2024年热门数学高一教案(精选9篇)
文件格式:DOCX
时间:2023-11-02 13:14:06    小编:文轩

2024年热门数学高一教案(精选9篇)

小编:文轩

教案可以帮助教师思考和设计课堂活动,提供具体的教学过程和方法。在编写教案时,需要注意教学评价的方法和形式。以下是小编为大家精心挑选的一些教案范文,供大家学习和借鉴使用。

热门数学高一教案篇一

教学目标:

(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:

(1)重点:了解集合的含义与表示、集合中元素的特性。

(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:

[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。理解集合与元素的关系。

[设计意图]引出并介绍列举法。

【问题6】例1的讲解。同学们能用列举法表示不等式x—73的解集吗?

【问题7】例2的讲解。请同学们思考课本第6页的思考题。

[设计意图]帮助学生在表示具体的集合时,如何从列举法与描述法中做出选择。

【问题8】请同学们总结这节课我们主要学习了那些内容?有什么学习体会?

[设计意图]学习小结。对本节课所学知识进行回顾。

布置作业。

热门数学高一教案篇二

本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

教法建议

1.性质的引入方法很多,以下2种比较常用:

(1)设计问题引导启发:由设计的问题

1)、、各等于什么?

2)、、各等于什么?

启发、引导学生猜想出

(2)从算术平方根的意义引入.

2.性质的巩固有两个方面需要注意:

(1)注意与性质进行对比,可出几道类型不同的题进行比较;

(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

(第1课时)

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

对比、归纳、总结

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

1课时

五、教b具学具准备

投影仪、胶片、多媒体

复习对比,归纳整理,应用提高,以学生活动为主

一、导入新课

我们知道,式子()表示非负数的算术平方根.

问:式子的意义是什么?被开方数中的表示的是什么数?

答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

二、新课

计算下列各题,并回答以下问题:

(1);(2);(3);

1.各小题中被开方数的幂的底数都是什么数?

2.各小题的结果和相应的被开方数的幂的底数有什么关系?

3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

热门数学高一教案篇三

[教学方法]:讲练结合法

[授课类型]:复习课

[课时安排]:1课时

[教学过程]:集合部分汇总

本单元主要介绍了以下三个问题:

1,集合的含义与特征

2,集合的表示与转化

3,集合的基本运算

一,集合的含义与表示(含分类)

1,具有共同特征的对象的全体,称一个集合

2,集合按元素的个数分为:有限集和无穷集两类

热门数学高一教案篇四

2、实际问题中的有关术语、名称:

(1)仰角与俯角:均是指视线与水平线所成的角;

(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

(3)方向角:常见的`如:正东方向、东南方向、北偏东、南偏西等;

3、用正弦余弦定理解实际问题的常见题型有:

测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

2、实际问题中的有关术语、名称:

(1)仰角与俯角:均是指视线与水平线所成的角;

(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

3、用正弦余弦定理解实际问题的常见题型有:

测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

一、知识归纳

2、实际问题中的有关术语、名称:

(1)仰角与俯角:均是指视线与水平线所成的角;

(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

3、用正弦余弦定理解实际问题的常见题型有:

测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

二、例题讨论

一)利用方向角构造三角形

四)测量角度问题

例4、在一个特定时段内,以点e为中心的7海里以内海域被设为警戒水域.点e正北55海里处有一个雷达观测站a.某时刻测得一艘匀速直线行驶的船只位于点a北偏东。

热门数学高一教案篇五

学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!

教学目标。

1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的。

(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项。

2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。

3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。

教学建议。

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。

(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。

(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。

上述提供的高一数学教案:数列希望能够符合大家的实际需要!

热门数学高一教案篇六

1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质。

2、掌握标准方程中的几何意义。

3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

3、双曲线的渐进线方程为、

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

探究2、双曲线与其渐近线具有怎样的关系、

例1根据以下条件,分别求出双曲线的标准方程、

(1)过点,离心率、

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

例3(理)求离心率为,且过点的双曲线标准方程、

2、椭圆的离心率为,则双曲线的离心率为、

3、双曲线的渐进线方程是,则双曲线的离心率等于=、

热门数学高一教案篇七

2、掌握标准方程中的几何意义。

3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

3、双曲线的渐进线方程为、

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

探究2、双曲线与其渐近线具有怎样的关系、

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、

例1根据以下条件,分别求出双曲线的标准方程、

(1)过点,离心率、

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

例3(理)求离心率为,且过点的双曲线标准方程、

2、椭圆的离心率为,则双曲线的离心率为、

3、双曲线的渐进线方程是,则双曲线的离心率等于=、

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、

热门数学高一教案篇八

教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

教学过程:

一、阅读下列语句:

1)全体自然数0,1,2,3,4,5,

2)代数式.

3)抛物线上所有的点。

4)今年本校高一(1)(或(2))班的全体学生。

5)本校实验室的所有天平。

6)本班级全体高个子同学。

7)著名的科学家。

上述每组语句所描述的对象是否是确定的?

二、1)集合:

2)集合的元素:

3)集合按元素的个数分,可分为1)__________2)_________。

三、集合中元素的'三个性质:

四、元素与集合的关系:1)____________2)____________。

五、特殊数集专用记号:

4)有理数集______5)实数集_____6)空集____。

六、集合的表示方法:

1)。

2)。

3)。

七、例题讲解:

例1、中三个元素可构成某一个三角形的三边长,那么此三角形一定不是()。

a,直角三角形b,锐角三角形c,钝角三角形d,等腰三角形。

例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

1)地球上的四大洋构成的集合;。

2)函数的全体值的集合;。

3)函数的全体自变量的集合;。

4)方程组解的集合;。

5)方程解的集合;。

6)不等式的解的集合;。

7)所有大于0且小于10的奇数组成的集合;。

8)所有正偶数组成的集合;。

例3、用符号或填空:

1)______q,0_____n,_____z,0_____。

2)______,_____。

3)3_____,

4)设,,则。

例4、用列举法表示下列集合;。

1.

2.

3.

4.

例5、用描述法表示下列集合。

1.所有被3整除的数。

2.图中阴影部分点(含边界)的坐标的集合。

课堂练习:。

例7、已知:,若中元素至多只有一个,求的取值范围。

思考题:数集a满足:若,则,证明1):若2,则集合中还有另外两个元素;2)若则集合a不可能是单元素集合。

小结:

作业班级姓名学号。

1.下列集合中,表示同一个集合的是()。

a.m=,n=b.m=,n=。

c.m=,n=d.m=,n=。

2.m=,x=,y=,,.则()。

a.b.c.d.

3.方程组的解集是____________________.

4.在(1)难解的题目,(2)方程在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

5.设集合a=,b=,

c=,d=,e=。

其中有限集的个数是____________.

6.设,则集合中所有元素的和为。

7.设x,y,z都是非零实数,则用列举法将所有可能的值组成的集合表示为。

8.已知f(x)=x2-ax+b,(a,br),a=,b=,。

若a=,试用列举法表示集合b=。

9.把下列集合用另一种方法表示出来:

(1)(2)。

(3)(4)。

10.设a,b为整数,把形如a+b的一切数构成的集合记为m,设,试判断x+y,x-y,xy是否属于m,说明理由。

11.已知集合a=。

(1)若a中只有一个元素,求a的值,并求出这个元素;。

(2)若a中至多只有一个元素,求a的取值集合。

12.若-3,求实数a的值。

【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文:集合含义及其表示能给您带来帮助!

热门数学高一教案篇九

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

(2)能从数和形两个角度认识单调性和奇偶性.

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制