实用数学教案
文件夹
教案需要经过教师的反复斟酌和修改,以确保教学的科学性和有效性。教案的编写应该从学生的学习需求和兴趣出发,注重学习的主动性和参与性。教案是教学设计的具体实施方案,是教师在备课过程中编写的一种教育教学手段。写教案前应充分了解学生的学习情况和学习需求。以下是小编为大家整理的教案范例,供大家参考学习。
在实施新《课程标准》发展素质教育的今天,数学课堂教学不再是传统单调、枯燥的学习氛围,而是要通过教学让学生充分展示、体现自我。特别是对6年级学生来说,通过各种形式进行教学,达到教学目的,提高学习成绩,激发学习兴趣,已逐步成为数学教师一种行之有效的教学手段。随着新课标的实施,在这个过程中也出现了新的问题,“以学生发展为中心,重视学生的主体地位”的教学理念在实施过程中需老师要有效的调控好数学课堂,与学生融洽配合。这就需要我们数学老师有效的设计教学环节和组织学生去学习领悟数学课的精髓..下面就有效课堂教学过程进行案例分析。
1、谈话导入。
今年杨老师35岁,黄文祈12岁,谁能列除法算式表示我们的年龄关系?
六(1)班有男生4人,女生4人,谁能列除法算式表示男生和女生的年龄关系?
(根据回答板书)。
2、旧知导入。
马拉松选手跑40千米,大约需2时,骑车3时可以行45千米,谁的速度快?
a:3千克15元。b、9元2千克。c、12元3千克。哪个摊位上的苹果最便宜?
3、小结。
这些题都是用除法算式表示两种数量它们的关系,在日常生活、生产和科学试验中常常要对两种数量进行比较,今天我们就来学习一种新的比较两种数量的方法,叫做比,研究生活中的比。
1、介绍比的表示方法。
刚才的例子中老师年龄是同学年龄的几倍,用35÷12,现在我们就可以说成老师与同学年龄的比是35:12.其他两个量的关系如何用比的形成来表示在小组内说一说。
2、学生举例说明生活中的比,总结比的意义。
可以根据生活中的实例列出除法算式,再改成比的形式。
老师举反例:小明有10元钱,花了2元钱,还剩几元钱?这道题怎样列式,10-2=8(元)可以写成10:2吗?(不能,因为两个量是相减的'关系,不是相除的关系。)。
三、比的各部分名称,求比值。
学生自学,总结,同学们想想怎样求比值?进行求比值练习。
强调:7÷2可以说成什么?2÷7可以说成什么?它们一样吗?
讨论:1、比与除法、分数有什么联系(填表格)。
2、比与除法、分数又有什么不同?
(1)求比值。
105:351.2:2(2)把下面的比改写成分数形式。
17:84:1102:113。
(3)选择题。
买4支钢笔用12元,钢笔总价和总量的比是()。
a、4:12b、12:4c、(4)判断。
小明今年10岁,他的爸爸今年37岁,父亲和儿子的年龄的比是10:37.()。
一项工程,甲独做7天完成,乙独做9天完成,甲乙工作效率的比是7:9.()。
大圆半径是4厘米,小圆半径是1厘米,大圆半径和小圆半径的比4.()。
激发学生学习数学的兴趣,最需要的是从现实出发,从身边找数学问题,也就是说:“学生的数学学习内容应当是现实的、有意义的、富有挑战的。”利用班上的总人数、男女生人数,来说说比的知识,这种贴近学生生活又有一定挑战性的实际问题,不仅能调动学生学习的积极性,还能培养学生解决实际问题的能力。并且这种学生熟悉的生活素材放入问题中,能使学生真正体会数学不是枯燥无味的,数学就在身边。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验、生活经验基础之上,教师应激发学生的学习积极性。向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。
让学生用今天所学的知识解决生活中的实际问题,但又不是简单的解题训练。在练习的设计上,采用多种形式步步提高,通过有层次和有坡度的一组问题,提高学生解决问题的能力。
让学生明白比不但与生活有关,和自己也有关系,更进一步让学生体会到数学来源于生活,又服务于生活。
由于在突破重点这一环节花了较多时间,所以练习的量相对少了一些。
教学目标:
1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。
3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。
4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。
教学重点:
理解百分率的含义,掌握求百分率的方法。
教学难点:
探究百分率的含义。
教学用具:
ppt课件。
教学过程:
一、复习导入(8分)。
1、出示口算题,1分钟,并校正题目。
2、小结学生所提问题,并指名口头列式。
3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。
4、小结:算法相同,但计算结果的表示方法不同。
5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。
6、口算比赛:(1分钟)(见课件)。
7、根据口算情况,提出数学问题。
(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)。
8、尝试解答修改后的问题。
10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。
二、设问导读(9分)。
1、说明达标率的含义。
2、板书达标率的计算公式,并说明除法为什么写成分数的形式?
3、组织学生以4人小组讨论。
4、巡回指导书写格式。阅读例题,思考下面的问题。
(1)什么叫做达标率?
(2)怎样计算达标率?
(3)思考:公式中为什么要“×100%”呢?
(4)尝试计算例1的达标率。
三、质疑探究(5分)。
1、在展示台上展示学生写出的百分率计算公式。
2、要求学生认真计算,并对学生进行思想教育。
1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?
2、求例1(2)中的发芽率。
四、巩固练习(14分)。
1、指名口答,组织集体评议,再次引学生巩固百分率的含义。
2、对每一道题都要让学生分析、理解透彻,并找出错误原因。
3、出示问题,指导学生书写格式,并强调。
4、解决问题要注意:看清求什么率?找出对应的量。
6、引学生观察、发现:出勤率+缺勤率=1.
五、加强巩固。
1、说说下面百分率各表示什么意思。(1颗星)。
(1)学校栽了200棵树苗,成活率是90%。
(2)六(1)班同学的近视率达14%。
(3)海水的出盐率是20%。
2、判断。(2颗星)。
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。()。
(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。()。
(3)把25克盐放入100克水中,盐水的含盐率为25%。
(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。
3、解决问题(3颗星)。
(2)六(1)班今天有48人到校,有2人缺席,求出勤率。
(4)王师傅加工的300个零件中有298个合格,合格率是多少?
课堂总结:
(1分)突出“关键点”。谈谈本节课的收获。
教学目标:
1.使学生理解成数和折扣的含义,以及成数与分数、百分数之间的关系;会解答有关成数的应用题。
2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
重点难点:
理解成数和折扣的含义;理解成数与分数、百分数的含义。
教学过程:
一、复习准备。
1.把下列各数化成百分数。
2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?
师述:农业收成,有时用成数来表示。今天我们就来学习有关成数的应用题。
板书:百分数应用题。
二、学习新课。
2、成数的含义。
师述:什么是成数呢?在五年级我们学过“几成”就是十分之几,如“一成”就是十分之一,它相当于10%。
(1)口答。
“三成”是十分之(),改写成百分数是()。
“三成五”是十分之(),改写成百分数是()。
(2)七成二成五五成相当于百分之多少?
3、售价加两成是什么意思?求售价应先算出什么?
还可以怎样算?学生交流解题思路。
4.出示例2。
(1)学生读题,理解题中的数学信息。
(2)减产一成五是什么意思?
(3)学生独立解答,指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。
板书设计:
37.4×(1-15%)。
=37.4×0.85=31.79(吨)。
答:今年产棉花31.79万千克。
抽屉原理。
二、教学目标。
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过“抽屉原理”的灵活应用感受数学的魅力。
三、具体编排。
1.例1及“做一做”。
例1借助把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔的情境,介绍了一类较简单的“抽屉问题”。为解释这一现象,教材呈现了两种思考方法:“枚举法“与“反证法”或“假设法”。
教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。
“做一做”中安排了一个“鸽巢问题”,学生可利用例题中的方法迁移类推。
2.例2及“做一做”。
本例介绍了另一种类型的“抽屉问题”,即“把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。”教材提供了把5本书放进2个抽屉,不管怎么放,总有一个抽屉里至少放3本书的情境。仍用枚举法及假设法探究该问题,并用有余数除法的形式5÷2=2……1表达出假设法的思路,并在此基础上,让学生类推解决“把7本书、9本书放进2个抽屉的问题”。
教学时,引导学生理解假设法最核心的思路是把书尽量多地“平均分”给各个抽屉。
“做一做”中“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。
3.例3。
例3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。
教学时,先引导学生思考这个问题与“抽屉原理”有怎样的联系,可先让学生自由猜测、再验证。逐步将“摸球问题”与“抽屉问题”联系起来,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。
四、教学建议。
1.应让学生初步经历“数学证明”的过程。
在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。教学时可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2.应有意识地培养学生的“模型”思想。
“抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。
3.要适当把握教学要求。
“抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题与“抽屉问题”之间的联系并不容易。因此,教学时,不于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。
单元目标:
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、使学生理解倒数的意义,掌握求倒数的方法。
单元重点:
分数乘法的意义和计算法则。
单元难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
第一课时:分数乘整数。
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教具准备:多媒体课件、
教学过程:
一、复习引入。
1.课件出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?9个11是多少?8个6是多少?
(2)计算:
++=++=。
2.引出课题。
++这题我们还可以怎么计算?今天我们就来学习分数乘法。
二:新知探究。
1.出示课题明确学习目标。
2.课件出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
3、课件出示例1。
教师引导学生画出线段图。
学生根据线段图列出不同的算式,并解答。
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的。
”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
2/11+2/11+2/11=。
2/11×3=。
(3).分数乘以整数的法则。
a.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)。
b.归纳法则。
通过以上计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。
小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)。
c.应用法则计算。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
4、教学例2。
(1)出示×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:a、先约分再计算;b、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
三、当堂测评(课件出示)。
1.看图写算式。
2.先说算式意义,再填空。
3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)。
四、学生课堂自评。
1、这节课你有什么收获?
2、每个学生给自己在课堂上的表现进行评价。
板书设计。
分数乘以整数。
意义:求几个相同加数和的简便运算。
法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
2/11×3。
=2×3/11。
=6/11。
教学后记。
本节课的主要内容是比例的意义和性质。在教学比例意义时,在课前的预设下,学生很容易就发现了:表示两个比相等的式子叫比例。比例的意义解决了,接下来比例的性质也应该没有什么问题。通过例题的学习学生又知道了比例的外项和内项,接下来就是引导学生看比例中的外项和内项,有什么发现?学生的回答出现了与课前预设不相符的一幕,课前我是这样设计的:
2.我是想学生讲:一3×40=120二5×20=100三8×6=48。
5×24=1204×25=1003×16=48。
3.然后教师板书:
外项积:3×40=1205×20=1008×6=48。
内项积:5×24=1204×25=1003×16=48。
4.师:刚才同学们的发现其实就是比例的基本性质,那什么是比例的基本性质呢?(然后师出示:在比例里,两个外项的积等于两个内项的积。)。
2.(过了一会儿)生说:我知道,比例的基本性质是:在比例里,两个外项的积等于两个内项的积。
3.我还带开玩笑的口气说:我没有教你,你怎么就会了?
生:我自己预习了。
师:预习是我们学习中一个很好的习惯。(心里想:他怎么没有按照我的设计来,就一下子就把性质讲出来了。怎么办?这时我灵机一动。)。
师:好,在比例里,两个外项的积是不是等于两个内项的积呢?我们来验证一下。(学生分别讲出三组比例的外项积和内项积)。
4.师板书:
外项积:3×40=1205×20=1008×6=48。
内项积:5×24=1204×25=1003×16=48。
这个时候水到渠成的学生就知道了什么叫比例的基本性质。
设计一,我是想学生按照之前的设计意图,一环套一环教学下去。而不愿意让学生有自主的,创造性的分析和思考,甚至害怕学生“思维出轨”。这是一种机械的模式化的教学,这种教学方法从掌握知识的角度进行分析,确实简单高效,但它的弊端也是显而易见的,那就是造成学生思维的僵化,学生不会独立分析、思考。
设计二,更多关注的是学生获取知识的过程,引导学生借助三个比例式来验证,设计二可以说是一种生动的充分发挥学生自主学习的过程。在这种教学过程中,学生有独立思考的时间,有自主探索的机会,有展示自己创造性思维成果的舞台。
通过两种教学片断的比较,我深深得体会到,向课堂要效率不仅仅要着眼于课堂上的教学用时和学生在课堂上是否学会了解题,而更注重学生思维能力的发展,让学生真正成为学习的主人。《数学课程标准》中指出:数学教学要“让学生亲身经历竟实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获取对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”。
通过上述案例分析只有动态生成的课堂才能很好地培养学生的思维能力和解决实际问题能力,提高学生的数学素质。
教学目标:
1、知识目标:使学生明确“折扣”的具体含义,能熟练地进行“折扣”数和百分数的互化,进一步解决求一个数的百分之几的应用题的解法。
2、能力目标:通过观察、思考、探索等教学活动,培养学生收集、分析和处理信息的能力及运用所学知识解决实际问题的能力。
3、情感目标:增强学生对数学价值的体验,感受数学的魅力,能够用数学的眼光来看待周围的事物。
教学内容:
本节课的教学内容《折扣》是在学生学习了百分数意义以及百分数应用题的基础上进行学习的。“折扣”是在商品经济中应用比较广泛的一个概念,由于几折是十分之几,也就是百分之几十,因此,折扣也是百分数的实际应用。所以本节课的重点是要求学生能够正确理解折扣的含义,知道折扣应用题的数量关系,能够解决求一个数的百分之几的问题。难点是“折扣”的有关计算。
对象分析:
《折扣》这个内容是现实生活商品买卖中经常遇见的“数学现象”,无论是聋人还是健听者对它并不陌生。虽然这样,但据了解、调查,我们的聋生对它只知其形而不解其意,虽然学生在此之前学过百分数应用题,但对聋生来说,其实际应用和现实意义却比不上折扣问题的应用。为此,本节课就是建立在学生已有知识(百分数的应用)的基础上,向学生传授的百分数应用的另一种既普遍又实在的生活形态——折扣。
教学策略:
认知心理学家奥苏贝尔有一句至理名言:“假如让我把全部教育心理学仅仅归结为一条原理的话,那么,我将一言以蔽之:影响学习的最重要的因素,就是学习者已经知道了什么,要探明这一点,并应据此进行教学。”把教学建立在学生已有的知识和生活经验之上,这是教学必须遵循的“金科玉律”。《折扣》其实是百分数的实际应用,我就是利用学生的已有知识和生活经验,通过提供丰富而带有折扣的生活图片创设情境,辅以多媒体教学手段,让学生从不同的场合去认识折扣,将实际生活融入教材,把知识与生活相结合,使学生在有效的教学活动中探索问题、发现问题、解决问题。
整个教学过程的活动都是围绕学生的生活经验而设计,使学生体验到数学与实际生活是紧密联系的,是源于生活又作用于生活,更重要的是让学生增强了数学的应用意识,提高参与社会生活的能力。
教学媒体:
主要是利用ppt课件向学生展示现实生活中的折扣现象,创设情景,从而让学生从不同的场合去认识折扣,将实际生活融入到教材,从而激发学生的学习兴趣,达到学与用的相对统一。
教学过程:
一、创设情景,引入新知。
ppt出示生活中打折的图片。
教师:我们经常在商场看到把商品按“几折”出售。如上图中的“5.8折”、“五折”、“3.8”折,这些都是我们生活中常见的打折销售,也就是我们今节课要学习的“折扣”。
二、分层探究,掌握新知。
(一)折扣的具体含义。
1、思考。
(1)商品为什么要打折出售?(工厂和商场,为了促销或处理积压商品等多种原因,有时将商品价格降低进行销售,这就是平常说的“打折”销售。)。
(2)“几折”表示什么意思?
几折表示十分之几,也就是百分之几十。
(3)商品打“八折”出售是什么意思?
(八折=80℅,表示现价按原价的80℅出售。)。
(4)原价、折扣与现价有怎样的数量关系?
(原价×折扣数=现价)。
2、把折扣数和百分数进行互化。
三八折=()%五折=()%70%=()折68%=()折。
二、“折扣”应用题的教学。
1、准备题。
商店出售一种录音机,原价330元。现在打九折出售,现价多少元?
(1)学生读题。
(2)师问:打九折出售是什么意思?(学生口答。)。
(3)把哪个量看做单位“1”?怎么计算?(原价×折扣数=现价)。
(4)学生列式计算,然后师生板书订正。
330×90℅。
=330×0.9。
=297(元)。
答:现价297元。
2、教学“例7”。
商店出售一种录音机,原价330元。现在打九折出售,比原价便宜多少元?(学生读题)。
(1)例7与准备题有何异同?(已知条件相同,所求问题不同。)。
(2)“要求便宜多少元?”怎样解答?(原价-现价=比原价便宜的钱数)。
(3)原价和现价题目中都给出了吗?没有给出的话怎样求?
(4)学生根据数量关系解答,然后集体订正。
=33(元)。
答:比原价便宜33元。
思考:商店出售一种录音机,打九折出售是297元,原价多少元?
(比较这题和准备题的异同,并让学生说说它的数量关系。)。
小结:分析折扣应用题和分析百分数应用题的方法一样,要先确定单位“1”是已知还是未知,然后确定算法。
教学目标:
1.使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。
2.使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。
3.使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。
教学重点:
分数四则混合运算的运算顺序。
教学难点:
运用运算律和运算性质进行简便计算。
教学准备:
多媒体课件。
教学过程:
一、复习引入。
做练习十二第1题,直接写出得数。
集体交流,选择几题让学生说说算法。
二、创设情境,探究新知。
要求学生自主列出综合算式,并尽可能列出不同的综合算式。
2.集体交流。教师根据学生的回答板书算式。
2/5×18+3/5×18(2/5+3/5)×18。
追问:列式时你是怎么想的?
3.指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)。
三、教学分数四则混合运算的运算顺序。
你会计算上面这两道式题吗?
4.做“练一练”第1题。
提问:这两题的运算顺序是怎样的?同桌相互说一说。
学生独立计算,指名板演。
集体校对,共同评议。
提问:在进行分数四则混合运算时,你认为要注决些什么?
指出:计算分数四则混合运算,要先弄清楚先算什么,再算什么;例如第一小题,分数乘除法连在一起,可以把除法转化为乘法,一次约分,同时计算;再如第二小题,分数连加时可以同时通分。
四、教学把整数的运算律推广到分数。
通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
2.做“练一练”第2题。
先让学生独立计算,指名板演。
集体交流,说说哪里用了简便算法,分别是怎样想的。
小结:简便运算主要应观察算式的特点,看能不能运用运算律运算性质使计算简便,有些题目不能直接进行简便计算,要先算一步或几步才能应用运算律或运算性质简便计算,因此在计算过程中要随时注意观察算式的特点,思考能不能用简便计算。
五、巩固练习。
做练习十二第3题。
让学生独立练习,指名四人板演。
交流:每道题是哪里用了简便计算,依据是什么?
六、全课小结。
这节课你学会了什么?你有什么收获和体会?进行分数四则混合运算时应该注意什么?
七、作业布置。
补充习题相对应页。
学生分别计算,并指名板演。
3.小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。
1.使学生了解百分数的意义,会正确读写百分数。
2.指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。
教学重点和难点。
理解百分数的意义。
教学过程。
(一)复习准备。
1.在日常生活中,同学们会经常看到或听到这样一些数:(出示投影)。
(1)在12届亚运会中,各国金牌情况如下:中国占40.3%,韩国占18.5%,日本占17.4%,其它国家占23.8%。
(2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。
提问:谁知道这些数是什么数?
师:这就是百分数。在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。什么是百分数?怎么读写百分数,是我们这节课研究的内容。
板书:百分数的意义和写法。
2.在学习新课之前,我们还要来复习有关知识。
提问:这两道题的结果表示的意义相同吗?
是一个分率。)。
(二)讲授新课。
(投影)。
提问:第一问怎么列式解答?
提问:五年级三好生占全年级人数的几分之几?怎么做?
提问:根据所得的数,你能一眼看出哪个年级三好生人数的比例高吗?你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)。
讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)。
师小结:像这样分母不同的分数进行比较时,一般要进行通分,使分母相同。尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。下面我们把这两个数变成分母是100的分数。
几,也表示三好生和年级总人数之间的倍数关系。)。
2.练习。(出示投影)。
品与产品总数之间的倍数关系。)。
(2)学校图书馆有文艺书900本,有故事书450本,故事书占文艺书的几分之几?
3.概括百分数的意义。
什么?(表示一个数是另一个数的百分之几)。
提问:请你们想一想,什么是百分数?百分数表示两个量之间什么关系?(分组讨论)。
小结:表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做百分率或百分比。
提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?
4.学习百分数的读法和写法。
提问:百分数和分数比,相同点和不同点是什么?(相同点:都表示两个数量之间的倍数关系。不同点:形式不一样。)。
百分数应该用什么形式表示呢?
(1)写法:写百分数时,通常不写成分数形式,而采用(%)表示。写百分数时,去掉分数线和分母,在分子后面添上百分号。例如:
(板书)百分之九十写作90%;。
百分之六十四写作64%;。
百分之一百零八点五写作108.5%。
(2)读法:读百分数时,只要把百分号看作分母是100,百分号前面的数看作分子,就可以和分数一样读了。例如:
17%?读作百分之十七;。
0.03%读作百分之零点零三;。
15.2%读作百分之十五点二。
5.百分数与分数的联系和区别。(讨论)。
百分数是分数中的一种情况。分数既可以表示一个具体数量,又可以表示一个数是另一个数的几分之几,所以分数后面既可以有计量单位,也可以没有计量单位;而百分数只表示两个量之间的倍数关系,所以没有计量单位。
(三)巩固练习。
1.第125页“做一做”,在书上做,然后订正。
2.第126页第1,2题,做在练习本上。
3.(投影)判断:
(1)分母是100的分数叫做百分数。
()。
()。
(3)百分数的分母一定是100。
()。
(4)五(三)班45人,体育全部达标,达标率100%。
()。
4.填空:
(1)一本书看了40%,表示()占()的40%。如果书是100页,看了()页;书是200页,看了()页。
(2)一条公路,修了25%,还剩()%没修。
(3)火车的速度比汽车快25%,火车的速度是汽车的()%。
这是一道难度较大的题,因为有了分数应用题的基础,可让学生讨论后解答。
(四)课堂总结。
这节课我们学习了哪些知识?(百分数的意义、读法和写法。)。
你知道人们在日常生产和生活中都在什么时候用百分数吗?(在计算优秀率、合格率、体育达标率等方面。)。
师:百分数的应用十分广泛,所以希望同学们学好百分数并学会在实际中应用。
(五)布置作业。
(略)。
课堂教学设计说明。
本课引用日常生产、生活中运用的百分数的例子,导入新课,引起学生的学习兴趣。又通过对分数意义的复习,引出百分数的意义,为突破教学的重点、难点做了铺垫。同时初步渗透转化思想,使学生易于接受新知识。教案通过对分数、百分数的分析、比较,加深了学生对百分数意义的理解。在练习过程中,重点突出了百分数意义的练习,达到了在知识点的关键处或难点处进行重点练习的目的。在教案中列举了一部分生活中使用百分数的例子,目的是引起学生对百分数的兴趣,了解百分数在日常生产生活中的重要作用,让学生体会到百分数就在我们身边,逐步学会使用百分数。
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教具准备:多媒体课件。
教学过程:
一、复习引入。
1、计算下列各题并说出计算方法。
×××。
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新知探究。
1、课件出示教学目标。
理解一个数乘分数的意义。
掌握分数乘以分数的计算法则。
学会分数乘分数的简便计算。
2、教学例3。
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即的,由此得出×这个乘法算式表示“的是多少?”
(3)根据直观的操作结果,得出×=,根据刚才操作的过程和结果推导出计算方法:×==。
(4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4。
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式:×。
教学内容:
比较正数和负数的大小。
教学目的:
1、知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。
2、过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。
3、情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。
重点难点:
负数与负数的比较。
教学过程:
一、复习。
1、读数,指出哪些是正数,哪些是负数?
2、如果+20%表示增加20%,那么-6%表示。
二、新授。
(一)教学例3。
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3。
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察。
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4。
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
四、全课总结。
1、在数轴上,从左到右的顺序就是数从小到大的顺序。
2、负数比0小,正数比0大,负数比正数小。
五、布置作业。
《家庭作业》第2页的练习。
实用六年级数学教案(优质11篇)
文件夹