2024年优秀大数据的论文(优秀15篇)
文件格式:DOCX
时间:2023-10-27 23:58:15    小编:念青松

2024年优秀大数据的论文(优秀15篇)

小编:念青松

总结是对自己过去一段时间的努力和成果的呈现,我们应该写下来纪念一下。注意语法和标点的正确使用,可以避免文章出现不明确或歧义的表达。下面是一些优秀的总结范文,供大家参考和学习。

优秀大数据的论文篇一

20xx年5月世界著名咨询机构麦肯锡公司发布了《大数据:下一个竞争、创新和生产力的前沿领域》的研究报告,宣告“大数据”时代已经到来。大数据时代的到来对人力资源管理带来了新的变化和机会。通过运用大数据思维方式,利用移动互联网+的新技术、新方法能够进一步完善人力资源管理信息系统,使人力资源管理更加专业化、科学化,为人力资源管理信息化建设迈入4.0创造了条件。

二、人力资源管理信息化历程。

人力资源管理信息化,主要是指企业基于互联网,依托先进的人力资源管理理论,以软件系统为平台,通过信息技术对人力资源进行优化配置的动态过程。人力资源信息化是信息时代人力资源发展的必然趋势,是企业及时满足业务需求,实现企业高效的人力资源管理,增强企业核心竞争力的必然手段。笔者认为人力资源管理信息化随着信息技术的发展经历了1.0、2.0,3.0并在向4.0进发的历程。

人力资源管理信息化1.0阶段指的是上世纪80年代初,随着计算机在管理领域的普遍应用,国外一些先进的应用软件企业开始将关注点聚焦于人力资源管理领域。首先利用应用软件进行的是人力资源管理中最复杂最繁重的薪资管理,这大大降低了该项工作的繁冗程度并且提高了效率。由于当时计算机网络不是很普及,人力资源管理系统基本是孤立地、单一的软件。

随着数据技术、网络技术的发展,人力资源管理系统迈入2.0时代。人力资源管理信息化已经开始触及人力资源管理的各个方面。但是受限于数据计算能力和应用处理能力,对于大型集团的人力资源管理系统一般是按分支机构分别购置服务器部署运行,各分支机构定期汇总数据上报总部。人力资源管理系统2.0时代基本已经实现人力资源管理基础信息的电子化,使hr人员从繁重的基础信息处理工作解脱出来,有更多的时间去考虑组织及员工的发展需求。但是在2.0阶段,人力资源管理系统对于数据的分析和应用还停留在简单的报表阶段,还未形成对人力资源数据的预警、预测、数据挖掘和分析。

进入21世纪后,随着计算机和互联网技术的发展,人力资源管理系统采用数据大集中以及基于互联网访问的技术,从单一的人力资源部门的电子化软件扩展到涉及公司各个层面的关键信息系统。通过面向全员的信息化工具,人力资源管理系统3.0阶段一方面可以通过系统全面落实人力资源管理规划,另一方面通过延伸人力资源管理范围,提高各级人员参与人力资源管理的程度,有效地改善了人力资源部门的服务范围和服务质量。人力资源管理系统3.0阶段由于采用数据大集中技术,对数据的挖掘分析以及多维度的预警、预测已经成为可能。人力资源管理的数据优势已经在企业经营分析、管理决策中逐渐发挥出来。企业人力资源管理部门以及各级管理者已经开始利用人力资源数据提升经营决策的科学性。

随着大数据时代和移动互联网时代的到来,将大数据的概念和技术引入人力资源管理将进一步提升人力资源管理信息化水平,人力资源管理信息化将步入4.0时代。

大数据这一概念,首先要从“大”入手,“大”是指数据规模,大数据一般指在10tb(1tb=1024gb)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4v来总结,即体量大(volume),数据从tb级别跃升到pb级别,庞大且连续的数据流使得数据更具完整性;多样性(variety),数据类型繁多,数据来源及承载方式多样化;速度快(velocity),数据可以高速地存储,借助于云计算,即使在数据量非常庞大的情况下,也能做到实时处理;价值的稀疏性(value),信息海量但价值密度低,犹如大海捞针却弥足珍贵。

进入大数据时代,对人力资源管理及其信息化建设将带来巨大的机遇和挑战,人力资源信息化在4.0阶段将呈现出以下特点:

1.人力资源管理系统数据的多样化及社交化。

在大数据时代,忠实地采集、记录人类活动的一切数据是基础。人力资源管理系统数据在大数据时代将不再局限于人力信息档案或者“人事部门”的数据。企业的经营数据、利润数据等业务数据也将纳入人力资源管理数据范畴。同时员工的社交数据、地点数据、工作数据等碎片数据也将被系统采集和分析。人力资源管理系统的数据模型和数据存储方式将被重新定义以满足数据存储、处理和分析所必需的高速和敏捷。

2.人力资源管理系统“移动化”与安全性。

为了能够随时随地获取“与人相关”的数据,大数据的收集渠道将不再仅仅局限企业内部的信息系统,人力资源管理系统必须具有随时随地获取数据的能力。人力资源管理系统数据获取将更多地依靠移动端甚至是传感器等新技术的使用,人力资源信息化需要打造一条有效连接hr所服务的管理者和员工的信息高速公路。由于“人的数据”高度连接和聚合,数据的安全性和隐私保护将成为一个重要课题。有效地解决数据的公开和隐私的问题将是人力资源信息化建设者必须面对和解决的一个重要挑战。

3.人力资源管理系统工具的多样化。

在拥有和采集了大量人力资源日常数据后,对数据的分析、整理、整合的能力将至关重要。传统的、单一的人力资源管理系统将无法胜任如此庞大的.数据处理任务。通过采购第三方的数据处理、分析工具将有利于提升人力资源管理系统的数据分析能力,有利于企业通过数据驱动人力资源管理创新。

同时,在人力资源管理人才招聘、人才测评、薪酬管理、人才绩效等垂直应用方面,由于大数据分析强调预测性以及前瞻性管理,人力资源管理应用将更具有专业性,市场上将出现多种专业性的应用工具。在人力资源信息化建设上,企业可以根据自身需要自主、灵活地选择专业化的工具,满足企业个性化需求。

4.人力资源管理系统“云服务化”

随着大数据和互联网技术的不断融合,基于云计算、云平台的人力资源服务平台将不断涌现。数据按需计算,企业按需付费的模式将不断成熟。对于传统企业来说,人力资源信息化将有了更快捷、便利的选择。企业信息化部门在实施人力资源信息化时将不再需要购置大量设备、采购产品软件后进行个性化实施,而只需按照企业需要购买相应的云服务即可。同时,由于在大数据应用的复杂性,不具有很强技术实力的企业可以借助云计算能力充分挖掘数据的价值,突破企业计算能力的壁垒,实现人力资源大数据应用。

大数据时代,企业的竞争将是数据应用能力的竞争。人力资源信息化建设的从业者利用大数据技术建设更加专业化、智能化的信息系统,为人力资源管理服务提供更加客观、科学的数据服务将给企业创造出巨大的价值。人力资源信息化建设也会因为大数据技术的应用迈入一个崭新的时代。

参考文献。

[1]周光华.基于“大数据”价值对人力资源管理的思考。

[2]唱新.大数据在人力资源管理体系的应用。

[3]李柯.大数据时代人力资源管理的机遇、挑战与转型升级。

优秀大数据的论文篇二

大数据或海量数据是指所涉及的海量数据,无法通过当前主流软件工具检索、管理、处理和整理成更活跃的信息,帮助企业在合理的时间内做出商业决策。以下是为大家整理的关于,欢迎品鉴!

摘要:近年来由于计算器技术和信息产业的快速发展,促使了相关的数据量也产生了极大的增长。然而面对这些庞大且杂乱的多维数据集,我们无法快速且有效的找到我们所需要的信息。因此我们必须要使用数据挖掘技术以从数据集中去提取我们所需要的资料,并且进行分析与处理。在本中,将介绍大数据挖掘分析软件rapidminer,并且与其他旧有的数据挖掘分析软件来做一个功能性的比较。

关键词:信息;rapi;dminer;大数据;挖掘;应用。

0引言。

透过线性回归、类神经网络、判定树和支持向量机,说明应用rapidminer进行大数据挖掘分析的运作流程,并介绍rapidminer的操作接口跟分析方法。本篇论文采用rapidminer的原因,主要是因为它拥有非常便捷的图形化接口,而且使用者在操作上不需要再额外去学习其它的程序语法,只需要透过选取组件以及设定参数的方式就可以完成。而且在分析结果的显示上也非常的多样化,可以让使用者自行选择要观看哪一种图形显示分析的结果。

1数据探勘流程探讨。

1.1资料清除。

是过滤掉数据当中的那些噪声和无法判别的资料跟不一致的数据,保留可用的且有效的数据。

1.2数据的整合。

不一定都来自相同的一个数据库,所以必须做数据的整合,将来自不同数据库的数据整合处理完后处理在我们的数据仓储。

1.3数据选择。

在数据探勘中是一个相当重要的环节,选到有用的数据可以提高分析预测的准确度,但是选到无用的数据却可能会拉低分析预测的准确度,所以在做数据的选择时必须先对这些数据有一定的认识,才能做出正确的选择。

1.4数据转换。

由于人类和计算机的沟通的语言不同,所以当我们要让计算机来处理事情时,必须先将手头的数据转换成计算机可以识别的资料格式,或合并成数据探勘所需的数据形式来让计算机判读,像是执行汇总与聚合。

1.5数据探勘引擎。

数据探勘系统在数据探勘中算是非常重要的一个环节,因为它包含了探勘工作所需要的功能,像是特征化、相关系数与相互关系分析、判别、预测、群组分析、分群、离异值分析与演化分析等等。

1.6样式评估。

样式评估根据某些有趣度量,来辨认代表知识的有趣样式,也可以说是评估数据跟数据之间的关联性是否是有用的、重要的、是否正确。

1.7用户接口。

这个模块让用户可以与数据探勘系统进行沟通,他允许使用者透过设定数据探勘查询或工作与系统进行互动、提供讯息来帮助搜寻,对暂时数据探勘结果进行探索性数据探勘。

2数据探勘工具。

2.1rapidminer。

rapidminer开源式框架,支持各种类型的数据挖掘像是文本、网络、图像或是链接开放式的数据挖掘[1]。透过它复杂的图形用户接口,数据挖掘的過程可以更加的简洁且快速,直观地实现和执行,并且不需要额外的程序语言编辑技术。

2.2weka。

weka用于数据挖掘任务的算法的集合,算法可以直接应用在数据集上,也可以从自己设计的jave代码调用[2]。weka它包含了数据的预处理、分类、回归、聚类、关联规则和可视化的工具也就是图形接口,weka可以算是最古老,且最成功的开元数据挖掘库和软件,随后被集成为rapidminer和r的扩充软件,也因为rapidminer和r的出现,它们提供了使用者更加舒适且便利的使用环境,使得weka的用户开始大幅的下降。

2.3knime。

knime图形接口的自由开源信息汇整系统,它具有杰出的数据统合能力,并且可以运用在数据查询(datamining)、数据处理、数据分析、流程绘制以及流程规划与管理(workflow)等等各方面。

3数据探勘工具比较。

rapidminer:独立平台;使用者:学习者、高级用户、专业用户、企业用户;用户接口:主要是透过图形接口来做流程的设计,也可以同时开启多个窗口来做操作;功能:大于500种,可透过扩展来新增额外的功能,且可扩展weka和r作为它的扩充元件,并进行协同工作;操作接口:简洁易懂的操作接口,不需要额外的学习程序语言的编辑能力,使用者只需要透过拉取所需的原件并且将其连接起来即可使用,使用者可自由配置操作接口;支持的输入格式:csv、excel、xml、access、aml、arff、xrff、spss、sasdatabases、jdbc....;支持输出模型格式:模型可以导出为不同的档案格式,像是bmp、jpg、pdf、postscript、raw、xml等各种文件格式。

weka:独立开发平台;使用者:学习者、一般用户;用户接口:图形接口;功能:约500种;操作接口:有四种模式可供使用者选择使用,每种模式都各有其优缺点,使用者需挑选最合适的使用模式使用;支持的输入格式:arff、csv、c4.5、bsi、localfile、urls、jdbc..;支持输出模型格式:不支援。

knime:java平台;使用者:学习者、一般用户;用户接口:可在同一时间开启四个不同的视窗,用来做不同的功能;功能:约100种;操作接口:简洁易懂的使用接口,可以让使用者很容易得学会,也可以自由配置操作接口;支持的输入格式:arff,csv,pmml,localfiles,urls、jdbc..;支持输出模型格式:可以将档案汇出成压缩文件(zip),只有从knime导出的模型才可以再次汇入到knime中。

4结语。

现今是个信息科技的时代,几乎所有事情都是可以用数字和数据来解释的,每件事情的发生都会有它的前因后果,所以我们可以从这些数据当中找出这些因果关系,并且加以利用就可以预测出我们所要的结果,单单只有一大堆的数据是没用的,需要使用rapidminer这个数据挖掘分析软件,来从这些杂乱的数据库中萃取出我们所需要的信息,也就是从数据进行知识发掘,并且找出他们的相对应关系为我们使用。

参考文献。

[1]胡可云.数据挖掘理论与应用[m].清华大学出版社,2008.

摘要:我国大数据产业目前已进入快速推进阶段。对于企业来说,大数据是一项极其重要的战略资产。文章从大数据的起源及基本特征出发,分析大数据给企业财务信息管理带来的影响,并提出大数据时代加强企业财务信息管理的有效策略。

关键词:大数据;财务信息管理。

伴随互联网+、云计算、物联网、社交网络平台、传感技术等新兴技术与服务的出现,人类社会的数据种类和规模正以前所未有的速度呈爆发式增长和累积。据市场调研机构idc预计,未来全球数据总量年增长率将维持在50%左右,到2020年,全球数据总量将达到40zb,其中我国数据量将达到8.6zb,是2013年的10倍。海量数据的产生已经完全不受时间、地点的限制,其规模效应给数据存储、管理以及数据分析带来了极大的挑战。

大数据产生经历了被动-主动-自动三个发展阶段。第一阶段是数据库技术的出现。数据库技术被广泛应用于运营系统,数据伴随着系统的运转产生并被记录下来。这种数据的产生是被动的;第二阶段是互联网技术的诞生。新型社交平台的开发与各类便携式移动设备的使用,给人们更多的表达个人想法的途径与机会,这个阶段数据的产生方式是主动的;第三阶段是感知式系统的广泛应用。装配微型传感器的设备被广泛布置于社会的各个角落,这些设备源源不断记录下大量的新数据。这种数据的产生是自动的。这些被动-主动-自动记录与存储的数据共同构成了大数据的数据源。

关于大数据的特征,在国外大数据研究先河之作的《大数据时代:生活、工作与思维的大变革》一书中,作者指出,大数据是以4v为基本特征的数据集,即规模性(volume)、多样性(variety)、高速性(velocity)、价值性(value)。而ibm认为,大数据还必然具有真实性(veracity)。维基百科则通过简单明了的描述,对大数据进行定义:大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。2017年国际电信联盟首次以大数据作为世界电信日主题,提出了“发展大数据,扩大影响力”。

企业财务信息管理起源于16世纪初的西方资本主义萌芽时期,早期并没有形成专业、独立的财务信息管理系统。企业的业务单一,信息资料也比较笼统、简单。随着20世纪初期工业革命的成功,公司制企业迅速发展并成为主要的企业组织形式,财务管理和财务信息的重要性日益突出,财务管理理论、制度、法规逐步完善。政策法规对财务信息有了规范性的要求,甚至对财务信息的披露、存档时间、保存形式有了详细的规定。到20世纪90年代,微型计算机应用逐渐普及,财务信息由传统手工编制过渡到手工+计算机辅助编制。随着计算机应用软件技术的进步,专业性的财务软件逐步代替了手工记账方式,进入财务电算化时代。当前,随着互联网和云存储、指纹加密、人脸识别等信息技术的兴起,云算盘、精斗云、云账房等新型财信息管理系统已开始得到广泛应用。

在企业财务信息管理中,数据来源的真实、有效、可验证性,数据采集的及时性、数据与本企业经营决策的相关性,数据的可计量性等是企业做出正确经营决策和投资参照的重要基础,为明确企业财务现状和运营前景提供依据;先进设备与技术的应用,是企业财务信息管理的有力支撑;而信息管理制度及人才队伍的建设,更是企业财务信息管理的关键所在。在大数据时代,财务数据,设备与技术,制度与人才多项因素紧密相结合,对于促进企业快速、良性发展有着重要的意义。

1、财务信息来源增加。

在计划经济时代,财务信息最主要的来源是各项经营的收支,并以货币计量方式表达。在大数据时代,除了传统的纸质或电子形式存在的文字、表格,电子设备、传感器、刷卡机、收款机、网站浏览点击行为、电子地图、社交网络媒体互动等设施与平台记录下来的数据与信息都可成为影响企业经营决策的信息源。

2、财务信息类型增多。

传统财务信息管理主要是以货币形式出现的跟收入与支出相关的数据,信息类型单一。而大数据的基本特征之一是信息类型繁多,涵盖了文本、音频、图片、视频、模拟信号等。信息整合难度加大。

3、财务管理职能前置。

传统的财务管理是事后管理,且局限于对现有数据进行简单的统计分析、查询。大数据的应用能够对企业经营情况进行实时分析和及时预测,提供更具时效性、指标多样化、更贴近经营管理需求的财务管理动态分析报告。财务管理的职能前置到市场预测、产品设计、供应链建设等价值规划阶段,财务体系由核算型向价值型转变。

1、提高财务信息质量。

大数据时代,海量数据的价值性呈现低密度,高附加值特点。单个数据看起来价值很低,但同类型的数据规模增加到一定数量,就会有很高的商业价值,对企业经营决策的指导力越强。当前,财务信息来源可分为二个方面:一是企业经营过程中产生的信息,这类信息属于内部数据。除日常收支外,还应括用户注册信息、浏览记录、定位记录等;也包括构成产品价值链的各个环节产生的数据,比如研发记录、生产作业记录、采购过程动态监控记录、物资出入库数据、销售业务数据等;还包括人事、战略、公共策略、专业知识库、企业文化等非结构化信息数据。二是本行业及跨行业相关数据信息,这类信息属于外部数据。外部数据应注重从目标人群、行业、大环境等方面收集。伴随着各种随身设备、物联网、移动互联网等技术的发展,人成为了移动互联网的核心网络节点,通过用户点击行为、电子地图、社交网络行为等数据,可以对目标人群进行有效分析。行业数据既包括本行业的产品种类、销售状况、研发趋势、竞争对手情况等,还包括跨行业的关联性信息,以全面性提高数据的准确度和价值。大环境指所处社会的经济、政治、法律等环境。国务院《促进大数据发展行动纲要》提出要稳步推动公共数据资源开放,这将成为重要的外部数据来源。

2、强化财务信息整合。

大数据搜集,重点不在于占有,而在于利用。而要利用好数量庞大,来源广泛,格式多样的财务信息数据,就必须对其进行实时整合,存储与管理。其方法主要是分类,聚类,存储。分类是找出大数据中的一类数据对象的共同点,通过分类模型将其划分为不同的类。同一类数据由于具有不同特征,可以被分到多个类别中去。聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大。存储则是以根据财务管理需要将大数据划分成分布式存储模块,如生产计划模块、销售管理模块、会计核算模块、资产管理模块、业绩评价模块和企业间关系模块等,以便数据管理和使用。

参考文献。

[2]东梅.论财会信息的现代化管理[j].北方经贸,2013(2)。

[3]何冰.大数据会计与财务信息相关性研究[j].会计之友,2017(7)。

[4]程平.云會计环境下人、数据和系统对会计信息质量的影响[j].重庆理工大学学报(社会科学版),2016(7)。

精准扶贫是政府提出的扶贫政策,其目的在于帮助贫困地区脱贫。精准扶贫中的扶贫资金,不仅涉及到政府管理部门,还涉及到社会各界及贫困地区经济发展,所以全面有效实施精准扶贫显得非常重。资料显示,大数据的应用能够使精准扶贫资金效益得到最大发挥,能够完善精准扶贫资金管理,使精准扶贫实现“真扶贫”。对此,笔者根据自己对“精准扶贫”及“大数据”的了解,分析了大数据助力精准扶贫的原理、问题及措施等。

“大数据”是社会经济及科学技术发展的产物,已经被应用于人们的生产及生活,对各大领域发展都起到了积极的推动作用。大数据是基于信息技术基础上对数据进行分析及整合的科学技术,其核心在于利用数据对信息进行分类、管理、整合、分析及处理,具有数据体量大、种类多、数据处理速度快及价值密度低等特点。

大数据助力精准扶贫时需要应用到信息技术,以获取准确的扶贫信息及数据;利用大数据能够对复杂的扶贫数据及信息进行分类、调整及分析,以了解多种影响因素,为精准扶贫的实施提供依据;当大数据被应用到精准扶贫时,需要相关部门对应用时产生的各种信息进行收录,并利用互联网进行整合、分析、挑选、筛查及汇总,以便于扶贫工作者利用这些数据对扶贫工作进行现实状况分析,最后找到有效的扶贫举措,提高扶贫决策的科学性及合理性,使精准扶贫得到实现。

第一,在大数据支持下,遥感技术、媒体信息技术、宽带网络技术等都能够应用到精准扶贫工作中,如可以用这些技术调查和分析扶贫产业、贫困人口和周边环境等数据。第二,利用大数据能够实现对农村基础设施与地理环境、交通等信息整合,从而全面了解贫困对象基本信息及生活需求等。第三,在大数据支持下能够了解贫困地区的人口及经济水平等信息,为精准扶贫工作提供重要依据。

第一,对贫困群体的精准识别基础工作不扎实,导致一些非贫困群体享受到帮扶待遇。第二,精准扶贫管理部门及相关工作者的职责界定不清晰,且资金审批、拨付等工作手续繁多,降低了扶贫工作效率。第三,没有按照国家相关规定及实际需要管理扶贫资金,导致部分扶贫资金被骗取和套取。

(一)对扶贫对象进行精准定位。第一,利用大数据下的媒体信息技术、通信技术及计算机技术等对贫困地区的人口进行调查,并确定符合扶贫要求的人群。第二,利用计算机信息技术对贫困对象进行建档立卡,并构建贫困人口的基本信息库,信息录入包括扶贫对象的年龄、工作、性别、年收入及家庭人口数量等。第三,信息录入后还需要进行基层走访、信息核实汇总,以保证扶贫对象信息的真实性,减少非贫困群体骗取和套取扶贫资金。

(二)利用大数据对扶贫工作进行动态跟踪管理。第一,利用大数据下的信息技术、遥感技术及媒体信息技术等,构建动态识别系统,以实现对扶贫对象的高效管理,同时还能够收集和分析相关数据,从而优化贫困户识别系统,提高精准扶贫工作质量及效率。第二,利用计算机信息技术及通信技术等,构建扶贫对象资源数据库,以提高识别系统准确性及扶贫对象信息数据完整性。第三,进行动态管理时,不仅需要对扶贫对象的基本信息进行动态监察,还需要管理扶贫资金流向和追踪扶贫资金使用方向等,以保证扶贫资金切实应用到扶贫对象身上。第四,通过实时更新扶贫对象信息系统,了解扶贫对象是否已经脱贫、是否进入帮扶范围等动态,以保证精准扶贫得到全面贯彻和实施。

(三)利用“大数据”预测贫困需求。第一,利用大数据下的数学方法来定位扶贫方向,并分析扶贫对象实际需求。第二,利用大数据对扶贫对象的基本信息进行分析,并利用数学法计算贫困事情发生率,以了解扶贫对象的贫困需求,从而制定具有针对性的扶贫对策。第三,利用大数据中的遥感技术、媒体信息技术等构建扶贫资金管理系统及监督系统,以实时了解扶贫资金的取向及利用率,以保证扶贫资金能够真的解决扶贫对象的实际问题,减少资金浪费,最终提高精准扶贫工作质量及效率。另外,在精准扶贫中还需要注意以下两点:第一,实行脱贫工作责任制,保证扶贫工作执行力。第二,积极转变贫困人口的思想,引导贫困人口通过自身努力实现小康生活。

总之,精准扶贫是针对我国贫困地区提出的扶贫政策,已经在很多贫困地区得到贯彻,而大数据则能够提高精准扶贫工作质量及效率,使贫困地区脱贫速度加快,加快我国小康社会发展。基于此,上文先简单概述了大数据,然后分析了大数据助力精准扶贫的原理以及对精准扶贫的技术支持,并探讨了精准扶贫中存在的问题,最后分析了大数据有效助力精准扶贫的措施。

【参考文献】。

[1]解静静.大数据助力精准扶贫问题研究[j].江西农业,2019(14):131+135.

[3]李秀玲.大数据助力精准扶贫[j].中国国际财经(中英文),2018(07):197.

优秀大数据的论文篇三

伴随着科技进步,互联网及移动互联网的快速发展,云计算大数据时代的到来,人们的生活正在被数字化,被记录,被跟踪,被传播,大量数据产生的背后隐藏着巨大的经济和政治利益。大数据犹如一把双刃剑,它给予我们社会及个人的利益是不可估量的,但同时其带来个人信息安全及隐私保护方面的问题也正成为社会关注的热点。今年两会期间,维护网络安全被首次写入政府。

工作报告。

全国政协委员、联想集团董事长兼ceo杨元庆也在会议上呼吁“政府对个人信息安全立法,加强监管,并在整个社会中树立起诚信文化”大数据时代下维护个人安全成为重中之重。

(一)数据采集过程中对隐私的侵犯。

大数据这一概念是伴随着互联网技术发展而产生的,其数据采集手段主要是通过计算机网络。用户在上网过程中的每一次点击,录入行为都会在云端服务器上留下相应的记录,特别是在现今移动互联网智能手机大发展的背景下,我们每时每刻都与网络连通,同时我们也每时每刻都在被网络所记录,这些记录被储存就形成了庞大的数据库。从整个过程中我们不难发现,大数据的采集并没有经过用户许可而是私自的行为。很多用户并不希望自己行为所产生的数据被互联网运营服务商采集,但又无法阻止。因此,这种不经用户同意私自采集用户数据的行为本身就是对个人隐私的侵犯。

(二)数据存储过程中对隐私的侵犯。

互联网运营服务商往往把他们所采集的数据放到云端服务器上,并运用大量的信息技术对这些数据进行保护。但同时由于基础设施的脆弱和加密措施的失效会产生新的风险。大规模的数据存储需要严格的访问控制和身份认证的管理,但云端服务器与互联网相连使得这种管理的难度加大,账户劫持、攻击、身份伪造、认证失效、密匙丢失等都可能威胁用户数据安全。近些年来,受到大数据经济利益的驱使,众多网络黑客对准了互联网运营服务商,使得用户数据泄露事件时有发生,大量的数据被黑客通过技术手段窃取,给用户带来巨大损失,并且极大地威胁到了个人信息安全。

(三)数据使用过程中对隐私的侵犯。

互联网运营服务商采集用户行为数据的目的是为了其自身利益,因此基于对这些数据分析使用在一定程度上也会侵犯用户的权益。近些年来,由于网购在我国的迅速崛起,用户通过网络购物成为新时尚也成为了众多人的选择。但同时由于网络购物涉及到的很多用户隐私信息,比如真实姓名、身份证号、收货地址、联系电话,甚至用户购物的清单本身都被存储在电商云服务器中,因此电商成为大数据的最大储存者同时也是最大的受益者。电商通过对用户过往的消费记录以及有相似消费记录用户的交叉分析能够相对准确预测你的兴趣爱好,或者你下次准备购买的物品,从而把这些物品的广告推送到用户面前促成用户的购买,难怪有网友戏称“现在最了解你的不是你自己,而是电商”。当然我们不能否认大数据的使用为生活所带来的益处,但同时也不得不承认在电商面前普通用户已经没有隐私。当用户希望保护自己的隐私,行使自己的隐私权时会发现这已经相当困难。

(四)数据销毁过程中对隐私的侵犯。

由于数字化信息低成本易复制的特点,导致大数据一旦产生很难通过单纯的删除操作彻底销毁,它对用户隐私的侵犯将是一个长期的过程。大数据之父维克托・迈尔-舍恩伯格(viktormayer-schonberger)认为“数字技术已经让社会丧失了遗忘的能力,取而代之的则是完美的记忆”[1]。当用户的行为被数字化并被存储,即便互联网运营服务商承诺在某个特定的时段之后会对这些数据进行销毁,但实际是这种销毁是不彻底的,而且为满足协助执法等要求,各国法律通常会规定大数据保存的期限,并强制要求互联网运营服务商提供其所需要的数据,公权力与隐私权的冲突也威胁到个人信息的安全。

(一)将个人信息保护纳入国家战略资源的保护和规范范畴。

大数据时代个人信息是构成现代商业服务以及网络社会管理的基础,对任何国家而言由众多个人信息组成的大数据都是研究社会,了解民情的重要战略资源。近年来大数据运用已经不再局限于商业领域而逐步扩展到政治生活等方方面面。国家也越来越重视通过对大数据的分析运用从而了解这个社会的变化以及人民的想法,甚至从中能够发现很多社会发展过程中的问题和现象,这比过去仅仅依靠国家统计部门的数据来的更真实全面,成本也相对较小,比如淘宝公布的收货地址变更数据在一定程度上揭示了我国人口的迁移,这些信息对于我国的发展都是至关重要的。

因此将个人信息保护纳入国家战略资源的保护和规划范畴具有重要的意义。2017年政府工作报告首次提出了“维护网络安全”这一表述意味着网络安全已上升国家战略。这是我国在大数据时代下对个人信息保护的重要事件,也具有里程碑的意义。

(二)加强个人信息安全的立法工作。

大数据时代对个人信息安全保护仅仅依靠技术是远远不够的,关键在于建立维护个人信息安全的法律法规和基本原则。这方面立法的缺失目前在我国是非常严重,需要积极推动关于个人信息安全的法律法规的建立,加大打击侵犯个人信息安全的行为。2017年两会期间全国政协委员、联想集团董事长兼ceo杨元庆呼吁政府加强对个人信息安全的立法和监督,引起了社会各界广泛关注和重视,这充分说明这个问题已经成为一个重要的社会问题。我本人对个人信息安全立法工作有以下几点建议:第一,必须在立法上明确个人信息安全的法律地位。个人信息安全与隐私权“考虑到法律在一般隐私权上的缺乏,要对网络隐私权加以规范就有必要先完善一般隐私权的规定,因此首先应通过宪法明确规定公民享有隐私权。[2]”第二,必须从法律上明确采集数据的权利依据。由于在数据采集过程中经常发生对个人信息的侵害,因此无论是政府还是互联网运营服务商都必须遵循一定的原则和依据。政府采集数据的行为应该符合宪法的要求,而互联网运营服务商采集数据必须要经过当事人同意。第三,制定关于个人信息安全的专门法律。2017年国务院信息办就委托中国社科院法学所个人数据保护法研究课题组承担《个人数据保护法》比较研究课题及草拟一份专家建议稿。2017年,最终形成了近8万字的《中华人民共和国个人信息保护法(专家建议稿)及立法研究报告》。但到目前为止我国的个人信息保护法仍没有立法,因此加快这个立法过程是当务之急。

优秀大数据的论文篇四

“除了上帝,任何人都必须用数据来说话。”――这是《大数据时代》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据时代》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,web3・0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前――美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的.文化以及能用于教学的鲜活案例。

每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据时代》就这样在坚持中溶入我的思想。

优秀大数据的论文篇五

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作――舍恩佰格的《大数据时代》。维克托・迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文・凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

优秀大数据的论文篇六

从人才培养目标出发,以企业对新职工的素质要求为依据,通过“职业认知,职业体验、跟岗实习(工学交替)、顶岗实习”四大环节培养学生的职业素养,锤炼学生的职业素质,为其职业生涯奠定基础。

职业素养;职业认知;职业体验;跟岗实习;顶岗实习。

通过对多家企业的调查发现,现代企业在选择人才时,不仅看中他的专业技能,更看中他的工作态度、工作道德、团队意识、工作形象等,可以说职业素养成了学生的核心竞争力。因此,肩负着培养技术人才的学校应当整体构建和提高学生的职业素养,从而为培养高素质的人才打下坚实的基础。因此,我校数控专业学生职业素养的培养主要按照“三学年四阶段”的模式进行。

我校要把专业认知教育作为学生职业素养培养的首要阶段,帮助学生了解自己的专业、行业的全貌与未来,树立起自己的职业理想。职业认知中开展的主要活动形式有:专业教师的讲解(图片、视频短片等);实训中心设备的参观、展台的参观;工厂的参观;邀请相关行业、企业的老板、优秀毕业生为学生做讲座,引导学生树立从事行业、专业的理想,激发其内在学习动机。

1.1教师给学生做了机械制造专业的`具体讲解(图片、视频短片等),引导学生树立从事行业、专业的理想,激发其内在的学习动机。

1.2到实训中心参观数控车间、普通车工、工件展台,让学生了解数控专业实习的设备、加工工件及工作环境等,对专业有初步的感性认知。

1.3工厂现场观看产品加工过程与制造的dvd视频,了解工厂工件加工的实际情况。

1.4企业的生产主管及我系优秀的毕业生就有关数控加工的历史、发展状况、人才的需求及数控专业学生的职业生涯规划和发展等方面做了专题报告。学生们对今后从事数控专业方面的工作有了更大的动力。调查发现,对数控专业的了解程度及满意度占95%以上,学生的自信心提升,得到任课教师及领导肯定和赞赏,说明专业相关培养取得了显著成效。

通过职业体验让学生对专业和职业建立基本认识,使学生获得感性认识和基本的操作技能、经验,逐步锻炼学生解决实际问题的能力,同时获得成功的喜悦。

2.1每周两天的数控加工课程,主要有数控车、数控铣实践实习操作技能课程的学习,采用模块化、任务式学习。以学生为主体,教师为主导,按照企业的标准模拟演练等形式参与,学习效果良好。

2.2举行了工业设计技能大赛,数控车、铣床技能大赛,普通车床、铣床技能大赛,校内、外各种职业技能大赛活动。充分激发学生的职业意识,塑造学生的职业人格并选拔出一批优秀职业能手,鼓励其向“大国工匠”奋斗。

2.3数控加工专业进行了数控车(高级)、cad绘图员(中级)、普通车、铣床工(中级)的职业能力培训与考核,考取相应的职业资格证书,提升学生专业技能水平,为将来的工作打下坚实的基础。

2.4职业技能大比武是学校每年一次全校性的专业性技能比赛,旨在展示教学成果,激励学生的职业意识,塑造学生的职业人格,并选拔出一批“职业能手”。大赛不仅巩固了学生的专业技能,而且也是学生步入社会前的一次大练兵。

实行跟岗实习(工学交替)的教学模式,即分别在课堂与车间两个不同的学习环境中,运用不同的教学方法交替完成理论与实践知识学习的过程。使学生具备职业人的自律、服从、守纪的基本品质,磨炼学生意志,确立质量、规程、秩序等观念和职业素养。

3.1实习就业指导办公室举行全校工学结合实习动员,就有关跟岗实习的问题进行讲解,让学生能顺利走向工学结合实习岗位。

3.2邀请优秀跟岗实习带队教师及优秀实习个人到班级做有关跟岗实习动员以及有关介绍,让学生能理解跟岗实习背景以及跟岗实习意义等。

3.3学生参与企业的生产与管理,成为一名真正的职业人。通过亲身参与生产,让学生在企业生产一线中了解什么是企业,了解企业管理、现场管理、企业产品、企业生产工艺流程。

3.4跟岗实习(工学交替)。数控加工专业进行第三阶段的跟岗实习(工学交替)———生产训练,全程3个月,主要从事各种工件(包括主轴、壳体、箱体等)的制作和检测、包装等工作。企业的5s管理以及企业的管理制度都是非常规范的,这种生活的体验和磨炼,拓展了学生的知识领域,培养了学生的适应能力、社交公关能力、自我管理能力。也使学生初步具有独立思考问题、分析问题和解决问题的能力。学生的表现得到了厂方管理人员及员工的肯定和赞扬,学生感到收获很大。

毕业顶岗实习安排在第三学年,在校就业实习招生办公室指导下,由系部具体组织实施,学生在顶岗实习期间,校企双方要加强对学生实习过程的监控和考核。

4.1邀请我校优秀毕业生做就业实习报告会,利用自己的亲身经历告诉现场的学生:中职生要做到一专多能,更早地接触社会,积累更多的工作经验。

4.2实习就业指导办公室举行全校毕业生就业指导专题讲座,就有关就业实习问题进行讲解,让学生能顺利走向实习岗位。

4.3开设职业指导课程,让学生在毕业实习期间懂得更多企业、劳动、就业等相关知识。

4.4学校举行高级蓝领人才会,决定数控加工专业学生的实习岗位。

4.5参与企业岗位操作,了解实习单位的产品及其质量、销售情况,了解国内外同类产品的技术水平和发展趋势。理论联系实际,巩固、深化、扩大所学理论知识和专业技能。学习企业管理和技术管理的基本知识和方法,学习现代职业人的优秀品质。经过三学年四个阶段的锻炼,学生不仅具备了扎实的专业知识与专业技能,同时还养成了过硬的职业素养,他们与学校发展同步,与企业发展同步,与时代发展同步,受到了用人企业的一致好评。

优秀大数据的论文篇七

在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。

2。2开发与内容的管理形式。

在不断提高大数据时代的大数据管理形式的过程中,可以从两个方面进行,一是大数据开发管理,二是内容管理。其中大数据开发管理注重于大数据管理的定义,和管理解决策略,对其大数据的存在价值,进行有效的开发。换句话说,其实也就是在大数据时代的大数据管理的过程中,对其管理形式的开发,对大数据的功能和价值,进行充分的理解。

大数据时代的大数据管理中的内容管理是指:企业对大数据进行不断的获取、使用、存储、维护等工作活动。因此,传统的大数据时代的大数据管理形式,已经无法满足对这个时代发展需求。因此,在时代快速发发展的推动下,要对开发管理和内容管理,进行全面的创新和设计,对需要专门设定的管理形式,要给予高度的重视,可以利用的集合型的保存形式,进行全面的保存。

其实,大数据时代的大数据管理主要是为企业提供重要的发展方向,为企业提供重要的价值信息。大数据时代的大数据管理在数据应用和开发的过程中,起到了重要的衔接作用,也为我国信息技术的发展,打下了坚实的基础。

在大数据时代的大数据管理的过程中,数据框架管理起到了重要的作用,并且与大数据开发的过程中,有很多相似的地方。在传统的大数据时代的大数据管理的过程中,对其数据的开发、处理、保存等形式,都受到了一定程度上的限制。因此,在对大数据时代的大数据架构管理的过程中,对其操作形式,进行了全面的管理创新,避免受到范围的限制。另外,随着大数据不断的增加,大数据构架管理可以根据大数据的用途,质量良好的应用形态。例如:社交网络等形式。

与此同时,在最近几年的发展中,大数据时代的大数据管理形式,也面临着新的挑战基机遇。以此,只有对大数据时代的大数据管理形式,对个人信息、隐私等进行全面的管理,避免个人信息、隐私等发生泄露、不对称等现象的发生,这样不仅仅企业在发展的过程中,提供了最大程度上的安全保障,也为大数据时代的发展,带来了新的发展篇章。

3结语。

综上所述,大数据时代是信息技术时代不断发展的产物,不管对我国经济的发展,还是人们在日常工作、生活的过程中,都起到了重要的作用和意义。因此,本文对大数据时代的大数据管理发展的历程进行了简要的分析,并对大数据时代的大数据管理形式,提出了一些可参考性的建议,只有对大数据时代的大数据管理形式,进行不断的创新,对大数据时代的大数据管理框架,进行不断的构建,也只有这样的才能在最大程度上促进了我国信息技术的发展,也为我国各行各业的发展,提供了重要的发展方向,对我国经济的发展,也起到了推动性的作用。

优秀大数据的论文篇八

在大数据时代的大数据管理的人员管理形式,不断发展和改革的过程中,计算机的软件和硬件都得到了有效的提高,磁盘、磁鼓等储存软件,得到了全面的普及和发展。同时,在在不断发展的过程中,计算机将大数据的组成形式,叫做大数据文件,并且在大数据文件上就可以直接的取名字,直接的进行查看,这对大数据的管理,无疑不是一个新的发展的起点。在大数据时代的大数据文件管理的过程中,由于大数据长期的保存在外面的,这样在对的大数据处理、分析、查找、删除、修改等操作的过程中,提供了极大程度上的'便利,其对其操作的程序,也具有特点的要求。但是,在文件管理的过程中,由于共享性能较大,数据与数据之间缺乏一定的独立性,对其管理和维护的费用和时间较大,这样往往工作效率提高,不能被广泛的使用。

优秀大数据的论文篇九

随着信息技术的发展和智能设备的普及,大数据已经成为当今社会的热门话题。作为数据时代的核心,大数据不仅改变着人们的生活方式,也深刻影响着社会经济发展。在长时间的学习和实践中,我对大数据有了一些心得体会。本篇文章将从数据的来源、数据的处理、数据的应用、数据的挑战以及数据的未来五个方面,对大数据进行思考和总结。

首先,大数据的来源不仅包括了传统的企业内部数据,而且还包括了社交媒体、物联网、日志文件等非结构化和半结构化数据。与传统的数据相比,大数据具有体量大、速度快和多样性的特点,因此更加具有价值。大数据的产生与人们日常生活中的各个方面密不可分,例如我们在社交媒体上发布的照片、留言、评论等、在手机、电视、汽车等智能设备上的操作和行为也都产生了大量的数据。因此,我们要充分利用这些数据,挖掘出数据中的价值。

其次,对大数据的处理成为突破瓶颈之一。由于大数据的特点,传统的数据处理方法已经不能满足当前的需求。因此,人们开始采用云计算、分布式存储和分布式计算等新技术。云计算可以提供强大的计算和存储能力,分布式存储可以方便地处理大规模数据的存储,分布式计算可以加速大规模数据的处理。同时,机器学习和深度学习等算法的出现,为数据处理提供了新的思路。通过建立合适的模型和算法,可以更好地处理大数据,并从中发现隐藏的规律和关联。

第三,大数据的应用已经渗透到各个领域。在商业领域,大数据可以帮助企业更好地了解客户需求、优化产品设计、优化营销策略等,从而提高企业的竞争力。在医疗领域,大数据可以帮助医生更准确地诊断疾病、制定个性化治疗方案。在城市管理中,大数据可以帮助政府更好地了解城市运行的状态,制定科学合理的城市规划和交通管理。在交通领域,大数据可以帮助交通公司更好地安排班车和线路,提高乘客的出行效率。

然而,大数据也面临着一些挑战。首先是数据安全和隐私问题。大数据的应用离不开个人信息的采集和存储,而这又与用户的隐私密切相关。因此,我们需要建立合理的数据保护机制,使用户数据安全可控。其次是数据质量问题。大数据的质量直接影响数据分析和决策的准确性和有效性。因此,我们需要加强数据质量的管理和控制。此外,大数据的运营和维护也需要相应的技术和人才支持,这对于很多企业来说是一个挑战。

最后,对于大数据的未来,我非常看好。随着技术的进步和应用场景的拓展,大数据将会有更广泛的应用。例如在智能家居领域,大数据可以帮助家庭更智能地控制和管理各类设备。在教育领域,大数据可以帮助教育机构更好地了解学生的学习情况和学习模式,从而制定更适合的教学方案。在环保领域,大数据可以帮助我们更好地了解环境污染的情况,从而制定合理的治理方案。

总之,大数据已经成为时代的潮流,对于社会发展和个人生活都起到了重要的推动作用。对于大数据的深入思考和理解,有助于我们更好地把握和利用数据,发现新的需求和机遇。希望未来大数据的应用能够更好地服务于人类的发展和进步。

优秀大数据的论文篇十

摘要:随着就业信息化建设的发展,信息技术已经被广泛应用于高校毕业生就业中,就业信息化建设是近年来大学生就业问题关注和努力的重点方向。但目前就业信息化建设中依然存在很多不足,如信息整合程度低、信息利用率低下、信息平台功能不完善、信息交流不足、网络求职成功率偏低等。在当今大数据时代背景下,就业信息化建设迎来了新的发展机遇。

关键词:大数据;信息化;就业。

随着互联网的发展,信息技术被广泛用于生活、工作、学习、服务、交通、生产等各个领域,改变了世界,为人类带来了诸多便利。就业信息化建设对我国经济社会发展稳定具有重大战略意义。在各种信息化平台的帮助下,大学生能够更容易、更便捷地找到就业岗位,在我国高校扩招造成毕业生数量逐年递增的情况下,极大地缓解了社会的就业压力,为我国经济建设提供了各方面的劳动力和人才。因此国家高度重视就业信息化建设,21世纪以来,党中央、国务院、教育部多次下达指令,要求大力开展各项就业信息化建设工作。

一、目前我国就业信息化建设的现状及不足。

经过十几年的努力,目前我国就业信息化建设已经基本完善,形成了以各级政府就业指导部门、用人单位、高校、毕业生为核心的就业信息化体系,通过各种信息化平台,把各级政府就业指导部门、用人单位、高校、毕业生连接起来。各级政府就业指导部门网络平台、各高校就业指导中心网站、各种招聘信息、毕业生求职信息等信息化要素的相互作用,实现大学生完成就业。但目前我国就业信息化建设依然存在很多不足,主要有一下几点:

(1)信息整合程度低、信息利用率低下。目前已有的就业信息平台数量很多,各种就业平台发布的信息数量非常巨大,但信息分布松散,整合程度较低。比如,同一岗位的招聘信息,可能会在多个不同的招聘网站上看到,求职者需要到多个求职网站去搜寻。这就增加了求职者获得求职信息的时间成本,导致信息利用率低下。

(2)信息化建设视野狭窄,平台之间联系不够,信息交流不足。政府部门在信息化建设统一规划方面做得不好,没有从高的层面进行部署,建设视野不够宽广。各个信息平台一叶障目,平台之间的联系不够紧密,最终导致了信息交流不足。

(3)信息平台功能不完善,不能更好服务就业工作。目前大部分的信息平台以发布就业信息为主,一些平台具备网络简历投递的功能,但这些对于实现求职者顺利就业是不够的。求职者需要通过信息化平台了解到当前就业形势、各行业就业现状、薪酬水平、地域差异、前景分析等信息,需要得到实时疑问解答,进行广泛交流,这些都是当前的信息平台所缺乏的功能。

(4)网络求职成功率不高。十几年来信息化建设促进了大学生就业工作的开展,越来越多的求职者在网上进行简历投递等求职活动,但不可否认的一个事实是招聘会、宣讲会、人才市场对于就业依然作用突出。调查显示,很多求职者认为网络对于求职的最大帮助是提供便捷、高效、廉价的就业信息,而网络招聘中简历投递成功率太低,所以求职者更愿意到招聘现场去求职,各地招聘现场的火爆状况就是很好的证明。这也说明了目前信息化对求职的帮助仍然处于较低的水平。

随着信息化技术的发展,家用电脑、智能手机、宽带技术、移动互联网、物联网等数据来源及数据承载方式的高速发展,全球的信息数据量出现了跨越式增长,信息大爆炸成了时代的特征,大数据时代已经正式到来[1]。

大数据(bigdata,megadata),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产[2]。在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的特点可以概括为4v:volume(大量)、velocity(高速)、variety(多样)、value(价值)。大数据最核心的价值就是在于对于海量数据进行存储和分析。大数据技术可以从各种各样类型的数据中,快速获得有价值的信息。

利用大数据技术可以解决目前就业信息化建设中存在的种种不足,进一步加强就业信息化建设,更好帮助大学毕业生就业。

(1)加强预测分析,更好开展就业指导工作,加强就业针对性。大数据技术通过对国内国际形势、当前经济发展、过往就业信息、地域信息等大量数据进行分析,预测就业形势、各行业就业前景、薪酬水平、地域竞争状况、行业前景等能内容进行分析,给出可靠的预测数据,便于政府就业指导部门更好安排部署就业工作;企业可以合理安排招聘岗位,选择适合的求职者,避免员工频繁跳槽现象,节约招聘成本;高校可以更好地开展大学生就业指导工作,大学毕业生根据自己专业、兴趣、爱好、特长、个人发展规划,有针对性地明确求职目标,进行充分的求职准备。这些能加强各方面开展就业工作的针对性。

(2)高度整合信息,紧密联系信息平台,加强信息交流,提高信息利用效率。通过对大量信息的收集和分析,大数据平台可以完成信息的高度整合,使各个信息平台紧密联系在一起,平台之间的信息可以实现快速交流,大幅度提高信息利用效率。在大数据的帮助下,求职者搜寻求职信息时,重复的信息可以自动合并,同一类信息可以全部展现,信息获取效率得以提高;求职者的简历、求职信等求职信息可以储存在云端,在需要时随时可用于不同的网络招聘,这样求职者可以省去大量重复写简历的时间;通过大数据综合分析,网络上的虚假招聘信息可以迅速被识别剔除,信息审核得以强化,避免求职者上当受骗。

(3)完善信息平台功能,扩展信息平台种类,提高网络求职成功率。大数据技术可以进一步完善各信息平台的功能。信息平台将不仅仅提供求职信息,还会增加就业分析预测、实时交流、就业指导、网络简历投递和筛选、视频面试等功能。

随着大数据技术的发展,信息的传播已经不只是依赖电脑,智能手机、便携平板电脑、智能穿戴设备都成了信息传播媒介,信息平台也不再局限于互联网网站,qq、微信、微博等实时交流工具和各种app应用也成了新的信息平台,更加方便、快捷地发挥作用,借助于这些平台,求职者可以随时、随地进行信息浏览、投递简历、疑难询问、交流沟通等,企业hr可以随时发布信息、筛选简历、疑问解答、视频面试等,极大地提高求职的便捷性和成功率。

总而言之,大数据时代的到来,为以后的就业信息化建设提供了新的发展机遇和发展思路,充分利用大数据技术的各种优点和优势,就业信息化建设将更好服务于就业工作。

参考文献:

[2]杨旭,汤海京,丁刚毅.数据科学导论[m].北京理工大学出版社,2014.

优秀大数据的论文篇十一

在当今科技发展迅猛的时代,大数据已成为不可忽视的重要资源。它为我们的生活带来了很多改变,也给企业、政府和个人提供了更多机会。通过对大数据的学习和实践,我意识到了大数据的重要性和潜力。在这篇文章中,我将从数据收集、数据分析、数据隐私、数据治理和数据应用五个方面分享我对大数据的心得体会。

首先,数据收集是进行大数据分析的基础。无论是企业、政府还是个人,我们都应该积极参与数据收集。在大数据时代,每个人都是潜在的数据生成源。企业可以通过设备和传感器收集销售数据和用户行为数据,政府可以利用数据收集来改善公共服务,个人可以通过社交媒体和移动应用来分享自己的数据。数据的多样性和数量越大,分析结果越准确,应用场景也会更多。

其次,对数据进行分析是利用大数据的核心。大数据分析可以帮助企业和政府发现隐藏的模式和趋势,为决策提供有力支持。在我们的日常生活中,大数据分析也是无处不在的。我们可以通过购物网站推荐来发现感兴趣的产品,通过社交媒体的算法来找到和我们兴趣相投的人。然而,大数据分析不仅仅是利用算法和工具,还需要人的智慧去理解数据背后的故事。

第三,数据隐私是大数据时代面临的主要问题之一。随着数据的不断增长,隐私问题也日益突出。个人数据的泄露可能导致信息被滥用,对个人和社会带来无法估量的风险。因此,数据隐私保护应该成为我们在使用大数据时考虑的重要因素。政府需要制定相应的法律和法规来保护个人隐私,企业需要建立严格的数据使用和保护机制,个人也应该提高自我保护意识,选择安全可靠的应用和平台。

第四,数据治理是保障数据质量和安全的重要手段。数据治理是一种组织和管理数据的方式,涉及到数据的标准化、清洗、分类和存储等方面。数据治理的目标是确保数据可靠和可用,提高数据价值和利用率。在数据治理过程中,需要建立明确的责任和权限,制定相应的规范和流程,采用合理的技术手段来保护数据的完整性和安全性。

最后,大数据的应用是实现数据价值的最终目标。大数据的应用可以涵盖各个领域,如金融、医疗、交通和教育等。通过大数据分析,金融机构可以预测风险,提高客户满意度;医疗机构可以个性化治疗,提高疗效;交通部门可以优化交通流量,减少拥堵;教育部门可以根据学生的兴趣和能力提供个性化教育。大数据的应用可以为企业提供竞争优势,为政府提供决策支持,为个人提供个性化服务。

综上所述,大数据是当今信息社会的重要资源,对企业、政府和个人都具有重要意义。通过对大数据的学习和实践,我深刻认识到了数据收集、数据分析、数据隐私、数据治理和数据应用的重要性和挑战。在未来的发展中,我们需要更加重视数据的收集和利用,同时加强对数据隐私的保护和数据治理的规范,以实现大数据的最大价值。

优秀大数据的论文篇十二

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的cio也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多it知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的bi,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧―。巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时bi的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

看完此书,我心中的一些问题:

1、什么是大数据?

查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4v特点:volume、velocity、variety、veracity这个好像是ibm的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2、大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

3、大数据带来的影响。

1)预测未来书中以google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

优秀大数据的论文篇十三

摘要:传感器网络协议作为传感器与传感器之间,传感器与用户之间的通信媒介,在数据传输过程中因缺乏数据管理,经常导致传输给用户的数据是混乱的。针对上述问题,研究一种基于数据管理的传感器网络协议。该协议采用分层思想,将传感器网络协议分为四层:物理层、访问控制层、网络层以及应用层,并将传感器网络协议层集合成网络协议栈,完成数据有序传输。

关键词:数据管理;传感器;网络协议;协议层;协议栈。

目前存在的传感器网络协议由于层次划分的并不明确,经常导致采集到的数据出现混乱,不利于后期的数据管理(存储、处理和应用等)[1]。因此为方便后期数据管理,在数据管理的前提下,对传感器网络协议进行研究,以期解决数据混乱的问题。首先构建传感器网络协议层,协议层主要包括物理层、访问控制层、网络层以及应用层;然后将各层组合在一起构建传感器网络协议栈,协议栈主要为各层之间的数据传输提供软件方面的指导。基于数据管理的传感器网络协议研究,为数据通信工作奠定基础,加快了数据的`获取,方便了数据传输。

一、传感器网络协议研究。

传感器网络是微电子技术、嵌入式信息处理技术、传感器技术等几种结合并构建的一种属于计算机网络。数据量大且繁杂是当代大数据时代的特点,如果不对数据加以处理,人们要想快速、有效获得自己需要的数据,无疑大海捞针的,因此为应对当前传感器网络存在的问题,将设计好的网络协议嵌入其中是当前研究的重点课题之一[2]。

(一)传感器网络协议层。

为解决传统传感器网络协议划分不明确,导致数据混乱,不利于数据管理的问题。本次研究的传感器网络协议明确划分为4个层次,每个层次负责数据管理过程中的不同步骤,以规范数据流向。下图1为是传感器网络协议结构图。从图1中可以看出,本次研究的传感器网络协议一共分为4层:物理层、访问控制层、网络层以及应用层[3]。(1)物理层。传感器网络协议物理层主要负责定义物理通信信道和与访问控制层之间的连接。简单的说,就是接收或发送传感器前端摄像头采集到的数据,以及维护由以上数据构建的数据库。(2)访问控制层。传感器网络协议物理层主要负责物理层中数据的分类管理和传输。分类管理主要根据采集的数据类型进行分类确认,而传输主要是将分类结果进行传输。(3)网络层。传感器网络协议网络层是整个协议中的核心层次,主要负责传感器与传感器、传感器与观察者之间的通信以及信息交流。在网络层中可以实现多种异构数据的兼容、融合以及转换、传输,为后续数据管理做好前期的工作准备,使得不必在后期进行二次处理[4]。(4)应用层。传感器网络协议网络层是整个协议中的最后一个层次,主要负责与用户之间的数据交互,也就是将以上几层的数据分析结果按照用户的请求发送给用户。

(二)传感器网络协议栈。

协议栈,又被称为协议堆叠,是上述介绍的4个层次的总和,其实质反应了数据的往复传输过程。从下层协议的数据采集到数据传输再到上层协议的数据呈现,之后又从上层协议发出命令,命令下层传感器进行数据采集。传感器网络协议栈协调了不同层级之间的数据属性,在协议体系中,数据按照规定的格式加入自己的信息,形成数据位流,在各层级之间传递[5]。传感器网络协议标准采用了ieee802.15.4标准,各层级之间利用接入点实现数据交流和管理,一般接入点有两个,一个接入点负责数据传输,另一个接入点负责数据管理。在传感器运行过程中,各种不同属性的数据在不同层级上奉行不同命令。这样做有利于数据的有效分类,使得数据管理更为方便。

二、结束语。

传感器能够监测外部环境信息并按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,广泛应用工业生产、机械器件制造、灾害监测、气象预测等诸多领域。但是由于传感器的监测是实时监测,所以数据量过于庞大,如果不加以管理,将会直接影响后期数据分析结果。本次研究针对上述问题,将数据管理作为中心指导思想,进行传感器网络协议研究,以期为数据管理做出技术支持。

参考文献。

优秀大数据的论文篇十四

3月11日下午两节课后,我校全体教师和受邀而来的金南学区各友好学校的领导及教师汇聚于多媒体教室,共同分享、交流《大数据时代》读后感。

老师们从:何谓大数据;立足国情对大数据进行探讨;大数据在教育教学中的主要应用等几个方面畅谈了自己的感悟。

张萌老师说:大数据体量庞大、结构复杂、是产生巨大价值的数据集合。大数据这种方法在中国的国情下需要以更加科学、合适的方式进行实践,不可生搬硬套。

董译雯老师说:在你我感叹《大数据时代》里深植于美国民众血液中的自由、民主、严谨的价值观的同时,可否想过中国教育体制下的孩子们身上还残留多少独立与自我意识?作为典型的八零后,我们这一代人身上最缺失的便是独立思考能力。但愿,我的学生哪怕是因为我所做的一点点努力而开始思考“我”这个字的含义,足矣!

张红杰老师说:很感谢校长给我们推荐了《大数据时代》这本书。在教学工作中,应该有大数据意识,创新意识。学习一些专业的教学统计法、数据分析法,从中发现一些教育现象,并采取相应的策略。让我们的教育教学工作少一些随意和盲目,多一份严谨与科学。

白媛媛老师通过文中的三个事例,结合教学实际,谈了自己教学中对数据使用的价值;结合自己的工作,谈了如何实现工作的最高境界。

交流活动尾声,身为阅读《大数据时代》的倡议者、发起者、以及忠实的读者韩校长幽默风趣的同大家分享了他读后的感悟:我们心中要装着学校,因为我们个人的命运依赖群体的命运;工作要追求精细化,不能做胡适书中的“差不多”先生;尊重数据,拥有数据意识,建立数据团队!

此次活动从寒假期间倡导读《大数据时代》一书,到开学伊始的分组沙龙,再到今日的阅读共享,现已圆满告一段落。相信此次活动定会增强我校全体教师的数据意识,掌握大数据,运用大智慧助推我校的教育教学上一个新的台阶!

优秀大数据的论文篇十五

随着时代的快速发展,招标代理企业的信息化进程是未来社会需求的必然产物,所以,企业只有不断提升信息化建设的速度、提高自动化运营的效率,才能与时代的发展保持一致,以免被社会所摒弃。在招标代理企业的信息化管理过程中,还必须引进先进的管理观念、高质量的人力资源以及科学的管理模式等。

信息化;招标代理;企业管理。

第一,重视程度不够。由于高校对档案管理重视程度不够,在档案管理工作中,沿用传统的工作模式,对档案进行人工检索、整理、立卷和归档。即使大部分高校引进了先进的计算机设备,但是仍然只是发挥基本的输入、输出功能。由于缺乏现代化的管理系统,使得高校的档案管理工作繁琐,效率低下,限制了档案管理的价值。教师及学生的档案采集不全,档案卷内目录填写不完整,档案序号、文件编号、责任者、卷内文件的起始时间等信息有遗漏,档案文件保密级别不限定。第二,从事档案管理的人员素质不够。部分高校没有严格按照规定,完成档案管理工作,甚至缺乏专门的档案管理,只是简单的将档案堆在墙角里,使得档案丢失,这给档案查找工作带来非常大的困难。而且从事档案管理的人员,大部分是为了解决高校代课老师或教授配偶的工作,临时安排的,他们大部分人员缺乏计算机操作技能,不能利用计算机技术对档案信息进行开发和研究,并且缺乏工作积极性。第三,档案管理平台不健全。近些年来,高校电子文档、表格、音频、视频等各种数据信息,种类繁杂,这些庞大的数据信息难以有效的管理及存储。高校档案数据资源不断扩张,若不引入虚拟云存储技术,就有可能引发资源存储容量不够,导致数据库膨胀危险。

大数据的意义不是数据信息庞大,而是对数据信息进行高质量的处理。面对大数据时代的到来,高校如何在招生、教学、管理、就业方面进行大数据整合和管理,为高校的发展提供技术支持,是学校发展的重点工作。目前,很多学校已经建立了信息门户、统一用户管理与身份认证、综合信息服务门户,已经在信息管理中取得了进步,但是目前高校档案管理仍存在很多挑战。第一,组织维度。高校内各个部门应该优势互补,实现不同类型的大数据资源的优质整合。例如在高校内各部门建立数据管理机构、将数据整合和管理常态化,该机构由各个部门分管领导直接负责,协调部门内部事务,并将数据整合工作纳入年终评价体系,保障数据整合工作的效果。为加强高校档案管理,建议高校成立活动领导小组和工作小组。如下:其一,领导小组。组长;副组长;成员;职责;其二,工作小组。组长;副组长;成员;职责:统筹安排档案管理,研究制定管理措施;负责对档案信息进行协调、监督、考核。工作小组办公室设在公司后勤,负责日常工作联系及相关组织工作。第二,数据维度。高校档案来源丰富,包括教师和学生的人事档案、学籍档案、医疗保健档案、试题库、学校的基建档案、学校的资产档案、财务原始报销凭证、公文、电子邮件等。在档案大数据应用时,要将档案资源进行数据模型的转换,将二维的信息转换为多维的模型。第三,技术维度。在高校大数据时代,信息应用服务引领高校档案由常规分析向广度、深度分析转变。师生用户可以共享档案信息,并从海量档案信息中,挖掘出自己可用的信息,并从这些信息资源中进行价值判断和趋势分析,找出用户和档案之间的逻辑关系。4g移动通信终端、云技术与云存储服务、校园app等媒介渠道的引入,可以解决档案资源存储的问题。

第一,增强服务意识,提高服务水平,争取领导重视。大数据时代的来临,档案管理工作会面临许多新情况、新特点、新问题。实现现代化的管理,需要提高领导干部的档案意识,配备先进的设备,实现档案管理的现代化,网络化。第二,加强档案管理教育培训,提高管理人员的综合素质。大数据的管理不在是传统的简单数据和信息的归集,在信息化管理工作中,提高管理人员的素质是有必要的。加强人才培养,实现竞争上岗,培训上岗,加强业务宣贯,为档案管理创造一个新台阶。第三,提高档案管理信息化利用水平。引进现代化档案管理设备,用于快速档案查阅、检索、分析,提高工作效率,实现档案管理的现代化办公。一是加大资金投入,不断完善档案信息数据库,不断摸索档案应用软件和实际工作的结合,建立可行的档案信息系统,提高档案数据的实用性,使得档案查阅更快捷、更方便、更可靠。二是建立规范的制度保障体系,提高信息化管理的技术水平。

今年两会,大数据第一次出现在政府的工作报告中,这表明,大数据已经上升到国家层面。为了适应大数据时期,档案管理工作对管理人员的要求越来越高,学习现代计算机技术、网络技术、多媒体技术,跟上当代时代的节拍,对高校的发展有着重要的意义。

作者:张贤恩高秀英单位:枣庄市团校。

[1]杨似海,闫其春.大数据背景下的高校图书馆档案管理策略研究[j].四川图书馆学报,2016,4(35):81.

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制