教案中应包含详细的教学步骤、教学资源和评估方式等内容。教案的编写还要注意培养学生的实践能力和创新思维。掌握好教案的编写方法,能够提高教学效果,培养学生的学习能力。
本次说课我共分成教材分析、教学方法与手段、教学过程分析和几点思考四部分,具体内容如下:
(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下。
1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的.三维目标,同时也基于本节内容的地位与作用。而确定重难点是根据新课标的要求,结合学生的学情而确定的。
根据本节课的内容特点及学生的学情,我选择的教学方法是引导探索、小组合作、效果反馈的教学方法。为了提高课堂的教学容量,增加实际问题的直观性,我选用多媒体辅助教学手段。
关于学法:本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,我想这样更能有效的培养学生学习数学的能力,更好的培养学生数学地思考问题。
本课共6课时,重点是有理数乘除法法则的教学,下面我重点说有理数乘法法则的教学。整体的教学程序包括:情景创设、提出问题;引导探索、归纳结论;知识运用、加深理解;变式练习、形成能力;回顾与反思、纳入知识系统;布置作业;板书设计七部分。
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗 透转化思想,通过有理数的 减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
运用有理数的减法法则,熟练进行减法运算。
理解有理数减法法则。
本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的'减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
师生互动法
幻灯片
1课时
1、计算(口答):
(1) 1+(-2)
(2) -10+(+3)
(3) +10+(-3)
2、出示幻灯片二:
如图:
教师引导观察
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
(+10)-(+3)=7
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
(+10)-(+3)=(+10)+(-3)
观察减法是否可以转化为加法 计算呢?是如何转化的呢?
(教师发挥主导作用,注意学生的参与意识)
2、再看一题:
计算:(-10)-(-3)
问题:计算:(-10)+(+3)
教师引导,学生观察上述两题结果,由此得到
(-10)-(-3)=(-10)+(+3)
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)
3 、例题讲解:
出示幻灯片三(例1和例2)
例1计算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教师板书做示范,强调解题的规范性, 然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
师巡视指导,最后师生讲评两个学生的解题过程。
课后练习1、2
教师巡视指导
师组织学生自己编题
1、 谈谈本节课你有哪些收获和体会?[
2、本节课涉及的数学思想和数学方法是什么
教师点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。
课堂检测(包括基础题和能力提高题)
1、-9-(-11)
2、3-15
学生思考后抢答,尽量照顾不同层次的学生参与的积极性。
学生观察思考如何计算
学生观察思考
互相讨论
学生口述解题过程
由两个学生板演,其他学生在练习本上做
第1小题学生抢答
第2小题找两个 学生板演。
学生回答
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用
既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力
可以培养学生严谨的学风和良好 的学习习惯,同时锻炼学生的表达能力
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
锻炼学生综合运用知识,独立解题的能力
板书设计:
2.6有 理数的减法
有理数减法法则:
(+10)-(+3)=(+10)+(-3)
( -10)-(-3)=(-10)+(+3)
减去一个数等于加上这个数的相反数. 例1:
例2:
练习:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有 一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
数学学习是最看重基础的,只有坚实的基础才能够做好每一道题目。那么今天小编就来为大家分享和总结一下关于初中数学有理数的乘方教案的相关信息,希望同学们能够将这篇教案中的知识给总结清楚了。
一、说教材。
1、地位作用。
有理数的乘方是初一年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第一课时,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。
2、教学目标。
(1)让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
(2)在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。
(3)让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。
(4)经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作交流的重要性。
3、教学重点:
有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。
4、教学难点:
有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。
二、说教学方法。
启发诱导式、实践探究式。
三、说学法。
根据初一学生好动、好问、好奇的心理特征,课堂上采取由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养学生学习的积极性和主动性,使学习方式由“学会”变为“会学”。
四、说教学手段。
利用多媒体教学,目的之一是使课堂生动、形象又直观,能激发学生的学习兴趣,目的之二是增大教学容量,增强教学效果。
五、说教学设计。
以上就是小编为大家分享和总结的关于初中数学有理数的乘方教案的相关信息,希望同学们能够很好地将这一部分的知识给总结清楚,更好地为考试做准备。
1.知识目标使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反意义的量。
3.思想目标对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
正、负数的意义,
负数的意义及0的内涵。
鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。
知识与能力:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算。
过程与方法:培养学生观察、分析、比较、归纳、概括的能力,渗透转化的思想。
情感态度与价值观:培养学生勤思,认真,勇于探索的精神,并联系实际,加强理解,体会数学给我们的生活带来的便利。
教学重点:正确理解乘方的意义,掌握乘方的运算法则,进行有理数乘方运算。
教学难点:正确理解乘方、底数、指数的概念并合理运算。
教材分析:本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,然后,结合有理数乘方的运算,讲述了乘方的运算方法。跟这部分内容有关联的是后面“科学计数法”、“有理数的混合运算”等部分内容。
教学方法:
教法:引导探索法、尝试指导法,充分体现学生主体地位;。
学法:学生观察思考,自主探索,合作交流。
教学用具:电脑多媒体。
课时安排:一课时。
教学过程:教学环节、教师活动、学生活动、设计意图。
创设情境:(出示珠穆朗玛峰图片)。
引语:同学们,珠穆朗玛峰高吗?对,它的海拔有8848千米,可是将一张纸连续对折30次,会有12个珠穆朗玛峰高,你们感觉神奇吗?就让我们带着这份神奇走进数学课堂。要求学生折纸试验,对折一次变成了几层?对折2次变成了几层?连续对折30次,应该列一个怎样的算式?对折100次呢?如果把这些式子写出来,太麻烦,下面咱们一起来认识一位数学新朋友,相信他能帮你解决这个难题。
板书课题:拿出课前准备好的纸,每个学生都试验一下,思考回答问题。激情导入,激发学生的求知欲。
揭示学习目标:电脑展示学习目标、学生感悟、使学生了解本节学习内容。
电脑展示:
1.了解有理数乘方的概念。
2.理解幂,指数,底数。
3.一个数本身可以看作这个数本身的次方。
4.(-a)n与-an一样吗?为什么?
电脑展示:
1.把下列各式写成乘方的形式,并指出底数和指数。
(-3)×(-3)×(-3)×(-3)。
-2×2×2×2×2×2×2。
2.你自己能找到同样的例子吗?
3.计算:(–2)³(–13)³-26。
学生积极思考,相互交流讨论,让不同层次的学生发言。此组练习具有梯度性,可调动不同层次学生的积极性。
完成下列计算:
2²2³2425。
(-2)²(-2)³(-2)4(-2)5。
观察计算结,想一想:正数幂的符号与指数有何关系?负数幂的符号与指数有何关系?
学生对计算结果进行分析相互交流得出结论,把问题再次交给学生,充分发挥学生的主观能动性,培养学生归纳、总结的能力。
学生做作业。
教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学模式。整个教学过程从思考问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、思考、交流归纳的能力。不足之处:在练习的讲评上,应给学生一个较为自由的空间,让学生相互启发,相互交流。
教案是教师为顺利而有效地开展 教学活动,根据教学 大纲和教科书要求及学生的实际情况,以课时或课题为单位,对 教学内容、教学 步骤、教学 方法等进行的具体设计和安排的一种实用性教学文书。以下是小编整理的关于有理数教案,希望大家认真阅读!
这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。
(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。
(一)知识与技能
1、掌握数轴的三要素,能正确画出数轴。
2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
(二)过程与方法
1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。
2、对学生渗透数形结合的思想方法。
(三)情感、态度与价值观
1、使学生初步了解数学来源于实践,反过来又服务于实践 的辩证唯物主义观点。
2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
1、重点:正确掌握数轴画法和用数轴上的点表示有理数。
2、难点:有理数和数轴上的点的对应关系。
1、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的'是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
2、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:
定 义 规定了原点、正方向、单位长度的直线叫数轴
三要素 原 点 正方向 单位长度
应 用 数形结合
1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发兴趣—手脑并用—启发诱导—反馈矫正”的教学方法。
3+4表示3和+4的代数和。
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4、先把正数与负数分别相加,可以使运算简便。
5、在交换加数的位置时,要连同前面的符号一起交换。如。
12-5+7应变成12+7-5,而不能变成12-7+5。
教学设计示例一。
一、素质目标。
(一)知识教学点。
1.了解:代数和的概念.。
2.理解:有理数加减法可以互相转化.。
(二)能力训练点。
培养学生的口头表达能力及计算的准确能力.。
(三)德育渗透点。
(四)美育渗透点。
本次说课我共分成教材分析、教学方法与手段、教学过程分析和几点思考四部分,具体内容如下:
(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下。
1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。而确定重难点是根据新课标的要求,结合学生的学情而确定的。
根据本节课的内容特点及学生的学情,我选择的教学方法是引导探索、小组合作、效果反馈的教学方法。为了提高课堂的教学容量,增加实际问题的直观性,我选用多媒体辅助教学手段。
关于学法:本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,我想这样更能有效的培养学生学习数学的能力,更好的培养学生数学地思考问题。
分析:
本课共6课时,重点是有理数乘除法法则的教学,下面我重点说有理数乘法法则的教学。整体的教学程序包括:情景创设、提出问题;引导探索、归纳结论;知识运用、加深理解;变式练习、形成能力;回顾与反思、纳入知识系统;布置作业;板书设计七部分。
设计七部分。