实用高二数学教案全套大全(15篇)
文件格式:DOCX
时间:2023-11-03 09:08:34    小编:琉璃

实用高二数学教案全套大全(15篇)

小编:琉璃

教案是教学中的一份指南,能够帮助教师了解学生的学情和需求,因材施教。编写教案时教师需要关注学生的学习过程,注重培养学生的学习方法和能力。在教学实践中,我们可以根据这些范文进行改编,使教案更符合教学需要。

高二数学教案全套篇一

1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2.能根据几何结构特征对空间物体进行分类。

3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1.情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2.展示目标、检查预习

3、合作探究、交流展示

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的`概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可以作为棱柱的底面吗?

(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

(5)绕直角三角形某一边的几何体一定是圆锥吗?

高二数学教案全套篇二

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学。

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的'坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

变式训练

2、在面积为1的中,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程

例3已知q(a,b),分别按下列条件求出p的坐标

(1)p是点q关于点m(m,n)的对称点

(2)p是点q关于直线l:x-y+4=0的对称点(q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2.利用平面直角坐标系解决相应的数学问题。

高二数学教案全套篇三

理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。

二、预习内容

1、双曲线的几何性质及初步运用。

类比椭圆的几何性质。

2。双曲线的渐近线方程的导出和论证。

观察以原点为中心,2a、2b长为邻边的'矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。

三、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

课内探究

1、椭圆与双曲线的几何性质异同点分析

2、描述双曲线的渐进线的作用及特征

3、描述双曲线的离心率的作用及特征

4、例、练习尝试训练:

例1。求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。

解:

解:

5、双曲线的第二定义

1)。定义(由学生归纳给出)

2)。说明

(七)小结(由学生课后完成)

将双曲线的几何性质按两种标准方程形式列表小结。

作业:

1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。

(1)16x2—9y2=144;

(2)16x2—9y2=—144。

2。求双曲线的标准方程:

(1)实轴的长是10,虚轴长是8,焦点在x轴上;

(2)焦距是10,虚轴长是8,焦点在y轴上;

曲线的方程。

点到两准线及右焦点的距离。

高二数学教案全套篇四

【自主梳理】

1.函数单调性的定义:

(1)一般地,设函数的定义域为a,区间.

如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调增函数,i称为的___________________.

如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调减函数,i称为的___________________.

(2)如果函数在区间i上是单调增函数或单调减函数,那么就说在区间i上具有___________性,单调增区间或单调减区间统称为____________________.

2.复合函数的单调性:

对于函数如果当在区间上和在区间上同时具有单调性,则复合函数在区间上具有__________,并且具有这样的规律:___________________________.

3.求函数单调区间或证明函数单调性的方法:

(1)______________;(2)____________________;(3)__________________.

【自我检测】

1.函数在r上是减函数,则的取值范围是___________.

2.函数在上是_____函数(填增或减).

3.函数的单调区间是_____________________.

4.函数在定义域r上是单调减函数,且,则实数a的取值范围是________________________.

5.已知函数在区间上是增函数,则的大小关系是_______.

6.函数的单调减区间是___________________.

【例1】填空题:

(1)若函数的单调增区间是,则的递增区间是_________.

(2)函数的单调减区间是________________.

(3)若上是增函数,则a的取值范围是_____________.

(4)若是r上的减函数,则a的取值范围是_________.

【例2】求证:函数在区间上是减函数.

【例3】已知函数对任意的,都有,且当时,.

(1)求证:是r上的增函数;

(2)若,解不等式.

1.函数单调减区间是_________________.

2.若函数在区间上具有单调性,则实数a的取值范围是______.

3.已知函数是定义在上的'增函数,且,则实数x的取值范围是_________________________.

4.已知在内是减函数,,且,设,,则a,b的大小关系是_________________.

5.若函数上都是减函数,则上是______.(填增函数或减函数)

6.函数的递减区间是________________.

7.已知函数上单调递减,则a的取值范围是_________.

8.已知函数满足对任意的,都有成立,则a的取值范围是_________.

9.确定函数的单调性.

10.已知函数是定义在上的减函数,且满足,,若,求的取值范围.

错题卡题号错题原因分析

高二数学教案:数的单调性教案(答案)

一、课前准备:

【自主梳理】

1.(1),单调增区间,,单调减区间,

(2)单调,单调区间

2.单调性,同则增异则减

3.(1)定义法(2)图象法(3)导函数法

【自我检测】

1.2.增3.和4.

5.6.

二、课堂活动:

【例1】

(1)(2)(3)(4)

【例2】证明:设

【例3】(1)证明:

(2)解:

三、课后作业

1.2.3.4.

5.减函数6.7.8.

9.解:定义域为,任取,且

10.解:

高二数学教案全套篇五

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学.

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的.位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2.利用平面直角坐标系解决相应的数学问题。

六、课后作业:

高二数学教案全套篇六

1.掌握二项式定理和性质以及推导过程。

2.利用二项式定理求二项展开式中的项的系数及相关问题。

3.使学生能把握数学问题中的整体与局部的关系,掌握分析与综合,特殊和一般的数学思想。

教学重点;二项展开式中项的系数的计算。

1、复习引入:

1.的展开式,项数,通项;

2.二项式系数的四个性质。

2、例题

1.二项式定理及二项式系数性质的简单应用:

例1(1)除以9的余数是_____________________

(2)=_______________

a.b.c.d.

(3)已知

则____________________

(4)如果展开式中奇数项的系数和为512,则这个展开式的第8项是()

a.b.c.d.

(5)若则等于()

a.b.c.d.

小结1.(1)注意二项式定理的正逆运用;

(2)注意二项式系数的四个性质的运用。

2.二项展开式中项的系数计算:

例2(1)展开式中常数项等于_____________.

(2)在的展开式中x的系数为()

a.160b.240c.360d.800

(3)已知求:

小结2.(1)局部问题抓通项;

(2)整体系数赋值法。

三、课堂练习

(1)展开式中,各系数之和是()

a.0b.1c.d.

(2)已知的.展开式中的系数为,常数的值是_________

(3)的展开式中的系数为______________-(用数字作答)

(4)若,则

a.1b.0c.2d.

四、课堂小结

五、作业

高二数学教案全套篇七

1、地位、作用和特点:

《xx》是高中数学课本第xx册(x修)的第xx章“xx”的第xx节内容。

本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。此外,《xx》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是xx;特点之二是:xx。

教学目标:

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:a、b、c

(2)能力目标:a、b、c

(3)德育目标:a、b

教学的重点和难点:

(1)教学重点:

(2)教学难点:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学xx真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课新课教学反馈发展

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的'能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出,并依据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。

2、让学生亲自经历运用科学方法探索的过程。主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授时,可通过演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

(一)、课题引入:

教师创设问题情景(创设情景:a、教师演示实验。b、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。c、讲述数学科学的有关情况。)激发学生的探究xx,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

以上是我对《xx》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高二数学教案全套篇八

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学.

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴 它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

变式训练

2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程

例3 已知q(a,b),分别按下列条件求出p 的坐标

(1)p是点q 关于点m(m,n)的对称点

(2)p是点q 关于直线l:x-y+4=0的对称点(q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小 结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2. 利用平面直角坐标系解决相应的数学问题。

六、课后作业:

高二数学教案全套篇九

2、2、3直线的参数方程

学习目标

1.了解直线参数方程的条件及参数的意义;

2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程

复习:

1、若由共线,则存在实数,使得,

2、设为方向上的,则=︱︱;

3、经过点,倾斜角为的直线的普通方程为。

探究新知(预习教材p35~p39,找出疑惑之处)

1、选择怎样的参数,才能使直线上任一点m的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点,则=,

而直线

的单位方向

向量

=(,)

因为,所以存在实数,使得=,即有,因此,经过点

,倾斜角为的直线的参数方程为:

2.方程中参数的几何意义是什么?

应用示例

例1.已知直线与抛物线交于a、b两点,求线段ab的长和点到a,b两点的距离之积。(教材p36例1)

解:

例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程.(教材p37例2)

解:

反馈练习

1.直线上两点a,b对应的参数值为,则=()

a、0b、

c、4d、2

2.设直线经过点,倾斜角为,

(1)求直线的参数方程;

(2)求直线和直线的交点到点的距离;

(3)求直线和圆的两个交点到点的距离的和与积。

本节小结

1.本节学习了哪些内容?

答:1.了解直线参数方程的条件及参数的意义;

2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价

一、自我评价

你完成本节导学案的情况为()

a.很好b.较好c.一般d.较差

课后作业

1.已知过点,斜率为的直线和抛物线相交于两点,设线段的`中点为,求点的坐标。

2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程

3.过抛物线的焦点作倾斜角为的弦ab,求弦ab的长及弦的中点m到焦点f的距离。

高二数学教案全套篇十

小学美术第一册全套教案(4-3)

课    题:综合练习:背心制作

教学目标:

1通过综合训练培养学生的动手操作能力。

2运用学习的方法耐心大胆地剪贴制作背心。

3促进学生的左右脑协调发展。

教学重点:综合训练

教学难点:制作方法

教学过程:

直接入题

前几节课我们学习了撕贴画、剪贴画,今天我们将学习用剪贴、撕贴的方法制作背心。(板书课题:综合练习:背心制作)。

方法步骤

1.  将大张的挂历纸两张粘贴形成一张长的大纸。

2.  将粘贴好的挂历纸对折。

3.  用剪刀剪出领口和袖子。

4.  在前胸和后背处粘贴图案(可用撕贴画的方法也可用剪贴的方法)

实践操作

在学生实践操作的过程中为学生提供样品资料,强调集体合作,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。

课堂小结

谈收获、谈体会,总结经验

课    题:画小熊

教学目标:

1通过训练使学生掌握圆形的方法。

2运用学习的方法并添加特征练习画小熊。

3培养学生创造性思维,添加小熊身子和动作。

教学重点:小熊的特征

教学难点:添加身子和动作

教学过程:

直接入题

这节课我们学习画可爱的小熊。(板书课题:画小熊)。

分析特征

小熊的头是圆形的,圆圆的耳朵、圆圆的眼睛和鼻子。

实践操作

在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。

课堂小结

谈收获、谈体会,总结经验

课    题:画熊猫

教学目标:

1通过训练使学生掌握圆形组合的.方法。

2运用学习的方法并添加特征练习画熊猫。

3培养学生创造性思维,添加小熊猫身子和动作。

教学重点:熊猫的特征

教学难点:添加身子和动作

教学过程:

直接入题

这节课我们学习画可爱的熊猫。(板书课题:画熊猫)。

分析特征

小熊猫的头是圆形的,圆圆的耳朵、圆圆的眼睛和鼻子。

实践操作

在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。

课堂小结

谈收获、谈体会,总结经验

课    题:画花猫

教学目标:

1通过训练使学生掌握圆形组合的方法。

2运用学习的方法并添加特征练习画花猫。

3培养学生创造性思维,添加小熊身子和动作。

教学重点:花猫的特征

教学难点:添加身子和动作

教学过程:

直接入题

这节课我们学习画可爱的花猫。(板书课题:画花猫)。

分析特征

小花猫的头是圆形的,圆圆的耳朵、大大的圆眼睛和小鼻子。

实践操作

在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。

课堂小结

谈收获、谈体会,总结经验

课    题:画玩具

教学目标:

1通过训练使学生掌握图形组合的方法。

2通过观察分析了解玩具的特征,概括基本形。

3初步认识形与形之间的关系,发展学生的创造性思维。

教学重点:玩具的特征

教学难点:形与形之间关系的认识

教学过程:

直接入题

这节课我们学习画玩具(板书课题:画玩具)。

观察方法

从整体出发,认识大的形状,对不规则的概括成近似的基本形。由于学生的认知水平的限制,应注意引导,学生往往只注意物体的结构,而忽视结构之间的相互关系,一种内在的关系,教师应该对学生加以引导,可采用幻灯复合片的形式说明问题,揭示事物相互联系的实质。

以圆形概括玩具大猩猩的结构,包括方向、大小位置等。

实践操作

在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。

课堂小结

谈收获、谈体会,总结经验

课    题:画狮子

教学目标:

1通过训练使学生掌握图形组合的方法。

2运用学习的方法并添加特征练习画狮子。

3培养学生创造性思维,添加狮子动作。

教学重点:狮子的特征

教学难点:添加身子和动作

教学过程:

谈话导入

同学们!你们有没有发现在我国古代建筑中,有一种动物经常出现在门前,它象一个卫士庄严地守在门前,你们知道这种动物是什么吗?对了它就是狮子。下面我们来欣赏几张幻灯片(这尊狮子就是北京太和门前的大铜狮,它极其夸张地表现出雄师的威严和神圣。)。这节课我们学习画可爱的狮子。(板书课题:画狮子)。

分析特征

狮子的特征突出表现在它的头部特征,头可以概括成圆形,眼睛可以概括成圆形,鼻子比较大,嘴部有着猫科动物的相同之处,上唇有胡须。前肢比较粗壮,后肢发达,雄师头部的毛较长而且美丽。身体皮毛呈近似土黄-金黄色。

方法步骤

1.  安排位置,确定头部及身体的大小比例。

2.  利用基本形概括狮子的形体特征。

3.  用铅笔轻松勾画起稿。

4.  用较重的颜色勾边。

5.  涂色。

6.  调整、添加背景。

实践操作

在学生实践操作的过程中为学生提供图片资料,巡回指导,因材施教,注意发挥学生的个性,多鼓励多表扬,激发学生的学习积极性。

课堂小结

谈收获、谈体会,总结经验

高二数学教案全套篇十一

1.把握菱形的判定.

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

3.通过教具的演示培养学生的学习爱好.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

观察分析讨论相结合的.方法

1.教学重点:菱形的判定方法.

2.教学难点:菱形判定方法的综合应用.

1课时

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

复习提问

1.叙述菱形的定义与性质.

2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为xxxxxxxx.

引入新课

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法.

此外还有别的两种判定方法,下面就来学习这两种方法.

讲解新课

菱形判定定理1:四边都相等的四边形是菱形.

菱形判定定理2:对角钱互相垂直的'平行四边形是菱形.图1

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

分析判定2:

师问:本定理有几个条件?

生答:两个.

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直.

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等.

(由学生口述证实)

证实时让学生注重线段垂直平分线在这里的应用,

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线,但都不是菱形.

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.

例4已知:的对角钱的垂直平分线与边、分别交于、,如图.

求证:四边形是菱形(按教材讲解).

总结、扩展

1.小结:

(1)归纳判定菱形的四种常用方法.

(2)说明矩形、菱形之间的区别与联系.

2.思考题:已知:如图4△中,,平分,,,交于.

求证:四边形为菱形.

教材p159中9、10、11、13

高二数学教案全套篇十二

课型:理论技能课。课时:4课时。

学情分析:让学生知道为什么要知道要上好体育课,对今后素质提高的作用起到基

础的作用,在教学过程中坚持以学生为主,充分发挥学生的主体作用,能过理论讲授,实践操作,使学生知道上体育课的要求及身体素质健康的好处与提高学生操作技能。

教学目标:

一、情感目标:

通过和谐教学,与学生建立民主、平等的交流,使学生感到学习愉快,注意力集中,思维活跃。

二、过程与方法:

1、教师在黑板上板书相关的《认真上好体育课》的主要知识点。 2、教师在授课时边讲授边示范,边指导学生学习。

三、知识目标:

1、培养学生掌握体育与健康的意义。

2、掌握好课前、课上、课后的要求,为今后上好体育课打下基础。

教学的重点、难点:

1、掌握好课前、课上、课后的要求。

2、学好上体育课的心理素质,养成自我锻炼身体的好习惯。

教学资源与准备:

1、准备好相关教学资料及教材。

2、教师选用相关的教室及场地。

教学过程描述:

一、学生先整队,做徒手操,报告人数,师生问好。

二、学生听教师讲解内容。

让学生了解体育课是学生学习的必修课,掌握好上体育课的课前、上课、课后的要求;让学生知道体育课是由老师指导,大家活动、做游戏、跑等各种身体练习课。

三、教学的主要运用:

运用“讲述讲授”与“示范”相结合的教学方法,让学生边看、边听、边练习,记住今后上体育课的要求。

板书: 认真上好体育课 1、课前要求:

(1)缺席要请假,(2)整理好服装, (3)提前到上课场地。 2、课上要求:

(1)站队要快、静、齐, (2)练习要认真。

(3)听讲课不要走神, (4)上课要遵守纪律。 3、课后要求:(三不要)

(1)不要大量喝水, (2)不要在天热时用凉水冲身, (3)不要立刻吃食物。

交流评价与作业:

1、作业:要识记上体育课的课前、课上、课后要求。

2、师生总结与评价。

3、师生再。

4、下课

反思:这课是儿童初学的“引导课”理论内容,对儿童不大清楚体育课是一门什么样的功课,因此要引导儿童知道它是一门主要在室外上锻炼身体的活动课,它能满促大家喜欢“玩”的心愿。通过参与丰富多样的练习活动,可以达到提高身体各种活动功能和增强健康的目的;但是,上好体育课还需要做到认真学习,积极参与合作,与同伴友好相处,刻苦锻炼;遵守课前、课上、课后的一些要求。

高二数学教案全套篇十三

2. 两只长约7cm的红、黑螃蟹赛跑,谁会赢?答案:黑螃蟹,红螃蟹是煮熟了的

3. 小王既不买票有没有月票的为什么可以从起点坐到终点?答案:他是司机

4. 葫芦娃洗头发的时候,摘不摘头上的小葫芦?答案:摘。里面装的是洗发水

5. 小红与妈妈都在同一个班里上课,这是为什么?答案:妈妈是小红的班主任

6. 什么门每个人都不想关它?答案:嗓门。嗓门关了,就变成哑巴了

8. 哪颗牙齿是最后才长出来的?答案:假牙

9. 一个人受伤了,躺在马路上,120来了为什么不救他?答案:那个人已经死了

10. 什么人每天靠运气赚钱?答案:煤气工人

高二数学教案全套篇十四

(1)认知目标

理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

(2)技能目标

经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

(3)情感态度与价值观

教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

重点:运用分式的乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算。

(一)提出问题,引入课题

俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:

问题1:求容积的高是,(引出分式乘法的学习需要)。

问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的'乘法和除法的实际需要,从而激发学生兴趣和求知欲。

(二)类比联想,探究新知

从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

解后总结概括:

(1)式是什么运算?依据是什么?

(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

(分式的乘除法法则)

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(三)例题分析,应用新知

师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

p11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。p11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

(四)练习巩固,培养能力

p13练习第2题的(1)、(3)、(4)与第3题的(2)。

师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

(五)课堂小结,回扣目标

引导学生自主进行课堂小结:

1、本节课我们学习了哪些知识?

2、在知识应用过程中需要注意什么?

3、你有什么收获呢?

师生活动:学生反思,提出疑问,集体交流。

(六)布置作业

教科书习题6.2第1、2(必做)练习册p(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。

高二数学教案全套篇十五

【自主梳理】

1.对数:

(1)一般地,如果,那么实数叫做________________,记为________,其中叫做对数的_______,叫做________.

(2)以10为底的对数记为________,以为底的对数记为_______.

(3),.

2.对数的运算性质:

(1)如果,那么,

.

(2)对数的换底公式:.

3.对数函数:

一般地,我们把函数____________叫做对数函数,其中是自变量,函数的定义域是______.

4.对数函数的图像与性质:

a10

图象性

质定义域:___________

值域:_____________

过点(1,0),即当x=1时,y=0

x(0,1)时_________

x(1,+)时________x(0,1)时_________

x(1,+)时________

在___________上是增函数在__________上是减函数

【自我检测】

1.的定义域为_________.

2.化简:.

3.不等式的解集为________________.

4.利用对数的换底公式计算:.

5.函数的奇偶性是____________.

6.对于任意的,若函数,则与的大小关系是___________________________.

【例1】填空题:

(1).

(2)比较与的大小为___________.

(3)如果函数,那么的最大值是_____________.

(4)函数的奇偶性是___________.

【例2】求函数的定义域和值域.

【例3】已知函数满足.

(1)求的解析式;

(2)判断的奇偶性;

(3)解不等式.

课堂小结

1..略

2.函数的定义域为_______________.

3.函数的值域是_____________.

4.若,则的取值范围是_____________.

5.设则的大小关系是_____________.

6.设函数,若,则的取值范围为_________________.

7.当时,不等式恒成立,则的取值范围为______________.

8.函数在区间上的值域为,则的最小值为____________.

9.已知.

(1)求的定义域;

(2)判断的奇偶性并予以证明;

(3)求使的的.取值范围.

10.对于函数,回答下列问题:

(1)若的定义域为,求实数的取值范围;

(2)若的值域为,求实数的取值范围;

(3)若函数在内有意义,求实数的取值范围.

四、纠错分析

错题卡题号错题原因分析

【自主梳理】

1.对数

(1)以为底的的对数,,底数,真数.

(2),.

(3)0,1.

2.对数的运算性质

(1),,.

(2).

3.对数函数

,.

4.对数函数的图像与性质

a10

图象性质定义域:(0,+)

值域:r

过点(1,0),即当x=1时,y=0

x(0,1)时y0

x(1,+)时y0x(0,1)时y0

x(1,+)时y0

在(0,+)上是增函数在(0,+)上是减函数

1.2.3.

4.5.奇函数6..

【例1】填空题:

(1)3.

(2).

(3)0.

(4)奇函数.

【例2】解:由得.所以函数的定义域是(0,1).

因为,所以,当时,,函数的值域为;当时,,函数的值域为.

【例3】解:(1),所以.

(2)定义域(-3,3)关于原点对称,所以

,所以为奇函数.

(3),所以当时,解得

当时,解得.

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
实用高二数学教案全套大全(15篇) 文件夹
复制