通过编写教案,可以更好地组织课堂教学,提高教学效果。编写教案必须符合教学大纲和课堂实际,要注意教学内容的前后衔接和逻辑性。以下是一些编写精良的教案范文,可以供教师研究和借鉴。
教学目标:
1、比较系统地帮助学生掌握图形变换的常用方法,加深学生对图形的平移、旋转、图形的放大和轴对称图形的理解。
2、渗透审美教育,让学生感受几何图形蕴藏的美,产生创造美的欲望,进而培养学生对数学学科的兴趣的情感。教学重点:
让学生感受图形变换的方法之间的相互联系和区别,加深学生对图形变换知识的理解。
教学过程:
回顾图形变换的有关知识。
学生观察、讨论、汇报。
教师指出:图形的变换可以用轴对称图形、平移、旋转、缩放等到方法。
师:下面我们就来复习这些知识。
(一)复习轴对称图形。
师:生活中有哪些轴对称图形?它们有什么共同的特点?学生讨论、汇报。
教师引导学生得出:轴对称图形沿着对称轴对折,两侧图形能够完全重合。
让学生自己设计出轴对称图形。可以画可以用纸折等。
安徽科大讯飞信息科技股份有限公司。
版权所有。
完成练习104第1、2题。
(二)复习旋转。
师:生活中,你看见哪些旋转现象?学生讨论回答。
完成书上第三题。
你能画出三角形绕a点顺时针旋转90度后的图形。学生画完后互相检查。
(三)复习图形的平移。
师:生活中有哪些平移的现象?让学生看上做一做题,说出从a-b-c-d是如何变化过来的?引导学生说出平移时要注意说清平移的方向,以及平移的距离。
(四)复习图形的放大和缩小。
师:一个图形放大或缩小后现原来图形有什么关系?引导学生说出:大小不同,形状相同。完成105页第六题。
(五)设计图案。
让学生根据自己的想象,设计图案。进行展示。
安徽科大讯飞信息科技股份有限公司。
版权所有。
教材内容:
教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
教学目标:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
教学重点:
理解方程的意义,掌握方程与等式之间的关系。
教具准备:
天平一只,算式卡片若干张,茶叶筒一只。
教学过程:
一、创设情境,自主体验。
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
二、突出重点,自主探索。
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
三、自学思考,获取新知。
在教学解方程和方程的解的概念时,通过出示两道自学思考题。
(1)什么叫方程的解?请举例说明。
(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
四、使用交流,注重评价。
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
1.从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.
2.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念.能够利用二次函数的图象求一元二次方程的近似根.
3.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.
教学重点。
二次函数的最大值,最小值及增减性的理解和求法.
教学难点。
二次函数的性质的应用.
作为一堂复习课,突出学生在整理知识过程中的主体作用,不仅能调动学生的积极性,还能加深学生对知识的理解。同时,在复习的过程中注重知识间的联系,把用字母表示数、方程的意义、解方程安排到一起复习,有助于学生对简易方程的知识有一个全面的了解。
对于解方程的复习,首先是进行讨论比较:3.4x+1.8=8.6,5x-x=24的解法。要让学生在讨论中发现,其实两类方程的解法有一个共同之处。对于列方程解决问题时,如何找相等关系式,教学时,提示学生举例说明,由于有前几节课的基础,学生不难举例,并知道找出关键句,从关键句中组建相等关系式。但这只是一种方法,由此进一步启发,让学生例举出包含常用等量关系式的例子,并领悟根据常用关系式,可以直接列方程,再引导讨论,明白已经学过的周长和面积等公式,也可直接用来列方程。
复习中的困惑:一是小数乘除法的计算错误比较多。对于这一点,我觉得只是依靠检验是不够的,因而,经常不失时机的对学生进行小数乘除法计算方法的提示,让学生恢复正常的小数乘除法水平。
二是学生对等量关系的中概括性文字的概括水平还不是很高,有时很难合理恰当地概括出数量的意思,主要是过于简单,不能表达应该的意思。对于此,只能通过让同学之间的互相弥补达到理想的方法,这样虽然费时间,但相信这对学生的概括能力是有很大帮助的。
5.雅安地震发生后,全国人民抗震救灾,众志成城,在地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)。
车型甲乙丙。
汽车运载量(吨/辆)5810。
汽车运费(元/辆)400500600。
(1)全部物资可用甲型车8辆,乙型车5辆,丙型车辆来运送.
式与方程(2)。
教学目标:
1、知识与技能:进一步认识用字母表示数的意义及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式等。掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。
2、过程与方法:能根据问题的特点选择恰当的方法来解答,进一步培养分析数量关系的能力,发展思维。
3、情感态度与价值观:提高整体认识知识的能力,找到知识间的内在联系。
教学重点:
熟练找出等量关系,能根据题意正确地列方程解决问题。教学难点:
提高学生的解决问题的能力,整理知识的能力。
教学准备:
电脑课件;学生:与式与方程有关的相关知识。
教学过程:
一、创设情境,引出知识。
出示:学校组织远足活动。原计划每小时走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)。
解题过程。
解:设现在平均每小时走了x千米。
2.5x=3.832.5x2.5=11.42.5x=4.56。
答:平均每小时走了4.56千米?
二、提出问题。
1、这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的一种方法。请你以小组为单位,合作自主梳理有关代数的知识。
2、小组进行讨论。
(设计意图:从学生已有知识经验基础出发,将这道具体的例题作为一个点,四散出各个基础知识,边回顾边整理,成为一个具体的体系,使学生明白基础的重要。)。
三、分析知识建立联系。
(一)学生汇报各类知识小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。
(设计意图:小组合作后需要集体进行知识的再加工与再整理,使知识更加完善。)。
(二)解方程与方程的解。
1、具体知识。
4.56是方程的解,而求这个解的过程就是解方程。
方程是含有字母的等式。
补充提问:能举几个是方程的式子吗?
(第1课时)。
【学习目标】。
1.知道用方程组解决实际问题的一般步骤.
2.会找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.
【重点难点】。
重点:会用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
(第2课时)。
【学习目标】。
1.体会一题多解,学习从多种角度考虑问题.
2.读懂并找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.
【重点难点】。
重点:会从多种角度考虑用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
【学前准备】。
1.小麦、玉米两种作物的单位面积产量的比是1:1.5,你能说明它的含义吗?(可以举例说明)。
2.“甲、乙两种作物的总产量的比是3:4”是什么意思?
3.总产量与哪些量有关?
(第3课时)。
【学习目标】。
1.体会方程组是解决含有多个未知数问题的重要工具.
2.读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.
【重点难点】。
重点:用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
2.在对实际问题情景的分析过程中感受方程模型的意义。
二、自主学习。
1、请同学们阅读p79至p80第4段,然后用算术方法解此问题,列算式为___________;然后用设未知数列方程的数学思想来解决此问题,设王家庄到翠湖的路程为千米,可列方程为:
像上面含有未知数的等式,叫__________(读三遍)。
2、自学p80例1至p81归纳部分,根据下列问题,设未知数并列出方程.
(1)用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?
分析:设正方形的边长为(cm),那么周长为__________(cm),列方程:__________.
(2)某校女生占全体学生数的61℅,比男生多61个,这个学校有学生多少个?
(3)一台计算机已使用1200小时,预计每月再使用123小时,经过多少月这台计算机的使用时间达到规定的检修时间2612小时?(自主分析并列出方程)。
像上面(1)、(2)、(3)所列的方程,只含有一个__________数,并且未知数的次数都是__________,这样的方程叫做__________元__________次方程(读三遍)。
注意:“一元”是指一个未知数;“一次”是指未知数的指数是一次(理解)。
上面的分析过程归纳如下:
(1)分析实际问题中的__________关系,利用__________关系列出方程(一元一次方程),是用数学解决实际问题的一种方法。
(2)列方程经历的几个步骤。
a、设__________数;b、找出题中的__________关系;c、列出含有未知数的等式——()。
3、阅读p81,理解列方程是解决实际问题的一种重要方法,利用方程可以求出未知数。
当=6时,4值是24。这时,方程4=24等号左右两边相等,所以=6,叫做方程4=24的解;同样,当x=10时,2x+3=23,这时方程2x+3=23等号两边_______相等,所以,x=10叫做方程2x+3=23的_______;像这样,解方程就是求出使方程中等号左右两边_______的未知数的值,这个值就是方程的_______(读三遍)。
思考:x=4与x=3中,哪一个是方程7x+1=15的解?答:_______。
列方程解应用题是在第七册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。共分四个层次,首先教学比较容易的两步计算的应用题,其次教学两、三步计算的应用题,本课内容是第三个层次,第四是用方程和算术方法解应用题的比较。列方程解含有两个未知数的应用题,是第一次出现在全国统编教材上。例6的内容,在算术中称为和倍和差倍问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识,必须重视这部分内容的教学。
本节课的教学目标是使学生初步掌握含有两个未知数的应用题的解题思路和方法,会解含有两个未知数的应用题;会用把两个未知数的值代入已知条件看是否符合的方法进行验算;在教学解题思路的同时培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。
本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。
列简易方程解应用题是中学列代数方程解应用题的基础,选择教学方法时,要注意中小学教学的衔接。
本节课首先要考虑正确运用迁移原理,这对中、小学的学习都将具有积极作用。在准备阶段的练习题中,不论是数量关系和解题的方法对学习例6都具有迁移的作用,利用这一原理可引导学生直接去做例6后的想一想,这既能培养迁移推理能力,也能促使学生养成独立思考的习惯。
其次,由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生设未知数,找等量关系和列出方程。
第三还要考虑学法指导。本课要教会学生阅读、分析应用题的方法、验算的方法,从不同角度思考问题的方法。在教学检验方法时,采用阅读的方式,让学生边读边想并说出两个检验式子的含义与作用,从中悟出检验的方法。教完例6后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。
主要针对新授的内容和学生不习惯用方程解及感到列方程有困难等问题设计了三个教学环节。一是基本训练,进行列方程的训练,如,x的5倍与x的和是80;根据题意把方程写完全的训练,如,果园里原有桃树x棵,杏树135棵,两种树一共有180棵。=180,=135;根据线段图列方程的训练,如,第二个环节是练习例6前的复习题,对学生再现了三年级的内容是为学习例6架桥。为学习新课予作准备。第三个环节是导入新课。从改变复习题中的问题和一个条件,将复习题变成例6。使学生感到数量关系并不生疏,但由于需要逆向思考,学生又感到难做,以激发学生学习动机,为学习新课提供良好的情感和认知的起点。(第一阶段需5分钟左右)。
按照列方程解应用题的一般步骤安排四个环节。
一是审题。即,全面分析已知数与已知数、已知数与未知数、未知数与未知数之间的关系,画好线段图,找出已知数,并将其中的一个设为x,而另一个则根据题中的一个条件写成含x的代数式。解答例6就应先设桃树为x棵,根据杏树是桃数的3倍这一条件得出杏树为3x棵,画好的线段图如下:
二是找出等量关系列出方程。前面设未知数时已使用了一个条件,现在用另一个条件来列方程。即根据桃树和杏树共180棵列出方程x+3x=180;也可根据桃树和杏树共180棵来设未知数,根据另一条件列方程。这时设桃树为x棵,杏树是(180-x)棵,列出的方程是180-x=3x;也可设杏树为x棵,根据杏树是桃树的3倍,得出桃树是13x棵,列出的方程是x+13x=180;也可根据另一个条件设未知数,即设杏树为x棵,桃树是(180-x)棵,列出的方程是x=3(180-x)。但后几种方程解起来不方便,有的方程目前学生还不会解,教学时可要求学生只列不解。这些方程的列出有利于全面掌握数量关系,也有利于掌握,先根据一个条件设第二个未知数,再根据另一个条件列方程的基本思路和方法。但不能要求全体学生都会列出,特别是中差生,只掌握书中的一种即可。列出这些方程后,学生自然会得出书中列出的方程容易解,为此,教育学生今后学习时,不仅要考虑列出的方程是否正确,还要考虑列出的方程是否易解的问题。
第三个环节是检验。虽不要求写在本子上或卷子上,但这是不可忽视的重要步骤,长期要求下去,就可使学生养成良好的检验习惯,增强责任心和自信心,那种做完题不知对错的做法是后患无穷的。(这个阶段需20分钟左右)。
一是巩固新知的练习,可做128页做一做中的题目。接着做想一想题目,让学生独立用解和倍题的方法解差倍题,完成知识的迁移。第二环节安排课堂上的独立作业(5分钟左右)让学生独立做129页练习三十一的第一、二题,(对较好的学生教师根据实际情况增加题目)做完之后要认真进行讲评、纠正错误和打开思维受阻之处。
最后做课堂小结和布置作业(129页练习三十一第3、4、5题)。
一、课前预习:
1、某厂今年1月份的总产量为100吨,平均每月增长20%,则:。
二月份总产量为____________吨;三月份总产量为____________吨。(填具体数字)。
2、某厂今年1月份的总产量为500吨,设平均每月增长率是x,则:
二月份总产量为____________吨;三月份总产量为____________吨。(填含有x的式子)。
3、某种商品原价是100元,平均每次降价10%,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填具体数字)。
4、某种商品原价是100元,平均每次降价的百分率为x,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填含有x的式子)。
【过程与方法】。
先运用实际问题引入三元一次方程组的概念,再类比解二元一次方程组的思想方法,学习三元一次方程组的解法,最后学习三元一次方程组应用题.
【情感态度】。
让学生学会“举一反三”的学习方法,体会数学的魅力.
【教学重点】。
一、情境导入,初步认识。
问题1小明手头有12张面额分别为1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元纸币各多少张.
稍复杂的方程是五年级数学上册65页的例1,从内容安排上看,这一课时是本册单元-----简易方程中的第七课时,在这一节前,学生已经认识了字母表示数的意义作用,并初步了解了方程的意义和等式的基本性质,并能运用它解简易方程,这一课时是对前期知识进一步深化,是本单元的学习重点,也是教学难点。
新课程标准对于方程这部分内容在本学段有以下几个具体目标:1、在具体情境中会用字母表示数。2、结合简单的实际情境,了解等量关系。
3、了解方程的作用,能用方程表示简单情境中的等量关系。4、能解简单的方程。根据新课标的要求,这节课的教学内容确立了这样三个教学目标:
一是通过分析数量关系,自主探究,初步掌握列方程解决实际问题的一般步骤和方法。
二是会列形如ax+b=c或ax-b=c的方程,并会正确地解答。
三是感受数学与现实生活的联系,培养学生的数学应用意识,培养学生初步的代数思想和良好的学习习惯。教学重点是掌握较复杂方程的解法,难点是会正确分析题目中的数量关系。本节在设计上,着重突出以下几点:
一、创设有趣的教学情境,激发学生学习兴趣,调动学生积极性,引发学生的数学思考,帮助学生突破重难点。
二、课程内容的选择上贴近学生生活实际,有利于学生体验、思考与探索。
三、突出学生数学学习的主体地位,教师作为学习的组织者,引导着与合作者参与其中,在生活中注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。在教学方法上,重点以启发引导为主,借助互相合作,自主探究等形式,因势利导,适时调控,努力营造师生互动,生生互动的课堂氛围。从而实现预设的教学目标。
为了达到以上设计的教学目标。抓住重点,突破难点。对本节课的教学设计了以下环节:首先选择学生喜闻乐见的足球提出问题,并随着问题的深入把学生自然带入了立体的情境中。大屏幕出示情境图。然后教师紧紧把握列方程解应用题的基本步骤,对学生进行及时的渗透,引导和点拨。并抓住本节课的重点、难点列方程解方程。让学生互相交流、讨论。都说讨论要有价值,我觉得此处是新知识的生成点,是等式过渡到方程的关键地方,也是学生从学会分析数量关系到能利用数量关系列方程的关键所在。所以此处引导学生进行讨论。如果学生讨论时对解方程有困难,教师可以给予引导,把2x看作一个整体,这样就突破了难点。学生解答就不会有困难了。方程解完后,教师提示学生进行检验,并写好答语。例题完成后,教师对列方程解应用题的步骤进行简单的总结,加深学生的整体印象。接着设计了三个练习题。不列式解答,目的是看学生们对列方程解应用题这一重要的步骤掌握情况,如出现问题教师及时指导。二题是解方程,是在学会解法后进行及时巩固。三题是解决问题,让学生讨论后列式解答。在练习的设计上体现了从具体到抽象的过程。最后三五分钟的时间让学生谈谈本节课有什么收获,同时检验学生对本节课知识的掌握情况。
本节课我力求体现创设情境引导学生自主探究这一主题,体现学生的主体地位,让学生在情境中通过自主探究、感悟、理解、掌握新知识。能否收到预计的效果,还有待于课堂教学实际的检验。
一、从学生喜闻乐见的事物入手,降低问题的难度。
二、放手让学生思考、解答,选择解题最佳方案。
把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生。
学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。