通过总结,我们可以发现我们自己的优势和劣势,进而调整自己的学习和工作方式。总结应该准确而简洁地表达自己的观点和观察。一位行业专家总结了自己多年的研究成果和心得,与大家分享。
3、0既不是正数也不是负数。
4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。
5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:
1)数轴的三要素:原点、正方向和单位长度,缺一不可。
2)数轴是一条直线,可以向两边无限延伸。
3)原点的选定、正方向的取向、单位长度大小的确定都是根据需要“规定”的。
现在是不是觉得学期学习很简单啊,希望这篇七年级上册数学知识点辅导可以帮助到大家。努力哦!
2.情感目标:培养学生热爱自然、热爱生活、关心身边事物的感情。
3.写作目标:仿写练习。
教学重点:体会诗的意境;体会炼字的传神。
教学难点:培养学生热爱大自然、热爱生活、关心身边事物的感情。
课时:一课时。
教学过程:
一、导入新课--引秋。
展示秋景图片,伴随背景音乐欣赏。
请说说你看到了什么,感受到了什么。
许多文人墨客的吟秋的诗文也传诵不衰:
杜牧《山行》:停车坐爱枫林晚,霜叶红于二月花。
王维《山居秋暝》:空山新雨后,天气晚来秋。
张继《枫桥夜泊》:月落乌啼霜满天,江枫渔火对愁眠。
秋天是喜悦,是悠闲,是思念。今天我们一起欣赏现代诗人何其芳的诗作《秋天》,去倾听秋的诉说。(板书:秋天)。
二、诵秋。
快速回忆以前学过的朗读方法,回答朗读应注意什么?朗读时应注意什么?
1.初读课文,画出文中的生字词。
2.播放录音,提示学生注意朗读节奏,语气。
3.生字词识记。
4.指读课文,教师点评。
4.齐声朗读。(要求:学生在脑海中勾画诗中的图景)。
三、整体感知--寻秋。
如果你不知道诗的题目是《秋天》,你凭哪些景可知是秋天?(写景要有典型性)。
四、探究精读--品秋。
(一)农家丰收图。
1.徐志摩在他的作品《私语》中写道:“秋在一片将黄未黄的树叶上”,这节说秋在农家,从哪里看出秋在农家的?(提示抓关键词)。
明确:稻香、镰刀、背篓、竹篱、瓜果……。
2.根据画意,给第一节诗起一个贴切的名字。
3.对比阅读,体味词语的妙处,把握情感。
4.生读。
(二)霜晨归渔图。
1.依照第一节阅读的方式,请同学们找出第二节诗文中的关键词,并体味好处,把握情感。
2.生读。
(三)“少女思恋图”
1.第三幅图描绘了一幅什么画面?
2.还有没有疑问?质疑探究。
3.生读。
五、了解作者,体会诗人感情。
三幅画,让我们仿佛看见了那幽幽的山谷、闻到了浓浓的稻香、听到了轻轻的渔歌和牧羊女甜蜜的心事,可见诗人怀着是对秋天的一种极度的喜爱和赞美之情来完成的诗作。
六、课堂延展--绘秋。
古人说:“诗中有画,画中有诗”,在体悟文章的基础上,结合生活体验展开丰富的想象,用优美的语言描绘你喜欢的一幅画。
七、小结。
杨玲玲。
将本文的word文档下载到电脑,方便收藏和打印。
掌握本章基本概念与运算,能用本章知识解决实际问题。
通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。
领悟分类讨论思想,学会类比学习的方法。
本章知识梳理及掌握基本知识点。
应用本章知识解决实际与综合问题。
1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。
2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。
1、利用平方根的概念解题。
在利用平方根的概念解题时,主要涉及平方根的`性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数。
例1已知某数的平方根是a+3及2a—12,求这个数。
解得a=3。
∴a+3=6,2a—12=—6。
∴这个数是36。
负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。
2、比较实数的大小。
除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征。
知识重点相反数的概念。
教学过程(师生活动)设计理念。
设置情境。
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。
4,-2,-5,+2。
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)。
思考结论:教科书第13页的思考。
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想。
深化主题提炼定义给出相反数的定义。
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a。
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义。
给出规律。
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5。
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。
小结与作业。
课堂小结1,相反数的定义。
2,互为相反数的数在数轴上表示的点的特征。
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题。
2,选做题教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
课题:1.2.4绝对值。
教学目标1,掌握绝对值的概念,有理数大小比较法则.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学难点两个负数大小的比较。
知识重点绝对值的概念。
教学过程(师生活动)设计理念。
设置情境。
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反。
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.
学生回答后,教师说明如下:
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
验数学知识与生活实际的联系.
1刘娟。
塘湖初级中学。
用心爱心专心。
简谈如何进行初中数学教学反思。
回顾教学过程,深感教学反思的重要,就此简述,与大家共勉。
一、教学反思的内涵及重要性。
教学反思,顾名思义,是教师对自己参与的教学活动的回顾、检验与认识,本质上是对教学的一种反省认知活动。教师以自己的实践过程为思考对象,在“回放过程”的基础上,对其中的成败得失及其原因进行思考,得到一定的能用以指导自己教学的理性认识,并形成更为合理的实践方案。从某种意义上说,教学是一种学术活动。教学反思是教师专业发展和自我成长的核心因素,实践加上及时反思才能成长,在经验之中有规律可循。孔子说过“学而不思则罔”,学习如此,教学实际上也是一种学习,所以也要反思;教师的反思能力决定着他的教育教学实践能力和在工作中开展研究的能力。如果教师对自己的教育教学实践缺乏反省,不对自己的教学经验进行概括,课堂教学实践后不反思,那么他们就很难成长为专家型教师。通过反思,教师不断更新教学观念,改善教学行为,提升教学水平,同时形成对教学现象、教学问题的深层次思考和创造性见解,使自己真正成为研究型教师。
二、数学教学反思的内容。
明确数学教学反思的内容,这是进行数学教学反思的前提。理论上,任何与教学实践相关的问题都可能成为反思的对象和内容。但一般而言,教学设计与实施的比较、教学中的成败得失、教学机智与灵感、课堂互动情况以及课堂教学改革与创新等,是反思的主要对象。通常,我们可以从不同角度来确定反思的内容。例如,根据教学活动的顺序,分阶段确定反思的内容;根据教学活动涉及的各种要素,确定反思的内容。当然,不同的角度之间一定会有交叉。另外,在反思的具体实施过程中,我们可以选择若干自己感受深刻的内容,有侧重地进行思考。
(一)根据教学活动顺序确定反思内容。
1.对教学设计的反思。
及其地位,学生已有知识经验,教学目的,重点与难点,如何依据学生已有认知水平和知识的逻辑过程设计教学过程,如何突出重点和突破难点,学生在理解概念和思想方法时可能会出现哪些情况以及如何处理这些情况,设计哪些练习以巩固新知识,如何评价学生的学习效果等,都已经有一定的思考和预设。教学设计的反思就是对这些思考和预设是否与教学的实际进程具有适切性进行比较和反思,找出成功和不足之处及其原因,从而有效地改进教学。
2.对教学过程的反思。
我们知道,数学教学过程是学生在教师的指导下有目的、有意识、有计划地掌握数学双基、发展数学能力的认识活动,也是学生在掌握数学的双基、发展数学能力的过程中获得全面发展的实践活动.数学教学过程既包含教师的“教”,又包含学生的“学”,是教与学矛盾统一的过程.从“学”的角度看,数学教学过程不仅是在教师指导下学习数学知识、形成技能的过程,而且还是学生发展智力、形成数学能力的过程,也是理性精神和个性心理品质发展的过程.教学过程中,学生、教师、数学教学内容、教学方法、教学媒体、教学环境、校园文化等都是影响教学效果的直接因素,其中,教师、学生和教学中介是数学教学过程中的三个基本要素.教学中介是教学活动中教师作用于学生的全部信息,包括教学目标、教学内容、教学方法和手段、教学组织形式、反馈和教学环境等子要素,其中的主体是教学内容.对数学教学过程的反思就是对教学过程中各要素的相互作用过程及其效果的反思。具体可以从如下几个方面进行反思:
(2)教学重点和难点的处理情况;
(3)是否启发了学生提问,;
(4)问题是否恰时恰点,学生是否有充分的独立思考机会;
(5)核心概念的“解构”、思想方法的“析出”是否准确、到位;
(7)是否渗透和强调了数学能力的培养;
(8)教师语言、行为是否符合教育教学规律,学生有什么反应;
(9)各种练习是否适当;等。
3.对教学效果的反思。
度的变化,个人教学经验的变化,实施有效教学能力的提升,教学思想观念的变化,等。其中,教学是否达到了预期的目标,如有不足,该如何弥补,是教学效果反思的重点。
4.对个人经验的反思。
这是教师对自己教学活动的持续不断的反思过程,是教师专业化成长的必备。对个人经验的反思有两个层面,一是反思自己日常教学经历,使之沉淀成为真正的经验;二是对经验进行解释、归纳和概括,提炼出其中的规律,使之成为有一定普适性的理论。没有经过教学反思的经验,其意义是有限的。如果教师只对个人经验作描述性的记录而不进行解释,那么这些经验就无法得到深层次解读,从而也就无法形成具有普遍意义的理论。只有对经验作出解释后,对经验的阅读才是有意义的。也就是说,形成经验的过程既是对经验的解释过程也是对经验的理解过程。在教学反思实践中,可加以记录,内容包括:一是忠实记录并分析所发生的种种情况;二是经验本身不断加工和再创造,使经验得到升华,改善教师的理念与操作体系,甚至可以自下而上地形成新的教学理论。
(二)根据教学活动涉及的要素确定反思内容。
从教学活动中涉及的要素角度,可以从如下几个方面确定反思内容。
1.教的方面。
主要是反思教师在与课堂教学相关的活动中的行为表现及其效果,并提出改进建议。包括教学目标的定位,重点难点的处理,教学阶段的划分与教学处理,教与学的方式,教学组织形式,问题情境的设置(与数学、生活或其它学科联系的背景),提问质量,师生互动,板书的设计,计算机等教学技术的运用,对教材内容的处理,课题的引进,课堂作业的布置,因材施教,小组活动的设计等。其中特别要注意反思是否围绕数学概念、思想方法开展教学活动以及落实情况。
2.学的方面。
主要是反思学生在课堂中的行为表现,分析其成因,并据此提出教学改进建议,反馈到教学设计的改进中。具体包括对学生当前认知水平的分析和估计是否符合学生现状,学生对概念的本质、思想方法的理解状况及其原因,学生对课堂中某些关键性问题的反映(包括行为表现、语言表达等)及其原因分析,对课堂中学生思维活动特征的分析,对学生使用的问题解决策略的分析,对学生作业情况及其原因的分析等。
3.情感态度价值观方面。
包括用与学生心理发展相适应的方式呈现内容的价值观内涵,课堂氛围的营造,教师与学生、学生与学生之间的感情沟通,数学学习兴趣的培养,对数学学习的认识与态度,学习动机与自信心,学生主动参与的程度等。
三、数学教学反思的步骤。
具体进行教学反思时,要注意“不求全面,但求深刻”。通常可以按照如下步骤进行。
截取的片断应该是与自己感兴趣的问题紧密相关的,描述了一个完整的教学事件。因此,为了更加真实地反映实际情况,需要我们事先对教学设计进行深入分析,从中析出自己感兴趣的问题,并在听课过程中有目的、有计划、有系统地对课堂中师生之间的相互作用过程进行仔细观察,包括活动的形式、内容和结果等,做出“全息纪录”,并要通过观看录像进行仔细核对。有必要时,应当通过“追问”的方式,如“当时你是怎么想的?”“你为什么这样说?”等,向学生进一步搜集相关信息。
2.提炼反思的问题(案例问题)。
案例问题是案例的灵魂,是反思活动的主要线索。这些问题不仅要围绕反思的主题,揭示案例中的各种困惑,更重要的是要有启发性,能够引发其他人的反思和讨论。因此,提炼反思问题时应注意:第一,围绕当前的课堂教学活动;第二,是被广大教师普遍关注的;第三,重要但容易被忽视的;第四,课堂教学改革中的疑难问题;第五,不同层次的教师能够参与讨论的;第六,可以与一定的理论相衔接的。好的反思问题是那些能够引发大家思考和讨论的问题,是大家都“有话可说”的问题,而不是“最后能达成一致意见的问题”。
3.个人撰写反思材料。
撰写反思材料时,应围绕自己感兴趣的反思问题。可以通过分析教师的教学和学生的课堂反映,即教师是怎么教的、学生是怎么说—想的,考察其中的利弊、得失,并进行原因分析,分析时应当有一定的理论高度,最后应当给出改进的方案。
以上就是数学教学反思的一些内容和方法,结合了自己工作的实际经验,期待随着时间的推移,还有更多经验,还期待大家的指导。
上个星期考了第五章的检测题,总体做的不是太好,没有高分。这段时间上课感觉还可以,可考出的成绩不理想。每个小组我给算出来了平均分,各个小组之间的差距也很大,有的小组平均分在六十分以上,有的才四十多分。这段时间各个小组的表现也基本和这次成绩差不多,上课表现比较积极都参入进来的小组平均分就会高,如果小组中有两三个不积极去用心学的这个组的平均成绩就不高。
可能当时学这一章的时候有点快,有一些知识已经遗忘了。本章的检测题难度不大,可容易出错的地方比较多。特别是选择题学生普遍做的很差,像找对顶角对数的、相等角的对数,这样的题目对学生来说总是数不准。可能也是因为在上课时这方面训练的不够,以后要多注意这些题目。再一方面是学生的做题步骤还书写不规范。他们总是想着只写出答案,中间的过程不知道怎么去写,这个还要进一步的加强。
有一些题目也是老师反复强调的题目,上课时看他们的反应也是都会了的,可一到考试了不知怎么就不会做了。是不是还是训练的太少了,还要进一步加强他们的记忆力。
将本文的word文档下载到电脑,方便收藏和打印。
教学内容:
教材107页用数学及做一做中的习题。
教学目标:
1、使学生会用学过的数学知识解决简单的实际问题。
2、养学生用不同方法解决同一个问题的能力。培养学生的观察能力、口头表达能力。
3、步感受数学在日常生活中的应用。培养学生热爱自然的美好情感。教学具准备:
挂图、5个信封、5种数量不一的小动物、5幅情景图、5块黑板、5只粉笔教学重难点:
培养学生用不同方法解决同一个问题的能力。
课时安排:1课时。
教学过程:
一、创设情境,引入新课:
1、今天老师请来了好多小客人,想知道他们是谁吗?那就打开信封,请他们出来吧!
2、都有哪些小客人呀?
3、小客人都是第一次来我们班做客,同学们想不想和他们玩呀?不过小客人有个要求,就是在玩的过程中,大家要把小动物贴到情境图中,并根据你们贴的图提出一个数学问题,把他写在纸条上。你们行吗?这么有信心呀!那就发挥你们小组的力量开始吧。咱们比一比哪个小组合作得最愉快最成功。学生分组活动。
5、同学们提的问题都很好,你们能不能用数学知识解决这些问题呢?(让学生任选一个问题,但不能选自己小组的,分组解决问题,把算式写在小黑板上。)。
6、小组汇报。
(按颜色分,5+2或2+5;按大小分,1+6或6+1)。
小结:同学们真太聪明了,能从左右、颜色和大小这三个不同的角度,用不同的方法来解决“一共有多少匹马?”这个问题。你们真棒!
二、反馈练习,强化新知:
1、看到同学们玩的这么开心,小兔子们也想来咱们班做客,他们都等急了,让我们用。
掌声请出他们好吗?(出示带问题的兔子图)。
2、今天小兔子是带着问题来的,它问咱们什么?你会解决这个问题吗?小组合作完。
成,把算式写在小黑板上。
3、分组汇报。
4、教师小结:同学们真聪明,不但说得很好,而且还想出了两种来解答,连小兔都在夸奖你们呢!
对想出两种方法的小组给予奖励:每组奖一颗智多星。
三、巩固新知:
1、学生独立完成“做一做”中的练习题。
2、同位互评。做对的可以得朵花。
3、集体订正。
四、小结:今天这节课,同学们上的非常好,我们帮助小动物解决了这么多问题,都是用的什么知识?用数学来解决问题是一种很好的方法。揭题。数学知识可真重要呀!我们一定要学好它、用好它。
课题学习《从数据谈节水》,是人教实验版数学七年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。
2、教学目标。
根据学生的学习内容、新课程理念和认知水平,特制定如下目标:
(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。
(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。
(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。
3、重点和难点。
(1)重点:培养学生的数感和统计观念。
(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。
二、学情分析。
我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。
三、教法和学法分析。
枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。
四、教学形式和课前准备。
本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。
五、教学过程分析。
教学过程设计意图说明。
新课引入。
(2)你了解世界及我国有关水资源的现状吗?借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!
探究新知活动一:
阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:
(1)地球上的水资源和淡水资源分布情况怎么样?
(2)我国农业和工业耗水量情况怎么样?
(3)我国不同年份城市生活用水的变化趋势怎么样?
学生阅读资料,通过小组合作、讨论的形式完成活动一。
活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:
(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?
(5)你还可以得到哪些信息?
(教师巡视,指导各小组开展调查实验活动)。
活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。
课堂小结:
1.当前水资源状况,
2.节约水资源带来的价值,
3.节约水资源的办法。
布置作业。
整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。
通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
1.列二元一次方程组解简单问题。
2.彻底理解题意。
找等量关系列二元一次方程组。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38练习第1题。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
p42。习题2.3a组第1题。
后记:
2.3二元一次方程组的应用(2)。
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类。
知识重点正确理解有理数的概念。
教学过程(师生活动)设计理念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分。
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
课题:1.2.2数轴。
教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;。
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数。
知识重点。
教学过程(师生活动)设计理念。
设置情境。
引入课题教师通过实例、课件演示得到温度计读数.
(多媒体出示3幅图,三个温度分别为零上、零度和零下)。
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
点表示数的感性认识。
点表示数的理性认识。
合作交流。
探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
寻找规律。
归纳结论问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)。
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习。
教科书第12页练习。
小结与作业。
课堂小结请学生总结:
1,数轴的三个要素;。
2,数轴的作以及数与点的转化方法。
本课作业1,必做题:教科书第18页习题1.2第2题。
2,选做题:教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
1、单项式。
对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.
2、系数。
单项式中的数字因数叫做这个单项式的系数.
3、单项式的次数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4、多项式。
几个单项式的和叫做多项式.
5、多项式的项。
在多项式中,每个单项式叫做多项式的项.
-6是常数项.
6、常数项。
多项式中,不含字母的项叫做常数项.
7、多项式的次数。
多项式里,次数最高的项的次数,就是这个多项式的次数.
8、降幂排列。
把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.
9、升幂排列。
把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.
10、整式。
单项式和多项式统称整式。
11、同类项。
所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.
12、合并同类项。
把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项的法则是:
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
13、去括号法则。
括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;。
括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
例:a+(b-2c)-(e-2d)=a+b-2c-e+2d。
14、添括号法则。
添括号后,括号前面是“+”号,括到括号里的各项都不变符号;。
添括号后,括号前面是“-”号,括到括号里的各项都改变符号.
例:m+2x-y+z-5=m+(2x-y)-(-z+5)。
15、整式的加减。
整式加减的一般步骤:
1.如果遇到括号,按去括号法则先去括号;。
2.合并同类项.
16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.
《认识钟表》教学设计一.学习目标:
1、借助已有的生活经验,在熟悉的生活情境中交流、合作,学会认读整时。
2、结合日常生活作息时间,培养学生珍惜时间的态度和合理安排时间的良好的习惯。
3、通过观察、讨论、比较等活动,初步培养学生的探究合作的学习意识。
二.教学重难点:
教学重点:
1、学会认识钟表的时针和分针,会看钟表上的整时。教学难点:学会两种表示时间的方法。三.教具准备:道具钟若干个,实物钟,课件。四.教学过程设计:。
(一)、课前准备。
1、师:同学们看看今天来了那些客人?(播放《喜羊羊与灰太狼》的视频片段)。
3、生齐答:想。
4、师:那么老师就请一位男同学和女同学上讲台来比一比吧!(学生热烈举手参与)。
5、师:看看他们俩谁最快把这个图案拼完,好吗?(男女同学齐叫加油)。
6、师:比赛已有结果了,你们知道他们拼出来的是什么吗?
7、生:是一个钟。
8、师:对了,这节课我们就一起来认识钟表(板书课题)。
(二)、自主学习。
1、拿出自己做的钟表,仔细观察,你发现了什么?
2、把你的发现和小组同学说一说。
3、小组汇报:生1:有12个大格生2:有两根针生3:有数字1-12。
4、师:分针和时针长得一样吗?生:不一样,一长一短、一粗一细。
师:又短又粗的叫什么?又细又长的叫什么?
生:又短又粗的是时针,又细又长的是分针(板书:分针,时针)师:你们知道分针、时针是往那个方向运动的吗?用你的小手来表示一下。
生:分钟和时针是按照这边的方向走的(做手势)。
3、师:同学们,钟表上除了有分针和时针以外,当然还有更细更长的秒针,以后我们会慢慢地学得到。
师:看,美羊羊多高兴,它很满意我们的回答。
(三)、认识整时。
4、师:(课件重现7时、1时、4时),看一看这三个钟表都有什么共同的地方?
生:分针都指着12。把你想到的认识整时的方法介绍给大家听听。小组讨论。
生:分针指着12,时针指着几就是几时。
师:聪明的班长暖羊羊跟我们说:“分针指着12,时针指着几就是几时”。
生1:6时。
生2:9时。
生3:8时。
(四)、教学整时的两种写法。
师:好,现在请大家听听喜羊羊介绍一下怎样写“7时”吧?(师示范板书)。
师:后面的两个钟谁会写呢?生1:到黑板上板演。
师小结:这种表示法叫做文字表示法,几时只要在几的后面加写“时”字就可以了。
2、师:还有一种表示方法(课件出示电子钟)。这是什么?生:电子表。
师小结:(出示课件)班长暖羊羊跟我们说,用数字表示整时,冒号右边是2个“0”,冒号左边是几就是几时。(生跟读)(强调两个小圆点不能写成句号)。
3、师:黑板上的三个钟表,你能不能用数字表示法写出它的时间呢?
(五)、巩固练习。
1、师:在同学们的帮助下喜羊羊终于战胜了灰太狼,逃离了被吃的命运。灰太狼不服气,要求老师再来考考大家,看看同学们学会了这节课的内容没有。
2、练习1:老师拨一拨,学生说一说(2时、5时、12时)(大道具钟)。
3、练习2:学生甲拨整时,学生乙说一说。
4、练习3:写一写,用两种表示法写出时间。
5、练习4:画一画,(出示钟面,时刻),学生画出分针或时针。用投影更正答案。
(六)、总结。
爱睡觉的懒羊羊对我们同学们说,时间是宝贵的,我们利用了40分钟学习了如何看钟表,还有两种表示时间的方法,对于我们来说,时间就是知识。希望同学们今后能用好时间,珍惜时间,做时间的小主人。
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、多项式除以单项式在整式的运算中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力,在解决问题的过程中了解数学的价值,发展“用数学”的信心。运算能力的培养主要是在初一阶段完成。多项式除以单项式作为整式的运算的一部分,它是整式运算的重要内容之一,它是整个初中代数的重要部分。
2、就第一章而言,多项式除以单项式是本章的一个重点。整式的运算这一章,多项式除以单项式是很重要的一块,整式的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在整式范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此乘法的运算是本章的关键,而除法又是学生接触到的较复杂的整式的运算,学生能否接受和形成在整式的运算中转化思考方式及推理的方法等,都在本节中。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。
新课程标准是我们确定教学目标,重点和难点的依据。重点是多项式除以单项式的`法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。
难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。
本节课是在前面学习了单项式除以单项式的基础上进行的,学生已经掌握同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法等知识,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的课件引例,让学生自主参与,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
1、回顾与思考,通过单项式除以单项式法则的复习,完成四道单项式除以单项式的练习题,为本节课探索规律,概括多项式除以单项式的法则做好铺垫。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个尝试练习启发学生自主解答,使学生该过程中体会多项式除以单项式规律。由于采用了较灵活的教学手段,学生能够积极的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出多项式除以单项式的法则。
3、例题解析,通过课件生动形象的课件,引导学生尝试完成例题,加深对多项式除以单项式的法则的理解与应用。
4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用小组合作交流形式,使课堂气氛活跃,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
5、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。教学目标:
1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.
4.培养学生耐心细致、严谨的数学思维品质.
初中阶段是学生情感意识建立的关键时期,而学生对于教师的良好感情则是课堂互动的基础。教师在教课过程中应该避免“填鸭式”的教学方式,因为这种教学方式很容易使学生增加对教师的依赖感,降低了他们的自主学习意识。在课堂上,教师应当加强与学生互动,适当地增加问题的提问。另外,教师在教学时应当结合实际,问题的设置要尽量贴近中学生的兴趣爱好,打破原来枯燥的说教方式。只有学生和教师之间建立起了良好的情感交流平台,学生才能对课堂感兴趣,才能在自主的学习过程中使自己的思维能力得到有效的锻炼。
(一)加强审题能力
审题是解题的第一个步骤,而细看当今中学生的答题试卷便可发现,因为审题出错的题目比比皆是,所以提高审题能力是解题的关键步骤。教师在日常的教学中应当注重培养学生认真审题的意识,如可以让学生在读题时用笔标出关键条件,也可以让学生小声朗读题目。这都有助于学生对于题目的理解。
(二)设置思维型问题,给学生留下想象空间
无论是课堂例题的设置还是课后练习题的设置,都需要教师动脑筋,教师要用贴近学生生活的题目去吸引学生,并使之从中得到练习,加强对知识的巩固。思维发散的题目对于学生各项思维能力的培养都是很有益的。且这类题目一般形式新颖,学生对于它们的印象比较深刻,从而有利于学生对此类知识的吸收。例如,现有含盐15%的盐水200克,含盐40%的盐水150克,另有足够的盐和水,要配置成含盐20%的盐水300克。
1.如果要求是使用现有的盐水,但尽可能地少使用盐和水,应该怎样设计配置方案?
2.你还有其他的配置方案吗?这一类的题目就是一种思维发散的题目,第一问更多地给予了学生独立思考的空间,能使他们利用自己的逻辑思维能力展开想象,并综合运用所学知识最终求得合理的配置方案。而第二问则在第一题的基础上进行了拓展,学生可以相互展开讨论,培养自己的求异意识。这样,在整个解题的过程中,学生的思维能力都得到了有效的锻炼。
(三)培养对错题的反思意识
对于错题的整理与反思是纠正错误、加深印象和提高成绩最有效的办法。而中学生的自主学习能力较弱,对于这方面的内容做得还不够好。因此,教师应当注重学生对错题反思能力的培养,对于学生的学习习惯做硬性的要求,使学生在不断地总结与反思的过程中去发散思维,得到新的启示。
学生可能经常会遇到这样的情况:如在做一道题时,反复思考都得不到答案,但是一经别人的提点或者一看答案解析,就立马想到了做法,实际上这还是因为学生对所学的知识掌握不牢固。因此,学生要培养错题反思、整理的意识,在了解标准答案的同时还要对自己不熟悉的知识进行着重的记忆,在造成解题障碍的环节上多下功夫。另外,学生在整理错题的过程中往往能收获新的解题方式,或者能对题目有更深的理解,这些都是思维锻炼的方式。
在数学的教学过程中,教师一方面应当将知识准确地传达给学生;另一方面,也应当注重学生对于学习方法方式的培养和思维能力的锻炼。数学的学习是一个有趣灵活的过程。在数学课堂中,学生的思维得到锻炼的可能性将更大。因此,教师一定要抓住初中生这一时期的特点,构建思维型和情感型课堂,使学生在学习的同时得到能力的提升,最终达到新课程改革的目标。
能利用完全平方公式进行简单的运算。
在探索完全平方公式的过程中,发展学生的符号感和推理能力,体会数学语言的严谨与简洁。
培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。
重点难点
重点
完全平方公式的推导和运用
难点
完全平方公式的结构特点和灵活运用。
教学过程
1.说出平方差公式的内容及作用。
2.我们知道,当相乘的两个多项式有一项相同,另一项相反时,可以用平方差公式直接得到结果,大大简化了运算过程,那么当相乘的两个多项式两项都相同时,是不是也有一个公式来简化运算过程呢?这节课我们就来探索一个新的乘法公式:完全平方公式。
探究新知
计算下列各式,你能发现它们的结果有什么规律吗?
鼓励学生发表各自的看法,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,以此调动学生参与的热情。
综合学生的观察,得到:两数和的平方,等于它们的平方和,加上它们的积的两倍。
2.这个结论可以推广到任意两个数的计算上去吗?
我们可以利用多项式乘法法则来推导一下:(师生共同完成)
3.两数差的平方等于什么呢?请同学们计算。
学生一般会这样计算:
及时引导学生用语言叙述这个结果:
两数差的平方,等于它们的平方和,减去它们的积的两倍。
以上两个公式都叫做完全平方公式,它们之间有联系吗?启发学生把“-b”整个的看成一个数,用两数和的平方公式来计算,结果怎么样?结果发现两数差的平方可以用两数和的平方公式推导出来,也就是两数差的平方公式可以归属于两数和的平方公式。但为了使用方便,通常我们还是以两个公式来呈现。
完全平方公式:;
用语言叙述为:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的两倍。
完全平方公式的理解
1.比较两数和、两数差的平方公式的异同。
学生讨论,发表各自的看法。
2.比较完全平方公式与平方差公式的不同之处。
学生发表看法后,教师特别指出完全平方公式计算的结果有三项,不要误以为是两项,比方;,是错误的。我们用图形的面积来加深一下对这个结果的理解:如图,显然整个正方形的面积由四部分组成。
例1运用完全平方公式计算:
(3);(4);
师生共同解答,教师板书。初学运用时要写清楚运用公式的步骤,熟记公式。
例2运用完全平方公式计算:
学生解答,进一步体会两个完全平方公式的异同。
1.下面各式的计算对不对?如果不对,应怎样改正?
2.运用完全平方公式计算:
(1);(2);(3);
3.运用完全平方公式计算:
教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。
师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
p50第2(1)、(2),4题
会进行单项式与多项式相乘的运算。
理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想。
在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。
使学生获得成就感,培养学习数学的兴趣。
重点
单项式与多项式相乘的运算法则及其运用
难点
灵活地运用单项式与多项式相乘的运算解决数学问题。
一、复习导入
2. 你能用字母表示乘法的分配律吗?
3. 类似的,对于单项式乘以多项式,比如
你能将它转化成已经学过的单项式乘单项式来计算吗?
二、新课讲解
探究新知
1.怎样计算 ?
学生在已有的知识经验基础上,想到运用乘法分配律将问题进行转化:
教师指出,可以把单项式看成一个数,把多项式看成3个数的和。
2. 下面的运算该如何转化成单项式乘单项式呢?请你试一试:
(1) ;(2)
利用变式,进一步强化学生对算理的理解。学生互相交流后,教师板书,强调转化的过程中要把一个项(包括项前的符号)整个的看成一个数,这样能避免符号错误。
3. 你能根据上面的运算,用文字叙述一下单项式乘多项式的方法吗?
引导学生用自己的话叙述上面的运算过程,然后师生共同总结:
单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。
通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。
三、典例剖析
例1. 计算:
(1) ; (2)
学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:
单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。
例2 求 的值,其中
提问学生,可以直接把 带进式子运算吗?如果觉得运算很繁琐,你有其它的建议吗?
引导学生观察思考后,让学生尝试解答,之后教师板书示范,共同总结出方法:
计算代数式的值的一般步骤是先化简,再求值。
四、课堂练习
基础练习:
1.计算:
(1) ; (2) ;
(3) ; (4)
2.先化简,再求值:
,其中
学生练习,教师巡视,注意发现学生的错误,组织学生对错误进行分析,切实夯实基本运算能力。
提高练习
3.已知 ,求代数式 的值。
4.已知 ,求 的值。
让学生自己分析,相互讨论,丰富解决数学问题的经验。
五、小结
师生共同回顾单项式乘以多项式的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
p41 第7题
了解数轴的概念,能用数轴上的点准确地表示有理数。
过程与方法。
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
情感、态度与价值观。
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点。
教学重点。
数轴的三要素,用数轴上的点表示有理数。
教学难点。
数形结合的思想方法。
三、教学过程。
(一)引入新课。
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知。
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习。
如图,写出数轴上点a,b,c,d,e表示的数。
(四)小结作业。
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
知识与技能:
理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想.
过程与方法:
1、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.
2、经历探索移项法则法的过程,发展观察、归纳、猜测、验证的能力。
情感、态度与价值观:
结合实际问题,探索用移项法则解一元一次方程的方法,进一步认识数学来源于生活,并为生活服务,从而学生学习数学的兴趣和学好数学的信心。
教学重点。
确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程.
教学难点。
确定相等关系并列出一元一次方程,正确地进行移项并解出方程。
教学过程。
一、情景引入:
二、自主学习:
1.解方程:
3x+20=4x-25。
观察上列一元一次方程,与上题的类型有什么区别?
3.新知学习请运用等式的性质解下列方程:
(1)4x-15=9;(2)2x=5x-21。
你有什么发现?
三、精讲点拨。
问题2你能说说由方程到方程的变形过程中有什么变化吗?
移项的定义:一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
移项的依据及注意事项:移项实际上是利用等式的性质1.注意:移项一定要变号。
例1解下列方程:
解:移项,得3x+2x=32-7。
合并同类项,得5x=25。
系数化为1,得x=5。
移项时需要移哪些项?为什么?
针对训练:解下列方程:
(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x.
四、合作探究。
列方程解决问题。
思考:如何设未知数?
你能找到等量关系吗?
五、当堂巩固。
1.对方程7x=6+4x进行移项,得___________,合并同类项,得_________,系数化为1,得________.
2.小新出生时父亲28岁,现在父亲的年龄比小新年龄的3倍小2岁.求小新现在的年龄.
六、课堂小结。
1.本节课主要学习了解一元一次方程的方法:移项,移项的根据是等式的性质1。
2.本节的实际问题的相等关系的依据:表示同一个量的两个式子相等。
3.列方程解实际问题的基本思路。
七、作业布置。
1.必做题:教科书第91页习题3.2第3(3),(4),11题。
2.选做题:
八、板书设计。
3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则。
重点:异号两数相加的法则。
1、同号两数相加的法则。
学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)。
教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(—5)+(—3)=—8(m)。
师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则。
学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(—3)=2(m)。
师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?
学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。
师生共同归纳出:互为相反数的两个数相加得零。
教师:你能用加法法则来解释这个法则吗?
学生回答:可用异号两数相加的法则来解释。
一般地,还有一个数同0相加,仍得这个数。
课本p18例1,例2、课本p118练习1、2题。
运算的关键:先分类,再按法则运算;
运算的步骤:先确定符号,再计算绝对值。
注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。
课本p24习题1.3第1、7题。
了解数轴的概念,能用数轴上的点准确地表示有理数。
【过程与方法】。
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】。
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点。
【教学重点】。
数轴的三要素,用数轴上的点表示有理数。
【教学难点】。
数形结合的思想方法。
三、教学过程。
(一)引入新课。
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知。
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习。
如图,写出数轴上点a,b,c,d,e表示的数。
(四)小结作业。
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
四、板书设计。
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。
3,体验分类是数学上的常用处理问题的方法。
正确理解有理数的概念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的`概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练。
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业。
1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。