教案应当具有合理的教学顺序和科学的教学方法。教案的编写要充分利用多种教学资源,提高教学的多样性和趣味性。教案是教师为开展教学活动而编写的一种书面教学计划,它是教师教学的重要依据和指导工具。教案可以帮助教师提前设计和组织教学内容和活动,促进教师对教学目标和方法的思考和规划。教案是教学中系统化和有序化的表现形式,可以帮助教师掌握教学进度和安排时间,合理安排教学资源和教学材料。编写教案前,要充分了解学生的学情和学习需求,考虑学生的认知特点和心理发展规律。下面是一份精选的教案范例,供大家参考借鉴。
1、把分散学习的有关0的运算这部分知识系统化,提高学生计算的正确率和整理概括知识的能力。
2、借助故事引起学生对0的有关知识的回忆,使学习变得主动、积极。
本课的难点是说明0不能作除数及0为什么不能作除数的道理。
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授。
学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
(1)24+24+24÷2。
=24+24+12。
=48+12。
=60(元)。
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×2+24÷2。
=48+12。
=60(元)。
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
买3张成人票,付100元,应找回多少钱?
等等。
小组讨论,独立完成。
小组内互相说说你是怎样解答的?
汇报。
=3(名)。
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
=90÷30。
=3(名)。
引导学生观察两个算是的不同点,以及运算顺序的不同。
学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习。
p7/做一做1、2。
p11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。)。
教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业。
p8—9/5—9。
板书设计:
星期天,爸爸妈妈带着玲玲去“冰雪上午冰雕区有游人180位,下午有270位。
天地”游玩,购买门票需要花多少钱?如果每30位游人需要一名保洁员,下午要。
(1)24+24+24÷2(2)24×2+24÷2比上午多派几名保洁员?
=48+12=60(元)=9-6=90÷30。
=60(元)=3(名)=3(名)。
运算顺序:在没有括号的算式里,有乘、运算顺序:算式里有括号,要先算括号里。
除法和加、减法,要先算乘、除法。面的。
课后小结:
第三课时:
教学内容:
p11/例5(强化小括号的作用)、归纳运算顺序。
教学目标;。
1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。
2.在学生的头脑中强化小括号的作用。
3.在练习中总结归纳出四则混合运算的顺序。
教学过程:
一、复习引入。
回忆前两节课的学习内容,回顾学习过的四则运算顺序。
根据学生的回答进行板书。
二、新授。
出示例5。
(1)42+6×(12-4)。
(2)42+6×12-4。
学生在练习本上独立解答。(画出顺序线)。
两名学生板演。
全班学生进行检验。
上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?
这几天我们一直都在说“四则运算”,到底什么是四则运算呢?
学生针对问题发表自己的意见。
概括:加法、减法、乘法和除法统称四则运算。(板书)。
谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下?
学生自由回答。
三、巩固练习。
p12/做一做1、2。
p14/4。
教师巡视纠正。
四、作业。
p14—15/2、3、5—7。
板书设计:
(1)42+6×(12-4)(2)42+6×12-4运算顺序:
=42+6×8=42+72-4(1)在没有括号的算式里,如果。
=42+48=114-4只有加、减法或者只有乘、除法,都。
=90=110要从左往右按顺序计算。
(2)在没有括号的算式里,有乘、
除法和加、减法,要先算乘、除法。
(3)算式里有括号的,要先算括。
号里面的。
加法、减法、乘法和除法统称四则运算。
课后小结:
第四课时:
教学内容:
p13/例6(0的运算)。
教学目的:
使学生掌握关于0的运算应该注意的问题。
教学重、难点:
0不能做除数及原因。
教学过程:
一、口算引入。
快速口算。
出示:
(1)100+0=。
(2)0+568=。
(3)0×78=。
(4)154-0=。
(5)0÷23=。
(7)0÷76=。
(8)235+0=。
(9)99-0=。
(11)0+319=。
(12)0×29=。
二、新授。
将上面的口算进行分类。
请你们根据分类的结果说一说关于0的`运算都有哪些。
学生分类后进行概括总结关于0的运算。
教师根据学生的回答进行板书。
关于0的运算你还有什么想问的或想说的吗?
学生提出0是否可以做除数。
小组讨论:0能否做除数?全班辩论。各自讲明自己的理由。
教师小结:0不能做除数。如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
三、小结。
学生小结关于0的运算应该注意的问题。
教师引导学生小结。
四、作业。
p15—16/8—13。
板书设计:
关于“0”的运算。
100+0=100235+0=235一个数加上0,还得原数。0能否做除数?
0+319=3190+568=5680不能做除数。
99-0=99154-0=154一个数减去0,还得这个数。
0×29=00×78=0一个数乘0或0乘一个数,还得0。
0÷76=00÷23=00除以一个非0的数,,还得0。
本单元教材的编排思想是借助具体情景,通过6个例题的教学,使学生掌握四则运算的运算法则,初步了解这一知识的生成过程,以及提高列综合算式解决实际问题的能力。这与以前的教材编排有很大的不同,改变了过去通过单纯解答混合运算试题以达到掌握、记忆运算顺序的设计意图,将混合运算赋予了生活中的现实意义,引导学生通过解答生活中的具体问题来理解体会混合运算顺序的合理性,从而达到在感悟、理解的基础上尝试概括总结,直至掌握运用。
因此在教学设计时我们对如何在现实情景中进行四则运算,如何把解决问题与掌握四则混合运算顺序有机地结合作为着力点进行了研究。旨在通过对解决问题的思路交流汇报,使学生理解算式所表达的意义,初步体会“先乘除后加减”的合理性运算法则,并注意由具体特例向一般混合运算推广,最后总结、概括出四则运算法则的一般规律。
二、在准确理解、把握教材的基础上创造性地使用教材。
教材的例1例2是在学生已会计算的基础上总结概括同级运算的运算顺序;例3要使学生理解、掌握两级混合运算的运算顺序,并掌握加减两边可以同时计算的特例;例4是学习带小括号的混合运算顺序,并体会解决问题途径的多样性。经过认真分析研究,我们认为例1、例2的内容学生掌握起来比较容易,而例3的教学任务有些重,因此,我们根据实际情况将教学内容进行了调整,第一课时完成例1、例2的教学以及两步计算的二级混合运算顺序,第二课时完成“两边同时计算”的混合运算特例及例4的教学任务。这样教学不仅分散了例3的多个难点,同时能在第一课时中通过对比突出“先乘除、后加减”的教学重点,更能明确地帮助学生体会、理解运算顺序的合理性,而在第二课时的教学中也能有足够的精力去梳理解决问题的思路,并借助小括号的加入体会解决问题途径的多样性。
三、在学习活动中重视学法的指导和数学思维方法的渗透。
第一课时我们重点引导学生通过观察、比较、分析,学会抓住事物的本质特征,从而发现、总结规律的科学思维方式,并进一步培养学生善于提出问题、积极寻求解决途径、并有意识地寻求依据来解释说明自己的思路的能力,在理解、掌握运算顺序的同时,促进学生数学思维的发展。
在第二课时中,我们有意识地增加了“数形结合”的思想。俗话说:授之以鱼,不如授之以渔。教师不仅要教给学生知识,更重要的是教给学生学习的方法。线段图是以线段的长短表示数量的大小,以线段之间的关系反映事物之间的数量关系。发挥着其他手段、方法不可替代的作用。低、中年级的学生在解决实际问题时,更需要借助线段图化抽象为具体,化隐蔽为直观,数形结合,形象地提示题中的数量关系,启发、拓宽并优化学生的解题思路,增强判断的准确性,从而提高学生创造性地解决数学问题的能力。因此,这节课指导学生通过画线段图来理解题里的数量关系,尤其是例4的第二种方法,学生对于这种方法很难理解,但通过画线段图及进一步观察、分析,学生就能较好地理解为什么先求差,实现对解题方法的优化,进一步培养学生解决问题的能力,为学生后期的学习打下良好的基础。
1、你了解了混合运算的哪些知识?(根据学生回答,适当板书)。
只有加减法从左往右。
只有乘除法从左往右。
乘除法、加减法兼有先乘除后加减。
2、说说运算顺序后,快速地计算出结果。
请四位同学先说一说运算顺序,并快速地报出答案。
(二)新知学习。
近几天来“冰雪天地“的客流量很大,游客特别多,为了使”冰雪天地“保持良好的环境,服务部决定请一些保洁员协助管理卫生。上午冰雕区有游客180位,下午有270位。如果每30位游客需要一名保洁员。
1、你理解这三条信息的意思吗?“每30位游客需要一名保洁员”这句话你怎么理解?(游客30人就要派一名保洁员,下午与上午的标准是一样的,都30位游客派一名保洁员。)。
教师还可以问:60位游客派几名保洁员?90位游客呢?有多少游客要派5名保洁员呢?
2、你能根据这三条信息编一道应用题吗?可自己独立完成,也可以小组合作。
3、交流,板书。
4、你会解答吗?先来解决第一题。
5、反馈。
6、你能把以上两种算式方法写成综合算式吗?
a、180÷30+270÷30。
b、(270+180)÷30为什么要加上括号?(因为是先算总游客数,如果不加括号,就先算除法,就变成上午要派的保洁员加下午的游客了,意思就说不通了。)。
7、总结含有小括号的混合运算的运算顺序。
8、比较两种方法哪一种更简便?
9、解决第二个问题。
列出算式,并说一说运算顺序,以及每一步的意思。
同学们真是帮了冰雕区叔叔阿姨的一个大忙,他们能根据同学们的意见尽快地来安排保洁员了。下面,我们再来解决一些问题。
(三)巩固练习。
1、妈妈用一百元钱先给玲玲买了一件冬衣,又买了一副手套,还剩多少钱?
(四)总结全课。
(1)通过这节课的学习,你有什么收获?
(2)你能用简短的几句话来概括今天学习的知识吗?(含有括号的算式的运算顺序:先算括号里的。)。
观察主题图,根据条件提出问题。
组织学生提问并对简单地问题直接解答。
(2)根据图中提出的信息,你能提出哪些问题,怎样解决?
通过补充条件,继续提问。
1.滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?
2.“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?
等等。
先小组交流,再全班交流。
提示学生可以自己进行条件的补充。
二、新授。
1.小组4人对黑板上的题目进行分配解答。
引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。
1.小组内互相说说你是怎样解答的?
教师巡视并对学生的叙述进行指导。
1.全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
=27+85。
=113(人)。
(2)987÷3×66÷3×987。
=329×6=2×987。
=1974(人)=1974(人)。
第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)。
第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。
引导学生进一步理解“照这样计算”的意思。
强调:可用线段图帮助理解。
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。
4.巩固练习。
先个人编题,再两人交换。
小组合作,减少重复练习。
(2)p5/做一做1、2。
三、小结。
学生就本节课的学习内容进行汇报。
这节课我们解决了很多问题,你们都有什么收获?
教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)。
运算顺序为已有知识基础,让学生进行回忆概括。
四、作业。
p8/1—4。
板书设计:
1.滑冰场上午有72人,中午有44人离去,
2.“冰雪天地”3天接待987人。照这又有85人到来。现在有多少人在滑冰?样计算,6天预计接待多少人?72-44+85(1)987÷3×6(2)6÷3×987=27+85=329×6=2×987=113(人)=1974(人)=1974(人)。
运算顺序:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
课后小结:
第二课时:
第一课时:
p4/例1、例2(只含有同一级运算的混合运算)。
1、使学生进一步掌握含有同一级运算的运算顺序。
2、让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。
3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
一、主题图引入。
观察主题图,根据条件提出问题。
组织学生提问并对简单地问题直接解答。
(2)根据图中提出的信息,你能提出哪些问题,怎样解决?
通过补充条件,继续提问。
1、滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?
2、“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?
等等。
先小组交流,再全班交流。
提示学生可以自己进行条件的补充。
二、新授。
1、小组4人对黑板上的题目进行分配解答。
引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。
1、小组内互相说说你是怎样解答的?
教师巡视并对学生的叙述进行指导。
1、全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
=27+85。
=113(人)。
(2)987÷3×66÷3×987。
=329×6=2×987。
=1974(人)=1974(人)。
第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)。
第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。就可以直接用3天的987人数去乘算出来的2倍。等等。
引导学生进一步理解“照这样计算”的意思。
强调:可用线段图帮助理解。
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。
4、巩固练习。
先个人编题,再两人交换。
小组合作,减少重复练习。
(2)p5/做一做1、2。
三、小结。
学生就本节课的学习内容进行汇报。
这节课我们解决了很多问题,你们都有什么收获?
教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)。
运算顺序为已有知识基础,让学生进行回忆概括。
四、作业。
p8/1—4。
板书设计:
1、滑冰场上午有72人,中午有44人离去,
2、“冰雪天地”3天接待987人。照这又有85人到来。现在有多少人在滑冰?样计算,6天预计接待多少人?72-44+85(1)987÷3×6(2)6÷3×987=27+85=329×6=2×987=113(人)=1974(人)=1974(人)。
运算顺序:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
课后小结:
第二课时:
p6/例3p10/例4(含有两级运算或有括号的混合运算)。
1、使学生进一步掌握含有两级运算的运算顺序。
2、让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,
学会用两步计算的方法解决一些实际问题。
3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
一、主题图引入。
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授。
学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
(1)24+24+24÷2。
=24+24+12。
=48+12。
=60(元)。
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×2+24÷2。
=48+12。
=60(元)。
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
买3张成人票,付100元,应找回多少钱?
等等。
小组讨论,独立完成。
小组内互相说说你是怎样解答的?
汇报。
=3(名)。
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
=90÷30。
=3(名)。
引导学生观察两个算是的不同点,以及运算顺序的不同。
学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习。
p7/做一做1、2。
p11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。)。
教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业。
p8—9/5—9。
板书设计:
星期天,爸爸妈妈带着玲玲去“冰雪上午冰雕区有游人180位,下午有270位。
天地”游玩,购买门票需要花多少钱?如果每30位游人需要一名保洁员,下午要。
(1)24+24+24÷2(2)24×2+24÷2比上午多派几名保洁员?
=48+12=60(元)=9-6=90÷30。
=60(元)=3(名)=3(名)。
运算顺序:在没有括号的算式里,有乘、运算顺序:算式里有括号,要先算括号里。
除法和加、减法,要先算乘、除法。面的。
课后小结:
第三课时:
教学内容:
p11/例5(强化小括号的作用)、归纳运算顺序。
教学目标;
1、使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。
2、在学生的头脑中强化小括号的作用。
3、在练习中总结归纳出四则混合运算的顺序。
教学过程:
一、复习引入。
回忆前两节课的学习内容,回顾学习过的四则运算顺序。
根据学生的回答进行板书。
二、新授。
出示例5。
(1)42+6×(12-4)。
(2)42+6×12-4。
学生在练习本上独立解答。(画出顺序线)。
两名学生板演。
全班学生进行检验。
上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?
这几天我们一直都在说“四则运算”,到底什么是四则运算呢?
学生针对问题发表自己的意见。
概括:加法、减法、乘法和除法统称四则运算。(板书)。
谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下?
学生自由回答。
三、巩固练习。
p12/做一做1、2。
p14/4。
教师巡视纠正。
四、作业。
p14—15/2、3、5—7。
板书设计:
(1)42+6×(12-4)(2)42+6×12-4运算顺序:
=42+6×8=42+72-4(1)在没有括号的算式里,如果。
=42+48=114-4只有加、减法或者只有乘、除法,都。
=90=110要从左往右按顺序计算。
(2)在没有括号的算式里,有乘、
除法和加、减法,要先算乘、除法。
(3)算式里有括号的,要先算括。
号里面的。
加法、减法、乘法和除法统称四则运算。
课后小结:
第四课时:
教学内容:
p13/例6(0的运算)。
教学目的:
使学生掌握关于0的运算应该注意的问题。
教学重、难点:
0不能做除数及原因。
教学过程:
一、口算引入。
快速口算。
出示:
(1)100+0=。
(2)0+568=。
(3)0×78=。
(4)154-0=。
(5)0÷23=。
(7)0÷76=。
(8)235+0=。
(9)99-0=。
(11)0+319=。
(12)0×29=。
二、新授。
将上面的口算进行分类。
请你们根据分类的结果说一说关于0的运算都有哪些。
学生分类后进行概括总结关于0的运算。
教师根据学生的回答进行板书。
关于0的运算你还有什么想问的或想说的吗?
学生提出0是否可以做除数。
小组讨论:0能否做除数?全班辩论。各自讲明自己的理由。
教师小结:0不能做除数。如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
三、小结。
学生小结关于0的运算应该注意的问题。
教师引导学生小结。
四、作业。
p15—16/8—13。
板书设计:
关于“0”的运算。
100+0=100235+0=235一个数加上0,还得原数。0能否做除数?
0+319=3190+568=5680不能做除数。
99-0=99154-0=154一个数减去0,还得这个数。
0×29=00×78=0一个数乘0或0乘一个数,还得0。
0÷76=00÷23=00除以一个非0的数,,还得0。
新课程标准指出:教师是学习的组织者、引导者、合作者,根据这一理念,我遵循“激”、“导”、“探”、“放”的原则,在教学中我精心设计准备题,诱导学生思考,鼓励学生概括交流,并让学生运用所学知识迁移、类推,促进学生对新知的内化和建构。
在合理选择教法的同时,我还注重了对学生思维能力、学习能力的培养,融观察、比较、讨论、交流、自主探究等学习方法为一体,让学生利用已掌握的整数四则混合运算的顺序来解决新课。教学中,突出“五让”的特色:书本让学生自学;问题让学生提出;规律让学生发现;疑难让学生研讨;评价让学生参与。以上的“五让”,符合了新课程标准的理念,真正体现了学生是学习的主体。
1.做练一练第3题。
指名学生说一说各题的运算顺序。提问:分数四则混合运算是按怎样的顺序进行的?指出:分数四则混合运算顺序与整数、小数相同。(板书)指名四人板演,其余学生分两组,分别做前两题和后两题。集体订正。指出:分数四则混合运算要按照整数、小数的四则混合运算顺序进行计算,一步一步算出结果。
2.做练一练第4题。
让学生在课本上看一看,应用了哪些运算定律。小黑板出示,指名学生回答,并在小黑板上用适当的符号表示出来。追问:这样计算简便一些吗?为什么?指出:整数、小数的运算定律在分数里同样适用。在分数四则混合运算里,应用运算定律和规律,也可以使一些计算简便。
3.讨论练习十六第2题。
现在请大家看练习十六第3题。讨论一下,每道题的数有什么特点,怎样算比较简便。指名学生口答怎样算简便。
4.讨论练习十六第6题。
让学生讨论、填数。指名学生口答,并说明怎样想的,有几种填法。
说一说这是什么?生:这是福娃。
你知道福娃吗?这是2008年北京奥运会的吉祥物。在申报主办国的时候,有几个国家参加,最后我国取得了申办权,说明中国强大,才有能力去申办。这五个娃娃的名字连在一起读,组成了一句话:北京欢迎您。你们想不想了解这五个福娃名字的来历吗?有谁知道?相互交流。下面我们再来看看媒体的介绍。你想了解更多的奥运知识吗?现在让我们开动脑子寻找答案。
教学内容教科书第1---6的例2以及例3(部分)。
教学目标。
1、通过探究、交流等学习活动,使学生理解“先乘除,后加减”,引导学生发现并总结出同级运算和两级混合运算的运算顺序,并正确进行运算。
2、培养学生列综合算式解决实际问题的能力,以及发现问题、分析、解决问题的能力。
3、引导学生感受数学与生活的紧密联系。
教学重点引导学生发现并总结概括出没有括号的混合运算的运算顺序。
教学难点帮助学生理解“先乘除,后加减”的原因。
教学设计。
教学过程。
一、创设情境,导入新课。
老师:冬天,同学们最喜欢什么运动?
学生:滑雪、堆雪人、打雪仗......
这里是新开业的滑雪场。(出示大屏幕)这节课我们就来了解有关滑雪场的情况。
二、结合情境,探究新知。
(一)发现、总结同级运算的运算顺序。
1、出示信息:滑雪场开业第一天上午有230人,中午有70人离去,又有150人。
到来。
老师:根据信息你能提出什么数学问题?
学生:下午有多少人?
(学生列式解答并指名板演)。
汇报交流:请列分步算式和综合算式的学生分别说说解答思路。
引导学生分析比较:两者思路是相同的,只是第三位同学列出了一道加减混合的综合算式,这样写比较简单。
老师:由于数目越来越大,直接写出最后得数容易出错,如果我们把第一步的计算结果记录下来就不容易算错了。(教学脱式书写格式)。
2、出示信息:开业前三天共接待900人,照这样计算,5天预计接待多少人?
老师:同学们能根据信息列出综合算式并脱式计算吗?
(指名学生板演)90¸3´5。
=30´5。
=150(人)。
老师:指名学生给大家说说应先算什么、后算什么?为什么?
学生:我先用900¸3,再用它们的商¸5,因为必须先求出平均每天接待的人数才能算出5天的人数。
老师:也就是说,这道乘除混合的算式你是按照从左到右的顺序的。
谁能说出15-8+11和40´3¸60的运算顺序?
3、总结运算顺序。
老师:观察这几道算式,你们有什么发现?
学生:发现第1、3题中只有加减法,第2、4题中只有乘除法。它们都是从左到右计算的。
老师:在一道算式中,只有加减或者只有乘除,一般情况下按照从左到右的顺序做题。
(二)理解、总结两级混合运算的运算顺序。
1、出示信息:
(学生列算式,指名板演)。
=80(元)。
老师:前几道题都是按从左到右的顺序计算的,为什么这道题先算后面的乘法呢?
学生:要想求出找回多少钱,必须在总钱里去掉两张票的价钱,而不是减去一张票的价钱,所以要先算后面的乘法。
3、出示信息:现在已经放假了,听说滑雪场对儿童还有优惠活动:成人票60元,儿童票半价。如果你和妈妈一起去,一共花多少钱?请列式解答。
(1) 60¸2+60 (2)60+60¸2。
=30+60 =60+30。
=90(元) =90(元) 。
同学1汇报思路:我是先算出儿童票多少钱,再加上成人票60元,求出一共花了多少钱,所以我先算除法,再算加法。
同学二汇报思路:我跟她的想法一样,只是把60放到了前面,因为在加法中两个加数可以交换位置,但还是先算除法,再算加法。
三、总结规律:
老师:根据同学们的汇报和总结:我们知道在一道算术中,既有乘除法,又有加减法,一般情况下先算乘除,再算加减。
反馈练习,巩固提高。
直接说出先算什么,再算什么。
四、全课总结。
5.2÷1.30.67+1.240.51÷171.6×0.4。
2.提问:我们学过哪些运算?(这些运算统称四则运算)。
3.计算四则混合运算的顺序是怎样的?(板贴)。
一个算式里,如果只有加减法或只有乘除法,要从左往右依次计算。
一个算式里,如果有加减法和乘除法,要先算乘除,再算加减。
一个算式里,如果有小括号,要先算小括号里面的。
昨天咱们学习了加减混合运算,谁能说一说加减混合运算的运算顺序。
1、回忆加减混合运算的运算顺序。(在只有加减法的算式里,按从左往右的顺序进行计算。)。
咱们来看两题,结合具体的题目咱们再来分析一下运算顺序。
2、说说运算顺序并计算。
(二)展开新课。
看来同学们掌握得不错。大家用掌声表示对自己的鼓励。今天咱们再到“冰雪天地“去看一看,那里会不会有什么新情况。
1、出示例2。
“冰雪天地“3天接待了987人,照这样计算,6天预计接待多少人?
2、请一位学生读题。
3、照这样计算是什么意思?(意思是每天接待的人数,按3天接待987人计算。
5、组织交流:
a、分步列式:987÷3=329。
329×6=1974。
综合列式:987÷3×6。
=329×6。
=1974。
线段图:3天接待987人。
一共接待几人?
引导学生把自己的线段图画在黑板上,特别是评价表示6天接待人数的线段的长短。
987÷3表示一天接待多少人。
329×6表示一天接待的人数乘天数6就能算出6天接待的人数。
比较分步列式与综合列式哪个更简便?(综合列式比较简便,他可以少写一个中间数。)。
b、6÷3×987。
6÷3表示6天里含有两个3,即2个987人。
6、小结乘除混合运算的运算顺序。(在只有乘除法的计算式题里,按从左往右的顺序进行计算。)。
7、总结出没有括号的算式里只有加减法或只有乘除法的运算顺序。(在没有括号的算式里,只有加减法法或只有乘除法,按从左往右的顺序进行计算。)。
(三)巩固深化。
1、口算。
27÷3×73×6÷925÷5×8。
45+8-2363÷7×824-8+10。
开小火车的方式进行,每说一个,其他同学判断是对还是错,前面的同学说错了,后面的同学进行更正。要求越快越好,如果前面的同学慢了,后面同学可以快速进行抢答。
2、一箱橙汁48元,芳芳要买三瓶,共需付多少元?
请学生按照第二题的方法进行解答。可能有的同学会问这道题做不来的,缺少条件,引导学生看图找条件。
(四)小结提高。
通过这节课的学习,你觉得自己哪方面进步了?
1.知识目标:使学生进一步掌握整数、小数四则混合运算顺序,明确第一级运算和第二级运算的概念;能比较熟练地计算整数、小数四则混合运算式题。
2.能力目标:能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行高度概括、总结。
3.情感目标:学会使用中括号,灵活运用运算方法。培养大家勤于动手动脑的良好习惯。