最新初一数学知识点总结归纳重点 初一数学知识点总结(模板13篇)
文件格式:DOCX
时间:2023-10-06 00:00:00    小编:高工要跑路

最新初一数学知识点总结归纳重点 初一数学知识点总结(模板13篇)

小编:高工要跑路

总结,是对前一阶段工作的经验、教训的分析研究,借此上升到理论的高度,并从中提炼出有规律性的东西,从而提高认识,以正确的认识来把握客观事物,更好地指导今后的实际工作。总结书写有哪些要求呢?我们怎样才能写好一篇总结呢?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。

初一数学知识点总结归纳重点篇一

1、单项式:;单独的一个数或一个字母也是单项式

2、系数:;

3、单项式的次数:;

4、多项式:;

叫做多项式的项;的项叫做常数项。

5、多项式的次数:;

6、整式:;

7、同类项:;

8、把多项式中的同类项合并成一项,叫做合并同类项;

合并同类项后,所得项的系数是合并同前各同类项的系数的和,且字母部分不变。

(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反

10、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项

第三章:一次方程(组)

一、方程的有关概念

1、方程的概念:

(1)含有未知数的等式叫方程。

(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。

2、等式的基本性质:

(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。若a=b,则a+c=b+c或a–c=b–c。

二、解方程

1、移项的有关概念:

把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项。这个法则是根据等式的性质1推出来的,是解方程的依据。把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号。

2、解一元一次方程的步骤:

解一元一次方程的步骤

主要依据

1、去分母

等式的性质2

2、去括号

去括号法则、乘法分配律

3、移项

等式的性质1

4、合并同类项

合并同类项法则

5、系数化为1

等式的性质2

6、检验

3、二元一次方程组

(1)将二元一次方程用含有一个未知数的代数式表示另一个未知数;

(2)解二元一次方程组的指导思想是转化的思想;

(3)解二元一次方程组的方法有:加减消元法;代入消元法;

二、列方程解应用题

1、列方程解应用题的一般步骤:

(1)将实际问题抽象成数学问题;

(2)分析问题中的已知量和未知量,找出等量关系;

(3)设未知数,列出方程;

(4)解方程;

(5)检验并作答。

2、一些实际问题中的规律和等量关系:

(1)几种常用的面积公式:

梯形面积公式:s=,a,b为上下底边长,h为梯形的高,s为梯形面积;

圆形的面积公式:,r为圆的半径,s为圆的面积;

三角形面积公式:,a为三角形的一边长,h为这一边上的高,s为三角形的面积。

(2)几种常用的周长公式:

长方形的周长:l=2(a+b),a,b为长方形的长和宽,l为周长。

正方形的周长:l=4a,a为正方形的边长,l为周长。

圆:l=2πr,r为半径,l为周长。

初一数学知识点总结归纳重点篇二

器官:由多种组织构成,具有一定功能的结构。

系统:一些器官协同作用,共同完成某种行为的器官总和。多个器官构成系统

组织就是许多形态相似,结构和功能相同的细胞联合在一起的细胞群

植物:营养器官:根、茎、叶生殖器官:花、果实、种子

说出消化系统的主要器官名称和功能

牙齿:把食物磨碎。

舌头:品尝不同的味道

唾液腺:分泌唾液到食物里,帮助吞咽

食道:把吞咽下来的食物向下推进入胃。

胃:把食物变成糊状,并与胃腺分泌的消化液混合。

肝脏:分泌胆汁,帮助消化。

胰腺:分泌消化液

小肠:肠腺分泌消化液,参与对食物的消化,并吸收食物中的营养

大肠:从未被消化的食物残渣中吸收水分

肛门:把废物——粪便排出体外。

消化道:口腔—咽—食道—胃—小肠—大肠—肛门

消化腺:唾液腺、胃腺、肠腺、胰腺、肝脏

植物:细胞—组织—器官—植物体

动物:细胞—组织—器官—系统—动物体

初一数学知识点总结归纳重点篇三

对于教学方面,我主要从以下六点入手,第一点:总体驾驭教学要点,如该学年,该学期有哪些知识点,重点是什么,难点是什么,如许在平常教学中才有目标。初中数学教学总结第二点:注意和门生一起探究种种题型,我发现门生都有探求未知的特点,只要勾起他们的求知欲与兴趣,学习干劲就下去了,如每节课后若偶然间,我都出几题有新意,又不难的相关题型,与门生一起研究。

一、酷爱西席事情,思想前进,团结同志,每天早来晚走,无私奉献,能全面贯彻党的教诲目标,以党员的要求严酷要求本身,仔细完成学校交给的任务和事情,严酷遵守学校的各项规章制度,做到不迟到,不早退,不请病、事假,实事求是地实行学校的各项要求。

二、积极参加种种学习培训,努力进步本身的教诲教学水平

一学期的事情又将结束了,可以说告急繁忙而收获多多。回顾这学期的事情,我执教初(一)、初一(二)的数学学科,事情中有收获和高兴,也有不尽善尽美的地方,为了更好地总结履历,汲取教导,使当前的事情能够有效、有序地举行,现事情总结如下:

三、教学事情和科研事情

如许复习时才有的放矢,复习中什么要多抓多练,什么可临时纰漏,这一点很重要,会间接影响复习结果与结果。固然,要做到这一点,并驾驭得准,必需要有相称永劫间的履历积聚与总结,乃至挫折,不然不可。而我仍在不停探究中,但我相信,只要肯下工夫,就会有所意会。

第三点:,每节新课后注意反应,主要作业与小测中发现门生掌握知识的不足之处,及时加以订正。第四点:要举行一定数目的练习,我阻挡题海战术,但用相称数目标题举行练习倒是需要的,练习时要有目标,抓基础与重难点,渗透数学思维,强调一点是老师在练习要注重门生数学思维的构成与锻炼,有了一定的思维能力与打好基础,可以做到用一把钥匙开多道门。第五点:就是考前复习中要仔细研究与整理出考试要考的知识点,重难点,要重点复习的标题范例,难度,深度。

初一数学知识点总结归纳重点篇四

1.读的方法。初一同学往往不善于读数学书,在读的过程中,易沿用死记硬背的方法。那么如何有效地读数学书呢?平时应做到:

(1)粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点;

(3)研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,以形成知识体系,完善认知结构。

读书,先求读懂,再求读透,使得自学能力和实际应用能力得到很好的训练。

2.听的方法。“听”是直接用感官去接受知识,而初一同学往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应在听课的过程中注意做到:

(1)听每节课的学习要求;

(2)听知识的引入和形成过程;

(3)听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点);

(4)听例题关键部分的提示及应用的数学思想方法;

(5)听好课后小结。

3.思考的方法。“思”指同学的思维。数学是思维的体操,学习离不开思维,

数学更离不开思维活动,善于思考则学得活,效率高;不善于思考则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。七年级学生的思维往往还停留在小学的思维中,思维狭窄。因此在学习中要做到:

(1)敢于思考、勤于思考、随读随思、随听随思。在看书、听讲、练习时要多思考;

(2)善于思考。会抓住问题的关键、知识的重点进行思考;

(3)反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。

4.问的方法。孔子曰:“敏而好学,不耻不问。”爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。但七年级同学往往不善于问,不懂得如何问。因此,同学在平时学习中应掌握问问题的一些方法,主要有:

(1)追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;

(2)反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;

(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。

此外,在提问时不仅要问其然,还要问其所以然。

5.记笔记的方法。很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。

有的笔记虽然记得很全,但收效甚微。因此,学生作笔记时应做到以下几点:

(1)在“听”,“思”中有选择地记录;

(2)记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点;

(3)记解题思路、思想方法;

(4)记课堂小结。并使学生明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事倍功半的效果。

正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。

初一数学知识点总结归纳重点篇五

1、边:两组对边分别平行;四条边都相等;相邻边互相垂直。

2、内角:四个角都是90°;

3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;

4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。

5、正方形具有平行四边形、菱形、矩形的一切性质。

6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。

7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。

初一数学知识点总结归纳重点篇六

(1)号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

(3)互为相反数的两个数相加得零。

(4)一个数同零相加,仍得这个数。

2、有理数加法的运算律

(1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a

(2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即(a+b())+c=a+(b+c)

初一数学知识点总结归纳重点篇七

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程。注意:一般说二元一次方程有无数个解。

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解。注意:一般说二元一次方程组只有解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键。

※5.一次方程组的应用:

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。

1.不等式:用不等号,把两个代数式连接起来的式子叫不等式。

2.不等式的基本性质:

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变。

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集。

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点。

初一数学知识点总结归纳重点篇八

2、面积与平方

(1)任意两个正数的和的平方,等于这两个数的平方和

(2)任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍

3、平方根

1正数有两个平方根,这两个平方根互为相反数;

2零只有一个平方根,它就是零本身;

3负数没有平方根

4、实数

无限不循环小数叫做无理数

有理数和无理数统称为实数

5、平方根的运算

6、算术平方根的性质

性质1一个非负数的算术平方根的平方等于这个数本身

性质2一个数的平方的算术平方根等于这个数的绝对值

7、算术平方根的乘、除运算

1)算术平方根的乘法

sqrt(a)•sqrt(b)=sqrt(ab)(a=0,b=0)

2算)术平方根的除法

sqrt(a)/sqrt(b)=sqrt(a/b)(a=0,b0)

8‘算术平方根的加、减运算

如果几个平方根化成最简平方根以后,被开方数相同,那么这几个平方根就叫做同类平方根

9、一元二次方程及其解法

1)一元二次方程

只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程

2)特殊的一元二次方程的解法

3)一般的一元二次方程的解法——配方法

用配方法解一元二次方程的一般步骤是:

2、移项把常数项移至方程右边,将方程化为x^2+px=-q的形式

4、有平方根的定义,可知

(1)当p^2/4-q0时,原方程有两个实数根;

(2)当p^2/4-q=0,原方程有两个相等的实数根(二重根)

初一数学知识点总结归纳重点篇九

第五章:

本章重点:一元一次不等式的解法,

本章难点:了解不等式的解集和不等式组的解集的确定,正确运用

不等式基本性质3。

本章关键:彻底弄清不等式和等式的基本性质的区别.

(2)不等式的基本性质,它是解不等式的理论依据.

(3)分清不等式的解集和解不等式是两个完全不同的概念.

(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集

(8).利用数轴确定一元一次不等式组的解集

第六章:

1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.

2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.

3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.

本章的重点是:二元一次方程组的解法——代入法,加减法以及列一次方程组解简单的应用问题.

本章的难点是:

1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;

2.正确地找出应用题中的相等关系,列出一次方程组.

第七章

本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.

本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用

1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.

2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.

3.乘法公式的推导过程,能灵活运用乘法公式进行计算.

4.熟练地运用运算律、运算法则进行运算,

5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.

第八章:

1、认识事物的几种方法:观察与实验归纳与类比猜想与证明生活中的说理数学中的说理

2、定义、命题、公理、定理

3、简单几何图形中的推理

4、余角、补交、对顶角

5、平行线的判定

判定:一个公理两个定理。

公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)

定理:内错角相等(数量关系)两直线平行(位置关系)

定理:同旁内角互补(数量关系)两直线平行(位置关系).

平行线的性质:

两直线平行,同位角相等

两直线平行,内错角相等

两直线平行,同旁内角互补

由图形的“位置关系”确定“数量关系”

第九章:

重点:因式分解的方法,

难点:分析多项式的特点,选择适合的分解方法

1.因式分解的概念;

2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)

3.运用因式分解解决一些实际问题.(包括图形习题)

第十章:

重点是:用统计知识解决现实生活中的实际问题.

难点是:用统计知识解决实际问题.

1.统计初步的基本知识,平均数、中位数、众数等的计算、

2.了解数据的收集与整理、绘画三种统计图.

3.应用统计知识解决实际问题能解决与统计相关的综合问题.

初一数学知识点总结归纳重点篇十

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

圆柱

生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

(按名称分)锥圆锥

棱锥

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种

6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

初一数学知识点总结归纳重点篇十一

(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

b)指数是1时,不要误以为没有指数;

二、幂的乘方与积的乘方

三、同底数幂的除法

(1)运用法则的前提是底数相同,只有底数相同,才能用此法则

(2)底数可以是具体的数,也可以是单项式或多项式

(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负

四、整式的乘法

1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

初一数学知识点总结归纳重点篇十二

同位角知识:两条直线a,b被第三条直线c所截会出现“三线八角”。

1.在截线的同旁;

2.在被截两直线的同方向;

3.同位角截取图呈“f”型。

平行线的性质:两直线平行,同位角相等。

知识归纳:平行线的判定:同位角相等,两直线平行。

初一数学知识点总结归纳重点篇十三

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3、判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4、对称性:平行四边形是中心对称图形

1、定义:有一个角是直角的平行四边形叫做矩形

2、性质:矩形的四个角都是直角,矩形的对角线相等

3、判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4、对称性:矩形是轴对称图形也是中心对称图形。

1、定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2、s菱=争6(n、6分别为对角线长)

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4、对称性:菱形是轴对称图形也是中心对称图形

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
最新初一数学知识点总结归纳重点 初一数学知识点总结(模板13篇) 文件夹
复制