数据挖掘这个领域有更深入的认识和体验。这篇论文让我深入了解了数据挖掘的思路,技术和应用,并且让我体会到写论文不仅仅是理论知识,更需要实践的动手能力,思维的掌握能力,和成果演示的表达能力。在这篇心得体会中,我想分享我的经验,和大家一起探究数据挖掘的独特之处。
第一段:学习数据挖掘的信念
数据挖掘作为一个复杂的技术领域,它的研究对象可以是已有的数据集合,经修正的数据对象或者真实的数据。要想在这个领域获得成功,首先需要有学习数据挖掘的信念。学习数据挖掘,不仅需要具有信息学、数学、统计、计算机等领域的基本素养,还要具备探索、创新、思维、推理能力等本质要素。当我们深入学习数据挖掘技术时,我们不仅需要明``确各项技术特征,还需要全面了解不同类型的数据分析流程。
第二段:学习数据挖掘的方法
一般来说,学习数据挖掘的方法包括:学习关于数据挖掘的各种知识点、探索分享“开源”资源、通过训练理论模型以及掌握不同实际应用场景下的数据挖掘流程等。这些方法都非常必要,同时也大大丰富了我们的数据挖掘知识储备。
第三段:论文的核心内容
在毕业论文写作之中,我写了一篇关于“基于树模型的数据挖掘方法研究与应用”的论文。本文利用树形神经网络模型,并通过对数据源进行预处理和特征选择,把语音呼叫数据与样本数据进行匹配,并提出了树形神经网络模型的性能检验。同时,本文探讨了该模型的实际应用场景以及对未来语音识别的发展具有重要的参考价值。该论文的相关资料、数据等都经过了极为详尽的研究和讨论。通过数据挖掘的方法,该论文配备有附录和数据模型的详细数据分析。
第四段:论文的收获
通过这篇论文的写作,我除了掌握数据挖掘的基本技能,如预处理、分析等,更重要的是锻炼了自己的学习能力、团队沟通协作能力和美术设计等多方面的能力。通过论文的撰写和演示,我更加深入地认识了数据挖掘应用的深度、挑战和前景。
第五段:未来展望
在未来的学习和工作中,我希望能够不断强化自己数据挖掘领域方面的知识储备,加速自身的魅力和资质提升,成为引领行业的新一代人才,并在日后的实践中不断总结经验,挖掘新的理论问题,依托技术优势和网络平台,推动数据挖掘与科技创新的合理发展,并为行业的创新与发展做出重要的贡献。
高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。
关键词:客户关系管理毕业论文
一、数据挖掘技术与客户关系管理两者的联系
随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。
二、数据挖掘技术在企业客户关系管理实行中存在的问题
现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。
1.客户信息不健全
在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。
2.数据集中带来的差异化的忧虑
以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。
3.经营管理存在弊端
从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。
三、数据挖掘技术在企业的应用和实施
如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。
1.优化客户服务
以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。
2.利用数据挖掘技术建立多渠道客户服务系统
利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。
四、数据挖掘技术是银行企业客户关系管理体系构建的基础
随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。
摘要:大数据和智游都是当下的热点,没有大数据的智游无从谈“智慧”,数据挖掘是大数据应用于智游的核心,文章探究了在智游应用中,目前大数据挖掘存在的几个问题。
随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智游应运而生。大数据作为当下的热点已经成了智游发展的有力支撑,没有大数据提供的有利信息,智游无法变得“智慧”。
旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。2010年,江苏省镇江市首先提出“智游”的概念,虽然至今国内外对于智游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智游中的作用出发,把智游描述为:通过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象提供服务[2]。这一定义充分肯定了在发展智游中,大数据挖掘所起的至关重要的作用,指出了在智游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智游最终所需要的是利用挖掘所得的有用信息。
2011年,我国提出用十年时间基本实现智游的目标[3],过去几年,国家旅游局的相关动作均为了实现这一目标。但是,在借助大数据推动智游的可持续性发展中,大数据所产生的价值却亟待提高,原因之一就是在收集、储存了大量数据后,对它们深入挖掘不够,没有发掘出数据更多的价值。
智游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现wi-fi覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。通过这些平台,已基本能掌握跟游客和景点相关的数据,可以实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及大量部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。
大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景非常广阔,但是面对大量的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,通过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法通过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
2017年,数据安全事件屡见不鲜,伴着大数据而来的数据安全问题日益凸显出来。在大数据时代,无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹,如何保证这些信息被合法合理使用,让数据“可用不可见”[4],这是亟待解决的问题。同时,在大数据资源的开放性和共享性下,个人隐私和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外,经过大数据技术的分析、挖掘,个人隐私更易被发现和暴露,从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。
大数据背景下的智游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智游的构建还缺乏大量人才。
在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘应该被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智游大数据人才。
参考文献
数据挖掘技术在金融业、医疗保健业、市场业、零售业和制造业等很多领域都得到了很好的应用。针对交通安全领域中交通事故数据利用率低的现状,可以通过数据挖掘对相关交通事故数据进行统计分析,从而发现其中的关联,这对提升交通安全水平具有非常重要的意义。
数据挖掘(datamining)即对大量数据进行有效的分类统计,从而整理出有规律的、有价值的、潜在的未知信息。一般来讲,这些数据存在极大的随机性和不完全性,其包括各行各业各个方面的数据。数据挖掘是一个结合了数据库、人工智能、机器学习的学科,涉及统计数据和技术理论等领域。
关联分析作为数据挖掘中的重要组成部分,其主要作用就是通过数据之间的相互关联从而发现数据集中某种未知的联系。关联分析最初是在20世纪90年代初被提出来的,一直备受关注。已被广泛应用于各行各业,包括医疗体检、电子商务、商业金融等各个领域。关联规则的挖掘一般可分成两个步骤[1]:
(1)找出频繁项集,不小于最小支持度的项集;
(2)生成强关联规则,不小于最小置信度的关联规则。相对于生成强关联规则,找出频繁项集这一步比较麻烦。l等人在1994年提出的apriori算法是生成频繁项集的经典算法[2]。apriori算法使用了level-wise搜索的迭代方法,即用k-项集探索(k+1)-项集。apriori算法在整体上可分为两个部分。
(1)发现频集。这个部分是最重要的,开销相继产生了各种各样的频集算法,专门用于发现频集,以降低其复杂度、提高发现频集的效率。
(2)利用所获得的频繁项集各种算法主要致力产生强关联规则。当然频集构成的联规则未必是强关联规则,还要检验构成的关联规则的支持度和支持度是否超过它们的阈值。apriori算法找出频繁项集分为两步:连接和剪枝。
(1)连接。集合lk-1为频繁k-1项集的集合,它通过与自身连接就可以生成候选k项集的集合,记作ck。
(2)剪枝。频繁k项集的集合lk是ck的子集。剪枝首先利用apriori算法的性质(频繁项集的所有非空子集都是频繁的,如果不满足这个条件,就从候选集合ck中删除)对ck进行压缩;然后,通过扫描所有的事务,确定压缩后ck中的每个候选的支持度;最后与设定的最小支持度进行比较,如果支持度不小于最小支持度,则认为该候选项是频繁的。目前,在互联网技术及科学技术的快速发展下,人工智能、机器识别等技术兴起,关联分析也被越来越多应用其中,并在不断发展中提出了大量的改进算法。
近年来,我国越来越多的学者将数据挖掘关联分析应用于道路交通事故的研究中,主要是分析道路、车辆、行人以及环境等因素与交通事故之间的某种联系。pande和abdel-aty[3]通过关联分析研究了美国佛罗里达州20xx年非交叉口发生的道路交通事故,重点分析了各个不同的影响因素与交通事故之间的内在联系,通过研究得出如下结论,道路照明条件不足是引发道路交通事故的主要因素,除此之外,还发现天气恶劣的环境下道路弯道的直线段也极易发生交通事故。graves[4]利用数据挖掘技术中的关联规则对欧洲道路交通事故进行了分析,主要研究了交通事故与道路设施状况之间的关联,通过研究发现了易导致交通事故发生的各个道路设施状况因素,此研究为欧洲路面建设及投资提供了强大的决策支持。我国学者董立岩在研究道路交通事故数据的文献中,将粗糙集与关联分析进行了融合,提出了基于偏好信息的决策规则简约算法并将其应用其中,通过分析发现了道路交通事故的未知规律。王艳玲通过关联分析中的因子关联树模型重点分析了影响道路交通事故最重要的因子,发现在道路交通事故常见的诱因人、车、路及环境中对事故影响最大的因子是环境。许卉莹等利用关联分析、聚类分析以及决策树分析三种数据挖掘技术对道路交通事故数据进行分析,最终得出了科学的道路交通事故预防和交通安全管理决策依据。尚威等在研究中,对大量的道路交通数据进行了有效整合,并在此基础上按照交通事故相关因素的不同特点整理出与事故发生有关的字段数据,形成新的事故数据记录表,然后再根据多维关联规则对记录的相关数据进行分析,从而发现了事故诱导因素记录字段值和事故结果字段值组成的道路交通事故频繁字段的组合。张听等在充分掌握聚类数据挖掘理论与方法的基础上,提出了多目标聚类分析框架和一个启发式的聚类算法k-wanmi,并将其用在道路交通事故的聚类研究中对不同权重的属性进行了多目标分析。同样,许宏科也利用该方法对公路隧道交通流数据进行了聚类分析,其在研究中不仅明确了隧道交通流的峰值规律,而且还根据这种规律制订了隧道监控设备的不同控制方案,对提高隧道交通安全的水平做了极大的贡献。徐磊和方源敏在研究中,提出了由简化信息熵构造的改进c4.5决策树算法,并将其应用在交通事故数据的研究中,对交通数据进行了正确分类,发现了一些隐藏的规则和知识,为交通管理提供了依据。刘军、艾力斯木吐拉、马晓松运用多维关联规则分析交通事故记录,从而找到导致交通事故发生次数多的主要原因,并且指导相关部门作出相应的决策。杨希刚运用关联规则为现实中的交通事故的预防提供依据。吉林大学的吴昊等人,基于关联规则的理论基础,定义了公路交通事故属性模型,并结合改进后的apriori算法,分析了交通事故历史数据信息,为有关单位和用户寻找道路黑点(即事故多发点)提供了技术支援和决策帮助。
通过数据挖掘中的关联分析方法虽然能够对道路交通事故的相关因素进行清晰的分析,但是目前在这一方面的研究仍有不足之处。因为关联分析在道路交通事故的研究中往往只能片面发现某一种或几种因素影响交通事故的规律,很难将所有影响因素结合起来进行全面系统的分析。然而道路交通事故的发生通常都是由相应因素导致,而后事故当事人意识到危险源的存在并采取措施,直到事故发生的连续过程,整体来看体现了时序性。也就是说,道路交通事故是受到一系列按照时间先后顺序排列的影响因素组合共同作用而发生的,从整体的角度出发研究事故发生机理更加科学。
:随着科学技术的不断发展,数据挖掘技术也应运而生。为了高效有序的医疗信息管理,需要加强数据挖掘技术在医疗信息管理中的实际应用,从而提升医院的管理水平,为医院的管理工作及资源的合理配置提供多样化发展的可能性。笔者将针对数据挖掘技术在医疗信息管理中的应用这一课题进行相应的探究,从而提出合理的改进建议。
:挖掘技术;医疗信息管理;应用方式
数据挖掘作为一种数据信息再利用的有效技术,能够有效地为医院的管理决策提供重要信息。它以数据库、人工智能以及数理统计为主要技术支柱进行技术管理与决策。而在医疗信息管理过程之中应用数据挖掘技术能够较好地针对医疗卫生信息进行整理与归类来建立管理模型,形成有效的总结数据的同时能够为医疗工作的高效进行提供有价值的信息。所以笔者将以数据挖掘技术在医疗信息管理中的应用为着手点,从而针对其应用现状进行探究,以此提出加强数据挖掘技术在医疗信息管理中应用的具体措施,希望能够在理论层面上推动医疗信息管理工作的飞跃。
数据挖掘是结合信息收集技术、人工智能处理技术以及分析检测技术等所形成的功能强大的技术。它能够实现对于数据的收集、问题的定义与处理,并且能够较好地对于结果进行解释与评估。在医疗信息管理工作进行的过程之中,应用数据挖掘技术可以较好地加强医疗信息数据模型的建立,同时以多种形式出现,例如文字信息、基本信号信息、图像收集等,也能够用来进行医疗信息的科普与宣传。并且,数据挖掘技术在医疗信息中所体现出的应用方式有所不同,在数据挖掘技术应用过程之中,既可以针对同一类的实物反应出共同性质的基本特征,同时也能够根据具有一定关联性的事物信息来探究差异。这些功能不仅仅能够在医疗信息的管理层面上给予医疗人员较大的信息管理指导,同时在实际的医疗诊断过程之中,也可以向医生提供患者的患病信息,并且辅助治疗的进行[1]。所以,在医疗信息管理中应用数据挖掘技术不仅仅能够推动医疗信息管理水平的提升,也是医院实现现代化、信息化建设的重要体现,需要从根本上明确医疗信息管理应用数据挖掘技术的必要性与基本内涵,从而针对医院的管理现状实现其管理方式与技术应用的转变与优化。
2.1实现建模环节以及数据收集环节的优化
在应用数据挖掘技术的过程之中,必须基于数据库信息的基础之上,其数据挖掘技术才能够进行相应的规律探究与信息分析,所以需要在源头处加强数据收集环节以及建模环节的优化。以医院中医部门为例,在对于中医处方经验的挖掘方法使用过程之中,需要针对不同的药物进行关联性建模,比如数据库中有基础性药物,针对药物进行频数和次数的统计,然后以此类推,将所有药物都按照出现的频数进行降数排列,从而探究参考价值。建模环节以及数据收集环节是医疗信息管理过程的根本,所以需要做好对于建模环节以及数据收集环节的优化,才能够为数据挖掘技术的应用奠定相应的基础[2]。
2.2细化数据挖掘技术应用类别
想要在医疗信息管理过程之中,加强对于数据挖掘技术的有效应用,就需要从数据挖掘技术应用类别处进行着手,从而提升技术应用的针对性与有效性。常见的技术应用类别有:医院资源配置方面、病患区域管理方面、医疗卫生质量管理方面、医疗急诊管理方面、医院经济管理方面以及医疗卫生常见病宣传方面等,数据挖掘技术都可以在这些类别之中实现应用,但是在应用的过程之中也有所不同。以病房区域管理为例,在应用数据挖掘技术之前,首先需要明确不同的科室状况以及病房区域分配状况等,加强病患区域的指标分析,因为病房管理不仅仅影响到科室的工作效率与工作效果,同时也是医疗物资分配与人员编制的主要参考标准。其次利用数据挖掘技术能够较好地实现不同科室工作效率、质量管理质量以及经济收益等多种指标的评估,建立其科室的运营模型,从而实现科室的又好又快发展。比如使用数据挖掘技术建立其病区管理的标准模型以及统计指标,从而计算出科室动态的工作模型以及病床动态的周转次数等[3]。另外在医疗质量管理过程之中,数据挖掘技术提供的不仅仅是资料数据的参考以及疾病的诊断,也能够针对临床的治疗效果进行分析与评价,并且能够预测治疗状况:可以利用医院的医疗数据库,对于病人的基本患病信息进行分类,从而比对死亡率、治愈率等多个数据,实现治疗方案的制订。而在医疗质量管理过程之中也有很多的影响因素,例如基础医疗设备、病床周转次数、病种治愈记录等,所以也可以利用数据挖掘技术来进一步加强其多种数据之间的关联性,从而为提升医院的社会效益与经济效益提出合理的参考性建议。
2.3明确数据挖掘技术的应用方向
医院加强数据挖掘技术应用方向的探索上,可以从客户拓展这个角度出发实现对于医疗信息管理。例如通过数据挖掘技术多方进行患者信息比对,同时制订完善的医疗服务影响策略方式,加强对于客户行为的分析;在数据挖掘的基础之上,增强其技术应用的实用性,在分析的基础之上比对自身的竞争优势,实现医院资源的合理规划与合理配置,例如药品、资金以及疾病诊断等,从而实现经营状况的优化。目前医院也逐步向现代化、信息化方向发展,无论是信息管理还是医疗技术方面,医院都已经成为了一个信息化的综合行业体系,所以在加强数据挖掘应用的过程之中,还需要加强数据信息的管理,实现数据挖掘结果的维护,从而提升医院的决策能力,实现数据挖掘技术的高效应用。
医院在目前的医疗信息管理过程之中,还有很大的发展空间,需要综合利用数据挖掘技术,实现其信息管理水平的提升。通过明确数据挖掘技术的应用方向、应用类别以及建模数据环节的优化等,促进医院管理水平的提升,实现数据挖掘技术应用效果的提升。
[2]廖亮。数据挖掘技术在医疗信息管理中的应用[j].中国科技信息,20xx(11):54,56.
:数据挖掘是一种特殊的数据分析过程,其不仅在功能上具有多样性,同时还具有着自动化、智能化处理以及抽象化分析判断的特点,对于计算机犯罪案件中的信息取证有着非常大的帮助。本文结合数据挖掘技术的概念与功能,对其在计算机犯罪取证中的应用进行了分析。
:数据挖掘技术;计算机;犯罪取证
随着信息技术与互联网的不断普及,计算机犯罪案件变得越来越多,同时由于计算机犯罪的隐蔽性、复杂性特点,案件侦破工作也具有着相当的难度,而数据挖掘技术不仅能够对计算机犯罪案件中的原始数据进行分析并提取出有效信息,同时还能够实现与其他案件的对比,而这些对于计算机犯罪案件的侦破都是十分有利的。
1.1数据挖掘技术的概念
数据挖掘技术是针对当前信息时代下海量的网络数据信息而言的,简单来说,就是从大量的、不完全的、有噪声的、模糊的随机数据中对潜在的有效知识进行自动提取,从而为判断决策提供有利的信息支持。同时,从数据挖掘所能够的得到的知识来看,主要可以分为广义型知识、分类型知识、关联性知识、预测性知识以及离型知识几种。
1.2数据挖掘技术的功能
根据数据挖掘技术所能够提取的不同类型知识,数据挖掘技术也可以在此基础上进行功能分类,如关联分析、聚类分析、孤立点分析、时间序列分析以及分类预测等都是数据挖掘技术的重要功能之一,而其中又以关联分析与分类预测最为主要。大量的数据中存在着多个项集,各个项集之间的取值往往存在着一定的规律性,而关联分析则正是利用这一点,对各项集之间的关联关系进行挖掘,找到数据间隐藏的关联网,主要算法有fp-growth算法、apriori算法等。在计算机犯罪取证中,可以先对犯罪案件中的特征与行为进行深度的挖掘,从而明确其中所存在的联系,同时,在获得审计数据后,就可以对其中的审计信息进行整理并中存入到数据库中进行再次分析,从而达到案件树立的效果,这样,就能够清晰的判断出案件中的行为是否具有犯罪特征[1]。而分类分析则是对现有数据进行分类整理,以明确所获得数据中的相关性的一种数据挖掘功能。在分类分析的过程中,已知数据会被分为不同的数据组,并按照具体的数据属性进行明确分类,之后再通过对分组中数据属性的具体分析,最终就可以得到数据属性模型。在计算机犯罪案件中,可以将按照这种数据分类、分析的方法得到案件的数据属性模型,之后将这一数据属性模型与其他案件的数据属性模型进行对比,这样就能够判断嫌疑人是否在作案动机、发生规律以及具体特征等方面与其他案件模型相符,也就是说,一旦这一案件的数据模型属性与其他案件的数据模型属性大多相符,那么这些数据就可以被确定为犯罪证据。此外,在不同案件间的共性与差异的基础上,分类分析还可以实现对于未知数据信息或类似数据信息的有效预测,这对于计算机犯罪案件的处理也是很有帮助的。此外,数据挖掘分类预测功能的实现主要依赖决策树、支持向量机、vsm、logisitic回归、朴素贝叶斯等几种,这些算法各有优劣,在实际应用中需要根据案件的实际情况进行选择,例如支持向量机具有很高的分类正确率,因此适合用于特征为线性不可分的案件,而决策树更容易理解与解释。
对于数据挖掘技术,目前的计算机犯罪取证工作并未形成一个明确而统一的应用步骤,因此,我们可以根据数据挖掘技术的特征与具体功能,对数据挖掘技术在计算机犯罪取证中的应用提供一个较为可行的具体思路[2]。首先,当案件发生后,一般能够获取到海量的原始数据,面对这些数据,可以利用fp-growth算法、apriori算法等算法进行关联分析,找到案件相关的潜在有用信息,如犯罪嫌疑人的犯罪动机、案发时间、作案嫌疑人的基本信息等等。在获取这些基本信息后,虽然能够对案件的基本特征有一定的了解,但犯罪嫌疑人却难以通过这些简单的信息进行确定,因此还需利用决策树、支持向量机等算法进行分类预测分析,通过对原始信息的准确分类,可以得到案件的犯罪行为模式(数据属性模型),而通过与其他案件犯罪行为模式的对比,就能够对犯罪嫌疑人的具体特征进行进一步的预测,如经常活动的场所、行为习惯、分布区域等,从而缩小犯罪嫌疑人的锁定范围,为案件侦破工作带来巨大帮助。此外,在计算机犯罪案件处理完毕后,所建立的嫌疑人犯罪行为模式以及通过关联分析、分类预测分析得到的案件信息仍具有着很高的利用价值,因此不仅需要将这些信息存入到专门的数据库中,同时还要根据案件的结果对数据进行再次分析与修正,并做好犯罪行为模式的分类与标记工作,为之后的案件侦破工作提供更加丰富、详细的数据参考。
总而言之,数据挖掘技术自计算机犯罪取证中的应用是借助以各种算法为基础的关联、分类预测功能来实现的,而随着技术的不断提升以及数据库中的犯罪行为模式会不断得到完善,在未来数据挖掘技术所能够起到的作用也必将越来越大。
作者:周永杰单位:河南警察学院信息安全系
:中医临床理论多是由著名医家的经验升华形成的,反映了临床上不同学术派系以及不同学科的优势特征,但这其中不免掺杂了个人主观经验,因此本文就中医临床理论研究中医病案为基础,对应用病案数据挖掘结果来总结和重建中医临床理论的方式进行了探讨,认为该方法可为完善中医临床理论提供客观的数据支持,使中医临床理论的来源更具有科学性。
科研一体化中医临床理论决定着中医临床学科的发展水平,是中医临床发展的动力。从古至今,中医名医名家辈出,他们的临床经验和学术思想不断提炼升华,逐步形成了传统的中医临床理论。新中国成立以来,中医不断汲取最新的科技成果,进行了大量临床实践,而中医临床理论发展缓慢,己经成为制约当代中医学术发展的瓶颈,对如何开拓中医临床理论的研究,可谓见仁见智,但各种新的临床理论常常裹挟着“各家学说”。在当今大数据和信息技术发达的背景下,运用数据挖掘技术对中医病案进行大数据分析,客观揭示当前中医临床理论的本来面目,尽可能减少个人见解的偏倚,对于推动中医临床理论发展具有重要的现实意义,本文就基于病案数据挖掘的中医临床理论重建进行探讨如下。
1.1中医古典文献是传统中医临床理论的基础
众所周知,中医之所以能够屹立千年不倒,很大一部分原因是因为其有独特的理论体系,而在这其中,中医古典文献做出的贡献应该是第一位的。因为这些古典文献的记载和流传,为后世的医家提供了参考和借鉴,使得我们从前人的思维上不断创新,与临床进行有机结合,不断研究出新的适合于当前时代的临床理论。例如,中医学无论在理论研究还是在临床治疗方面的丰富,许多根本性的理论都是源自于《内经》。该书创立了藏象、经络、诊法等各方面的理论[1],勾画了中医理论的雏形,构建了中医理论体系的基本框架。到后期东汉时期张仲景的《伤寒论》则是创造了以六经辨证和脏腑辨证为主的局面,其所倡导的“观其脉证,知犯何逆,随证治之”使得辨证论治登上新的高度。到了金元时期,就是百家争鸣的时代,这期间以金元四大家为主的学派开始萌生,留下了许多可供后世医家参考的古典文献并创建了不同的临床理论,而明清时期以叶天士和吴鞠通为首确立的卫气营血和三焦辨证,使温病学的辨证理论逐步趋于完善,至今仍是指导临床治疗温热病的理论依据。总之,传统中医临床理论的构建和完善,离不开前人的摸索与贡献,也得益于著名医学家创建的传统中医理论,使得我们现在的中医体系不断的饱满和充实。
1.2当代著名中医的临床经验不断提升为中医临床理论
传统中医的临床理论,在很大程度上展示着著名医家的临床经验。在中医理论与实践发展的相互促进过程中,当代医家通过读书、临证、心悟将实践经验不断总结并升华为理论,又在实践中不断完善既有的理论,成为中医理论发展的重要途径和模式,而当代中医理论的发展则需要将传统理论与现代实践相互融合起来。例如上世纪60年代时,面对中医基础理论中新的思想相对匮乏的这一局面,邓铁涛结合其治疗的临床经验,首次提出了“五脏相关学说”。尽管当时的理论准备并不完善,但是这一理论的提出,在很大程度上完善并且取代了“五行学说”中某些模糊性和不确定性,并且随着时代的发展,逐渐验证了邓老的这一经验的正确性,也成为指导中医临床理论的一大重要体系[2]。又如,脑出血这一现代疾病在古代名为中风,多数是“从风而治”,认为肝脏与中风的关系最为密切。随着时代的推进,自20世纪80年代以来,许多学者根据微观辨证和中医理论“离经之血便是瘀”,提出急性出血中风属中医血证,瘀血阻滞是急性期脑出血的最基本病机,是治疗的关键所在[3]。故现代中医临床治疗上多以活血化瘀法治疗脑出血、脑梗塞这一系列疾病。若是仔细研读传统中医临床理论后,我们不难得出其构成和完善离不开当代著名医家的临床经验,它是在历经岁月的洗礼下不断塑造成型的。
1.3传统中医临床理论不断将现代医学相关内容中医化
传统中医临床理论不断吸收现代医学的理论,将其相关内容不断中医化,将病人的各种证型通过五脏辨证、阴阳五行辨证以及八纲辨证划分得越来越细化,以提供病人在中医临床上治疗的理论依据。中医吸取了现代医学理论后正在不断壮大其内容,现代医学相关内容中医化在许多难治疾病的辨证治疗中都起到了良好的指导作用[4]。如艾滋病是古代传统中医辨证论治的空白,通过对艾滋病中医病因病机、证候规律、治法方药的系统研究,提出了“艾毒伤元”“脾为枢机”“气虚为本”的病因病机学说,确立了艾滋病“培元解毒”“益气健脾”的治疗原则,为中医药防治艾滋病奠定了理论基础,为进一步提高艾滋病的中医药临床诊疗效果提供理论依据[5]。
2.1中医主流理论不突出且与时俱进力度不够
不可否认的是,当代的中医临床理论发展也是存在诸多不足的,中医理论的完善和发展是中华五千年来集体智慧的结晶,个别医家提出的临床理论可能各有千秋,其所立的角度和思维也不尽相同。例如,同是治疗输卵管阻塞这一疾病时,朱南孙教授认为多是由于湿蕴冲任所致,其用自拟的清热利湿方来进行治疗;而李广文教授则认为这一疾病多是由于瘀血阻络为主,治疗上以活血祛瘀为法,拟通任种子汤进行治疗[6]。又如对于“和解法”这一治疗方法的理解,当代名医蒲辅周老先生认为“寒热并用,补泻合剂,表里双解,苦辛分消,调和气血,皆谓和解”。而方和谦教授则认为“在治法上扶正祛邪,表里兼顾,此法就为和解法”。不同的医家在面对不同的疾病,甚至是不同的理法方药时,所持的看法常常是“各家学说”,这就导致了当前中医临床理论发展比较混乱,不能全面地体现中国五千年来发展过程中的中医主流理论。目前中医基础理论还存在一个缺陷就是它的与时俱进力度还不够,很多古代经典方药的主治病症,在当今时代已经不再多见了。比如蛔虫导致的蛔厥这一致病因素在现代已经不再常见,对应的乌梅丸的主要适应病症也不再是蛔厥;在针对没有明显临床表现的疾病如乙肝时,按传统中医往往体现出“无证可治”的状态;传统的诊断与现代检查相结合的力度也不够,中医临床基础理论在某些程度上忽略了其与生化、b超、x光、ct等现代检查结果的结合,并没有用中医理论对其做一合理的陈述;且现在临床上很多中药的药理作用、性味归经的研究作用还不够深入、细致,其作用不能在微观上得以解释。这些都导致了临床上很多情况没有从中医理论来认识中医,不是“以中解中”,而是“以西解中”,形成了临床抛弃中医理论的状态[7]。由于中医学是一门实践性很强的学科,它是在哲学辨证的思想指导下,与临床经验不断结合,这与西医知识体系相比较,难免存在一定的滞后性,这都会使得中医临床理论发展相对的落后。
2.2部分中医理论带有权威专家的“个人学说”偏见
传统中医强调个人经验和学说,以中医内科学为例,第八版中的脑系疾病在第九版中已经删除,其涉及到的各种脑系疾病大多数归属于心系疾病与肝系疾病。根据其版本的不同,我们可以明显看出其凸显的中心内容及其思想不同,其多是体现编著者的理论思想,在一定程度上并没有客观地揭示疾病的本质,治疗理论也不够完善,一部分内容与最新研究得出的论文理论不符,这使得当代中医临床理论在某些程度上,带有权威专家的“个人学说”色彩。由于现代西方先进的科技文化流入,使得中医在一定程度上备受质疑,而正是因为人们对于中医理论的一些偏见,才使得中医长期让人诟病。
3.1临床理论应具有真实性与系统性
中医临床理论的发展方形应当是建立在客观并且真实的临床实践基础上,从一次次临床实践中得出。由于历史时代的原因以及假设推理、模式建设的广泛使用,当代中医临床理论中理论与假说并存的现象较为普遍,如中医的五运六气学说对现代疫病预测和人体各经络脏腑在时间上对于人体治病效果的不同等,就需要我们在扎实的文献与临床实践基础上,对医案进行认真总结,利用科学的方法深入挖掘,开展中医理论的去伪存真研究,以促进中医理论的科学与健康发展。另外,传统的中医临床治疗上所用的理法方药,多是根据个人经验所进行的。随着科技的不断发展与时代的不断进步,当代的中医临床理论应该在成功的中医医案上进行系统的总结,不断挖掘和研究其微观的结构,并随着年月的更迭不断更新,不断完善,使其具有科学性和理论依据。同时,对近年来兴起的传染性非典型肺炎、艾滋病、禽流感等古人所没有经历过的疾病的诊治,中医就其病因病机的认识以及探究相应的诊疗方法,无疑也是一种理论上的创新[8]。通过对其进行深一层次的研究和发现,归纳出合适的治则治法,找到针对这一疾病的理法方药,使其更具有系统性,使得临床上中医治病可以循序渐进,注重整体,也是当代临床理论的一大发展方向。
3.2临床理论具有信息化的特点并可持续拓展
随着时代的进步,当代的中医临床理论可以通过网络等方式进行共享,在大数据的这一时代背景下,随着病案的不断报道与积累,可以将各类成功的中医医案进行统计和挖掘,其结果也会不断进行更新和发展。不同的医家对于某一疾病的认识角度可能不同,其表现在病位、病性、病势和证候的判断标准也不一样,因此方药规律也不一样。而通过统计某一中医或西医疾病的较大样本病例,并对其进行数据挖掘,可以得出整个中医群体对于这一疾病诊治的证候分布、治则治法、处方用药等的规律,甚至可以根据统计的结果探索出新的方药,分析他们的共同点和所在差异。将中医临床理论具有信息化的这一特点不断地拓展下去,通过计算机等客观科学的手段进行分析,与主观的名老中医传承模式相比,更具客观性,更容易被临床医生接受,对各种疾病的中医临床用药也更具有指导价值。
4.1病案研究是中医理论发展的重要基础
在当今大数据的时代背景下,中医固有的传统整体论科学特征有了越来越多的可供改变的空间。这种变化既为其按照自身特有的规律发展特点带来了机遇,也给未来中医理论的发展提出了挑战。同时,学习医案研究也是中医学相关大学生们应该学习的一项内容。阅读医案是必要的训练,也是中医入门的方法之一。医案的故事性引人入胜,在自然而然中接受中医思维方法和传统文化知识,同时医案中所呈现的名医风范,医德对学生起到潜移默化的影响,并培养对专业的热爱[9]。病案客观、真实地直接记录疾病诊断和治疗过程,医案研究作为中医理论发展过程中至关重要的一环,是中医理论发展的重要基础,以研究病案为基础,对于中医理论的形成和临床上中医积累经验,都起到了一定的辅助提升作用。
4.2数据挖掘方法是中医理论发展的现代技术手段
利用多种数据挖掘技术对中医病案中的有关信息行进行归纳、整理,是近年来传承中医临床经验的重要方法之一[10]。通过对同一种疾病的病案进行数据挖掘以分析医者的思路和探索其用药的。方法,对中医临床病案进行规范化的整理,能够深入总结其临床经验,挖掘隐藏在大量病案背后的诊治规律,甚至探索出新的方药配伍,为中医理论的发展提供一定的科学依据的同时,使得中医理论的发展越来越现代化,不仅仅只是停留在以前的靠读书和个人经验的结合,也为广大的中医在日后的临床治疗上提供了新的思路和方向。
4.3临床实践推动理论发展,赋予转化医学新的内涵
目前,我们通过并按数据挖掘来总结一些中医对于治疗同一种疾病所采取的诊断和用药,可以获得新的思路,并且为完善我们现有的中医理论基础可以提供可靠的理论支持。采用数据挖掘技术对中医学术思想和临证经验进行研究,可以全面解析其中的规律,分析中医个体化诊疗信息特征,提炼出临证经验中蕴藏的新理论、新力法,可以实现经验的有效总结与传承[11]。与此同时,要求我们用发展的眼光将现代的科技手段整合加入到传统的中医学理论中去,推陈出新,通过临床实践与基础理论的不断结合,不断完善,推动祖国医学现代化,谱写有关于中医学在转化医学上新的篇章。
[2]邱仕君,吴玉生。在基础理论与临床医学之间———对邓铁涛教授五脏相关学说的理论思考[j].湖北民族学院学报(医学版),2005,22(2):36-39.
[3]顾宁,周仲英。通下法治疗急性脑出血研究进展[j].中国中医急诊,2000,9(5):227.
[4]靳士英。邓铁涛教授学术成就管[j].现代医院,2004(9):1-6.
[7]孟静岩,应森林。试论中医基础理论指导临床研究的思考与途径[j].上海中医药大学学报,2009(3):3-5.
我国中央经济会议明确指出解决“三农”问题是现阶段工作中的重点内容,这进一步体现出我国对农村旅游发展的重视。基于时代背景给予农村旅游发展的支持,进一步促进了农村产业结构的调整与农村经济的良好发展。在时代的背景下,农业旅游这种新兴的旅游模式顺应市场的需求得以产生和发展。不仅能够切实的促进农民的收入取得相应的提高,还能够进一步促进农村地区的全面发展。农业资源作为农业旅游发展的主要资源,农村旅游的开发能够有效的保障农村土地的经济性质,进而对耕地数量的保护起着强有力的保障作用。
一、探讨农业旅游开发管理的模式
1、农户分散经营模式
目前,在我国农业旅游发展的基础阶段是由农户作为农业旅游开发的主体,农业旅游的经营模式主要是以分散式经营模式为主。以农户为主体进行经营直接具有一定的弊端,一是开发的规模相对较小并且分散,而一些农户为了追求短期的利益没有对农业旅游资源进行合理的开发,而相应附属农产品的开发也因为缺乏科学理论支持出现单一缺乏吸引力的情况。二是农户缺乏雄厚的经济实力,在农业旅游开发中没有足够的资金投入。这直接影响着产品的开发和宣传。除此之外,经营者缺乏统一的规划,对原有的田园风光进行过度的修建,从而导致环境污染更加严重[1]。
2、企业主导经营模式
分散的农户经营模式为农业旅游开发和经营带来严重的外部问题。而通过引进有经济实力和市场经营能力的企业进行农业旅游的开发,能够在一定程度上解决这些外部问题。但引进的企业作为外来者很难考虑到乡村公共资源对后代具有的重要作用,因此仍然可能导致对农业资源进行过度的开发利用和破坏[2]。
3、村民自主开发模式
以村民自主开发模式作为农业旅游经营模式中的主体,主要基于具有一定规模的社区内,村民自发联合形成的农业旅游开发组组织。一般情况下,会成立相应的管理委员会对农业旅游资源的占用、供应等活动进行组织和监督。并结合相应的规章制度对农业旅游资源和乡村整体文化环境进行合理的使用和维护。这一经营模式是目前比较符合我国农业旅游开发的模式[3]。
二、分析农业旅游开发管理现存问题及形成原因
1、农业旅游开发管理现存的问题
我国农业旅游发展相对较晚,大部分地区都处在基础发展阶段。对于现阶段农业旅游开发中普遍存在的问题主要有三种,一是农民的收入提高效果不明显。二是农村的乡土民俗和自然资源环境遭到严重的破坏,三是对于农业旅游资源很难实现可持续发展。
2、农业旅游开发管理中问题成因
通过对现阶段我国农业旅游开发管理中存在问题的分析可以总结出,形成这些问题的原因主要有四个方面。一是经营者的思想观念没有跟随时代的发展进行及时的更新,这直接导致产品类型较少。二是对农业旅游开发和管理没有进行长期的规划,缺乏相应的品牌产品和足够的营销力度。三是人才和资金的短缺导致旅游市场淡季和旺季差距较大。四是相关的基础设施和配套设施不完善,并且缺乏相应的体制,导致市场形成严重的无序竞争。
三、探究农业旅游开发管理相关对策
1、正确认识农业旅游
农业旅游的开发和管理要以正确的思想观念作为前提指导,因此要想确保农业旅游能够保持正确的发展方向就要对其具有正确的认识。农业旅游的开发和管理一定要树立正确的旅游资源观念,打破传统观念的限制,对农业旅游资源存在的本质内涵和具有的重要价值进行充分的认识,改进和创新农业旅游开发和管理意识。相关部门和所涉及人员应该投入更多的精力对于农业旅游进行合理的开发和科学的管理,从而为农业旅游发展质量提供强有力的基础保障。
2、农业旅游规划开发
农业旅游主要是向游客展示出农村生产生活的整体,让游客能够感受到传统的乡土民俗文化和农业资源。这也要求我们要通过有效的开发和管理形成一个综合的资源系统,必须要从整体上对农业旅游进行合理的规划和科学的开发。对于农业旅游的规划和开发不仅要保护地区生物多样性好农村生态系统,还要重视农业科学配置,保证农业旅游资源的完整性和合理性。
3、加强相应制度规范
现阶段,我国农业旅游开发管理十分需要建立相关的制度规范。这不仅有利于农业旅游开发主体在使用公共资源时能够主动考虑社会成本,进而对公共资源的消费数量进行合理的限制。还能够在一定程度上保证农业旅游经营组织在进行科学健康的可持续发展。
4、加强旅游人才培养
加强对农村旅游人才的培养可以从三个方面入手,一是组织相应的旅游知识培训。二是要与相应的旅游企业和高等院校建立紧密的合作,为农村旅游人才提供更多的培训机会。三是要充分结合现代化信息技术手段,一方面要利用现代化网络信息技术拓宽农村旅游人才的知识面,另一方面还要利用网络信息技术倡导农民不断加强自身的学习,从而使农民的整体素质取得提高。
四、结语
农业旅游作为新农村建设和发展的重要内容,推动着人民生活水平的提高和国家经济的发展,要想更好的进行农业旅游的开发和管理,我们要明确目前我国农业旅游发展管理模式存在的不足,正确的认识农业旅游的重要性。要加强对其规划开发,并建立相应的制度规范对旅游人才的培养,从而促进农业旅游的可持续发展。
古典文学中常见论文这个词,当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称为论文。以下就是由编为您提供的。
阿里巴巴成功上市,使马云一时间家喻户晓,同时让更多人看到了电商发展的无限潜力和广阔空间。电子商务是一门交叉性概念,其涉及理论知识和领域极为丰富,譬如:管理学、法学、经济学以及互联网技术等多种领域,是一系列综合性极强的活动。信息技术的进步和社会商业的发展使得经济数字化、竞争全球化、贸易自由化的趋势不断加强。有关电子商务各类的研究如雨后春笋层出不穷,其中物联网技术作为其发展的重要支撑不可忽视。为进一步了解近年来我国基于物联网的电商发展研究热点,笔者通过对cnki收录的相关文献的进行计量分析就此展开研究。
物联网作为一种新兴技术,自20世纪90年代由美国麻省理工学院首次提出以来,其技术实现及应用引起国内外学术界学者广泛关注。物联网起初是基于物流系统提出的,以射频识别技术作为条码识别的替代品,实现对物流系统进行智能化管理。
在研究物联网技术在电子商务应用中,rfid功不可没。rfid(radio frequency identification)技术作为物联网的重要技术,又称电子标签、无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。电子商务利用物联网技术通过把人、财、物、商店等实体联结起来并在网络环境下进行交互。在实现交互时,一个关键技术就是利用rfid技术给各个实体标注独一无二的标签从而将不同实体加以区分。物联网技术不仅承担着标注实体角色而且在记录生产过程、跟踪物流以及防伪查询等方面发挥着重要作用。
随着互联网技术的发展和经济全球化浪潮的推动,电子商务问题及物联网技术成为国内外学术界普遍研究热点。国内学者就电子商务发展进程中涉及到的主要环节并结合物联网技术作出相关研究,并在其研究的基础之上根据我国电子商务发展状况提出了针对性建议,这些环节主要包括基础设施建设、支付环境、信用环境以及发展环境的改善等等。
国内对电子商务的研究热度颇高,然而对物联网技术下电子商务的研究相对匮乏。2017年4月,我们在cnki上以“主题=电子商务”为检索式进行检索,查得相关记录83605条;以“主题=‘物联网’+‘电子商务’”为检索式得到609条记录,通过筛选共112篇文献与本文研究相关。在112篇文章中,98篇为非基金文献,基金文献仅占1/8。据调查,近年来我国基于物联网技术对电子商务研究集中在物联网技术在各行业电子商务中的应用、物联网对电商的影响以及基于物联网技术新型模式的研讨等方面。因此,围绕物联网环境下电子商务发展动向及趋势并进行相关比较分析对把握电子商务发展中关键问题具有极强的现实意义和指导意义。
:数据挖掘是一种特殊的数据分析过程,其不仅在功能上具有多样性,同时还具有着自动化、智能化处理以及抽象化分析判断的特点,对于计算机犯罪案件中的信息取证有着非常大的帮助。本文结合数据挖掘技术的概念与功能,对其在计算机犯罪取证中的应用进行了分析。
:数据挖掘技术;计算机;犯罪取证
随着信息技术与互联网的不断普及,计算机犯罪案件变得越来越多,同时由于计算机犯罪的隐蔽性、复杂性特点,案件侦破工作也具有着相当的难度,而数据挖掘技术不仅能够对计算机犯罪案件中的原始数据进行分析并提取出有效信息,同时还能够实现与其他案件的对比,而这些对于计算机犯罪案件的侦破都是十分有利的。
1.1数据挖掘技术的概念
数据挖掘技术是针对当前信息时代下海量的网络数据信息而言的,简单来说,就是从大量的、不完全的、有噪声的、模糊的随机数据中对潜在的有效知识进行自动提取,从而为判断决策提供有利的信息支持。同时,从数据挖掘所能够的得到的知识来看,主要可以分为广义型知识、分类型知识、关联性知识、预测性知识以及离型知识几种。
1.2数据挖掘技术的功能
根据数据挖掘技术所能够提取的不同类型知识,数据挖掘技术也可以在此基础上进行功能分类,如关联分析、聚类分析、孤立点分析、时间序列分析以及分类预测等都是数据挖掘技术的重要功能之一,而其中又以关联分析与分类预测最为主要。大量的数据中存在着多个项集,各个项集之间的取值往往存在着一定的规律性,而关联分析则正是利用这一点,对各项集之间的关联关系进行挖掘,找到数据间隐藏的关联网,主要算法有fp-growth算法、apriori算法等。在计算机犯罪取证中,可以先对犯罪案件中的特征与行为进行深度的挖掘,从而明确其中所存在的联系,同时,在获得审计数据后,就可以对其中的审计信息进行整理并中存入到数据库中进行再次分析,从而达到案件树立的效果,这样,就能够清晰的判断出案件中的行为是否具有犯罪特征[1]。而分类分析则是对现有数据进行分类整理,以明确所获得数据中的相关性的一种数据挖掘功能。在分类分析的过程中,已知数据会被分为不同的数据组,并按照具体的数据属性进行明确分类,之后再通过对分组中数据属性的具体分析,最终就可以得到数据属性模型。在计算机犯罪案件中,可以将按照这种数据分类、分析的方法得到案件的数据属性模型,之后将这一数据属性模型与其他案件的数据属性模型进行对比,这样就能够判断嫌疑人是否在作案动机、发生规律以及具体特征等方面与其他案件模型相符,也就是说,一旦这一案件的数据模型属性与其他案件的数据模型属性大多相符,那么这些数据就可以被确定为犯罪证据。此外,在不同案件间的共性与差异的基础上,分类分析还可以实现对于未知数据信息或类似数据信息的有效预测,这对于计算机犯罪案件的处理也是很有帮助的。此外,数据挖掘分类预测功能的实现主要依赖决策树、支持向量机、vsm、logisitic回归、朴素贝叶斯等几种,这些算法各有优劣,在实际应用中需要根据案件的实际情况进行选择,例如支持向量机具有很高的分类正确率,因此适合用于特征为线性不可分的案件,而决策树更容易理解与解释。
对于数据挖掘技术,目前的计算机犯罪取证工作并未形成一个明确而统一的应用步骤,因此,我们可以根据数据挖掘技术的特征与具体功能,对数据挖掘技术在计算机犯罪取证中的应用提供一个较为可行的具体思路[2]。首先,当案件发生后,一般能够获取到海量的原始数据,面对这些数据,可以利用fp-growth算法、apriori算法等算法进行关联分析,找到案件相关的潜在有用信息,如犯罪嫌疑人的犯罪动机、案发时间、作案嫌疑人的基本信息等等。在获取这些基本信息后,虽然能够对案件的基本特征有一定的了解,但犯罪嫌疑人却难以通过这些简单的信息进行确定,因此还需利用决策树、支持向量机等算法进行分类预测分析,通过对原始信息的准确分类,可以得到案件的犯罪行为模式(数据属性模型),而通过与其他案件犯罪行为模式的对比,就能够对犯罪嫌疑人的具体特征进行进一步的预测,如经常活动的场所、行为习惯、分布区域等,从而缩小犯罪嫌疑人的锁定范围,为案件侦破工作带来巨大帮助。此外,在计算机犯罪案件处理完毕后,所建立的嫌疑人犯罪行为模式以及通过关联分析、分类预测分析得到的案件信息仍具有着很高的利用价值,因此不仅需要将这些信息存入到专门的数据库中,同时还要根据案件的结果对数据进行再次分析与修正,并做好犯罪行为模式的分类与标记工作,为之后的案件侦破工作提供更加丰富、详细的数据参考。
总而言之,数据挖掘技术自计算机犯罪取证中的应用是借助以各种算法为基础的关联、分类预测功能来实现的,而随着技术的不断提升以及数据库中的犯罪行为模式会不断得到完善,在未来数据挖掘技术所能够起到的作用也必将越来越大。
作者:周永杰 单位:河南警察学院信息安全系
摘要:随着科学技术的不断发展,数据挖掘技术也应运而生。为了高效有序的医疗信息管理,需要加强数据挖掘技术在医疗信息管理中的实际应用,从而提升医院的管理水平,为医院的管理工作及资源的合理配置提供多样化发展的可能性。笔者将针对数据挖掘技术在医疗信息管理中的应用这一课题进行相应的探究,从而提出合理的改进建议。
关键词:挖掘技术;医疗信息管理;应用方式
数据挖掘作为一种数据信息再利用的有效技术,能够有效地为医院的管理决策提供重要信息。它以数据库、人工智能以及数理统计为主要技术支柱进行技术管理与决策。而在医疗信息管理过程之中应用数据挖掘技术能够较好地针对医疗卫生信息进行整理与归类来建立管理模型,形成有效的总结数据的同时能够为医疗工作的高效进行提供有价值的信息。所以笔者将以数据挖掘技术在医疗信息管理中的应用为着手点,从而针对其应用现状进行探究,以此提出加强数据挖掘技术在医疗信息管理中应用的具体措施,希望能够在理论层面上推动医疗信息管理工作的飞跃。
1在医疗信息管理中应用数据挖掘技术的基本内涵
数据挖掘是结合信息收集技术、人工智能处理技术以及分析检测技术等所形成的功能强大的技术。它能够实现对于数据的收集、问题的定义与处理,并且能够较好地对于结果进行解释与评估。在医疗信息管理工作进行的过程之中,应用数据挖掘技术可以较好地加强医疗信息数据模型的建立,同时以多种形式出现,例如文字信息、基本信号信息、图像收集等,也能够用来进行医疗信息的科普与宣传。并且,数据挖掘技术在医疗信息中所体现出的应用方式有所不同,在数据挖掘技术应用过程之中,既可以针对同一类的实物反应出共同性质的基本特征,同时也能够根据具有一定关联性的事物信息来探究差异。这些功能不仅仅能够在医疗信息的管理层面上给予医疗人员较大的信息管理指导,同时在实际的医疗诊断过程之中,也可以向医生提供患者的患病信息,并且辅助治疗的进行[1]。所以,在医疗信息管理中应用数据挖掘技术不仅仅能够推动医疗信息管理水平的提升,也是医院实现现代化、信息化建设的重要体现,需要从根本上明确医疗信息管理应用数据挖掘技术的必要性与基本内涵,从而针对医院的管理现状实现其管理方式与技术应用的转变与优化。
2在医疗信息管理过程之中加强数据挖掘技术应用的重要措施
2.1实现建模环节以及数据收集环节的优化
在应用数据挖掘技术的过程之中,必须基于数据库信息的基础之上,其数据挖掘技术才能够进行相应的规律探究与信息分析,所以需要在源头处加强数据收集环节以及建模环节的优化。以医院中医部门为例,在对于中医处方经验的挖掘方法使用过程之中,需要针对不同的药物进行关联性建模,比如数据库中有基础性药物,针对药物进行频数和次数的统计,然后以此类推,将所有药物都按照出现的频数进行降数排列,从而探究参考价值。建模环节以及数据收集环节是医疗信息管理过程的根本,所以需要做好对于建模环节以及数据收集环节的优化,才能够为数据挖掘技术的应用奠定相应的基础[2]。
2.2细化数据挖掘技术应用类别
想要在医疗信息管理过程之中,加强对于数据挖掘技术的有效应用,就需要从数据挖掘技术应用类别处进行着手,从而提升技术应用的针对性与有效性。常见的技术应用类别有:医院资源配置方面、病患区域管理方面、医疗卫生质量管理方面、医疗急诊管理方面、医院经济管理方面以及医疗卫生常见病宣传方面等,数据挖掘技术都可以在这些类别之中实现应用,但是在应用的过程之中也有所不同。以病房区域管理为例,在应用数据挖掘技术之前,首先需要明确不同的科室状况以及病房区域分配状况等,加强病患区域的指标分析,因为病房管理不仅仅影响到科室的工作效率与工作效果,同时也是医疗物资分配与人员编制的主要参考标准。其次利用数据挖掘技术能够较好地实现不同科室工作效率、质量管理质量以及经济收益等多种指标的评估,建立其科室的运营模型,从而实现科室的又好又快发展。比如使用数据挖掘技术建立其病区管理的标准模型以及统计指标,从而计算出科室动态的工作模型以及病床动态的周转次数等[3]。另外在医疗质量管理过程之中,数据挖掘技术提供的不仅仅是资料数据的参考以及疾病的诊断,也能够针对临床的治疗效果进行分析与评价,并且能够预测治疗状况:可以利用医院的医疗数据库,对于病人的基本患病信息进行分类,从而比对死亡率、治愈率等多个数据,实现治疗方案的制订。而在医疗质量管理过程之中也有很多的影响因素,例如基础医疗设备、病床周转次数、病种治愈记录等,所以也可以利用数据挖掘技术来进一步加强其多种数据之间的关联性,从而为提升医院的社会效益与经济效益提出合理的参考性建议。
2.3明确数据挖掘技术的应用方向
医院加强数据挖掘技术应用方向的探索上,可以从客户拓展这个角度出发实现对于医疗信息管理。例如通过数据挖掘技术多方进行患者信息比对,同时制订完善的医疗服务影响策略方式,加强对于客户行为的分析;在数据挖掘的基础之上,增强其技术应用的实用性,在分析的基础之上比对自身的竞争优势,实现医院资源的合理规划与合理配置,例如药品、资金以及疾病诊断等,从而实现经营状况的优化。目前医院也逐步向现代化、信息化方向发展,无论是信息管理还是医疗技术方面,医院都已经成为了一个信息化的综合行业体系,所以在加强数据挖掘应用的过程之中,还需要加强数据信息的管理,实现数据挖掘结果的维护,从而提升医院的决策能力,实现数据挖掘技术的高效应用。
3结语
医院在目前的医疗信息管理过程之中,还有很大的发展空间,需要综合利用数据挖掘技术,实现其信息管理水平的提升。通过明确数据挖掘技术的应用方向、应用类别以及建模数据环节的优化等,促进医院管理水平的提升,实现数据挖掘技术应用效果的提升.
参考文献:
[2]廖亮.数据挖掘技术在医疗信息管理中的应用[j].中国科技信息,20xx(11):54,56.
摘要:主要通过对数据挖掘技术的探讨,对职教多年累积的教学数据运用分类、决策树、关联规则等技术进行分析,从分析的结果中发现有价值的数据模式,科学合理地实现教学评估,让教学管理者能够从中发现教学活动中存在的主要问题以便及时改进,进而辅助管理者决策做好教学管理。
关键词:教学评估;数据挖掘;教学评估体系;层次分析法
1概述
近年来国家对中等职业教育的发展高度重视,在政策扶持与职教工作者的努力下,职业教育获得了蓬勃的发展。如何提高教学质量、培养合格的高技术人才成为职教工作者研究的课题。各种调查研究结果表明:加强师资队伍的建设,强化教师教学评估对教学质量的提高尤为重要。
所谓教学评估,就是运用系统科学的方法对教学活动或教育行为的价值、效果作出科学的判断过程。教学评估方式要灵活多样,要多途径、多方位、多形式的发挥评估的导学作用,以鼓励评估为主,充分发挥评估的激励功能,促进教学的健康发展。
在中等职业学校多年的教育教学工作中积累了大量的教务管理数据、教师档案数据等,怎样从庞杂大量的数据中挖掘出有效提高教学质量的关键因素是个难题。数据挖掘技术却可以从人工智能的角度很好地解决这一课题。通过数据挖掘技术,得到隐藏在教学数据背后的有用信息,在一定程度上为教学部门提供决策支持信息促使更好地开展教学工作,提高教学质量和教学管理水平,使之能在功能上更加清晰地认识教师教与学生学的关系及促进教育教学改革。
2数据挖掘技术
2.1数据挖掘的含义
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘应该更正确地命名为“从数据中挖掘知识”。即数据挖掘是对巨大的数据集进行寻找和分析的计算机辅助处理过程,在这一过程中显现先前未曾发现的模式,然后从这些数据中发掘某些内涵信息,包括描述过去和预测未来趋势的信息。人工智能领域习惯称知识发现,而数据库领域习惯将其称为数据挖掘。
2.2数据挖掘的基本过程
数据挖掘过程包括对问题的理解和提出、数据收集、数据处理、数据变换、数据挖掘、模式评估、知识表示等过程,以上的过程不是一次完成的,其中某些步骤或者全过程可能要反复进行。对问题的理解和提出在开始数据挖掘之前,最基础的工作就是理解数据和实际的业务问题,在这个基础之上提出问题,对目标作出明确的定义。
2.3数据挖掘常用的算法
2.3.1分类分析方法:是通过分析训练集中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,以便以后利用这个分类规则对其它数据库中的记录进行分类的方法。2.3.2决策树算法:是一种常用于分类、预测模型的算法,它通过将大量数据有目的的分类,从而找到一些有价值的、潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。2.3.3聚类算法:聚类分析处理的数据对象的类是未知的。聚类分析就是将对象集合分组为由类似的对象组成的多个簇的过程。在同一个簇内的对象之间具有较高的相似度,而不同簇内的对象差别较大。2.3.4关联规则算法:侧重于确定数据中不同领域之间的关系,即寻找给定数据集中的有趣联系。提取描述数据库中数据项之间所存在的潜在关系的规则,找出满足给定支持度和置信度阈值的多个域之间的依赖关系。
在以上各种算法的研究中,比较有影响的是关联规则算法。
3教学评估体系
评价指标体系是教学评估的基础和依据,对评估起着导向作用,因此制定一个科学全面的评价指标体系就成为改革、完善评价的首要目标。评价指标应以指导教学实践为目的,通过评价使教师明确教学过程中应该肯定的和需要改进的地方;以及给出设计评价指标的导向问题。
3.1教学评估体系的构建方法
层次分析法(简称ahp法)是美国运筹学家t·l·saaty教授在20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策的系统分析方法,其原理是把一个复杂问题分解、转化为定量分析的方法。它需要建立关于系统属性的各因素多级递阶结构,然后对每一层次上的因素逐一进行比较,得到判断矩阵,通过计算判断矩阵的特征值和特征向量,得到其关于上一层因素的相对权重,并可自上而下地用上一层次因素的相对权重加权求和,求出各层次因素关于系统整体属性(总目标层)的综合重要度。
3.2构建教学评估指标体系的作用
3.2.1构建的教学评估指标,作为挖掘库选择教学信息属性的依据。
3.2.2通过ahp方法,能筛选出用来评价教学质量的相关重要属性,从而入选为挖掘库字段,这样就减去了挖掘库中对于挖掘目标来说影响较小的属性,进而大大减少了挖掘的工作量,提高挖掘效率。3.2.3通过构建教学评估指标,减少了挖掘对象的字段,从而避免因挖掘字段过多,导致建立的决策树过大,出现过度拟合挖掘对象,进而造成挖掘规则不具有很好的评价效果的现象。3.2.4提高教学质量评估实施工作的效率。
4数据挖掘在教学评估中的应用
4.1学习效果评价学习评价是教育工作者的重要职责之一。评价学生的学习情况,既对学生起到信息反馈和激发学习动机的作用,又是检查课程计划、教学程序以至教学目的的手段,也是考查学生个别差异、便于因材施教的途径。评价要遵循“评价内容要全面、评价方式要多元化、评价次数要多次化,注重自评与互评的有机结合”的原则。利用数据挖掘工具,对教师业务档案数据库、行为记录数据库、奖励处罚数据库等进行分析处理,可以即时得到教师教学的评价结果,对教学过程出现的问题进行及时指正。
另外,这种系统还能够克服教师主观评价的不公正、不客观的弱点,减轻教师的工作量。
4.2课堂教学评价
课堂教学评价不仅对教学起着调节、控制、指导和推动作用,而且有很强的导向性,是学校教学管理的重要组成部分,是评价教学工作成绩的主要手段。实现对任课教师及教学组织工作效果做出评价,但是更重要的目的是总结优秀的教学经验,为教学质量的稳定提高制定科学的规范。学校每学期都要搞课堂教学评价调查,积累了大量的数据。利用数据挖掘技术,从教学评价数据中进行数据挖掘,将关联规则应用于教师教学评估系统中,探讨教学效果的好坏与老师的年龄、职称、学历之间的联系;确定教师的教学内容的范围和深度是否合适,选择的教学媒体是否适合所选的教学内容和教学对象;讲解的时间是否恰到好处;教学策略是否得当等。从而可以及时地将挖掘出的规则信息反馈给教师。管理部门据此能合理配置班级的上课教师,使学生能够较好地保持良好的学习态度,从而为教学部门提供了决策支持信息,促使教学工作更好地开展。
结束语
数据挖掘作为一种工具,其技术日趋成熟,在许多领域取得了广泛的应用。在教育领域里,随着数据的不断累积,把数据挖掘技术应用到教学评价系统中,让领导者能够从中发现教师教学活动中的主要问题,以便及时改进,进而辅助领导决策做好学校管理,提高学校管理能力和水平,同时通过建立有效的教学激励机制来达到提高教学质量的目的。这一研究对发展中的职业教育教学管理提出了很好的建议,为教学管理工作的计算机辅助决策增添了新的内容。将数据挖掘技术应用于中职教学评估,设计开发一套行之有效的课堂教学评价系统,是下一步要做的工作,必将有力推动职业教育的快速发展。
2023年数据挖掘论文摘要(优质12篇)
文件夹