有理数乘法教案板书实用
文件夹
一个好的教案不仅要满足学生的知识需求,还要培养学生的思维能力、创新意识和实践能力。教案的编写可以参考相关教材、教学资料和教学研究成果。以下是小编为大家整理的一些教案样本,供大家参考和借鉴。
经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、
三、情感态度与价值观。
体会数学与现实生活的联系,提高学生学习数学的兴趣、
教学重点、难点与关键。
1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、
2、难点:省略括号和加号的加法算式的运算方法、
投影仪、
四、教学过程。
一、复习提问,引入新课。
1、叙述有理数的加法、减法法则、
2、计算、
(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。
(4)(—8)—6;(5)5—14、
五、新授。
我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、
六、巩固练习。
1、课本第24页练习、
(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、
原式=1+3—4—0。5=0—0。5=—0。5。
(2)题运用加减混合运算律,同号结合、
原式=—2。4—4。6+3。5+3。5=—7+7=0。
(3)题先把加减混合运算统一为加法运算、
原式=(—7)+(—5)+(—4)+(+10)。
=—7—5—4+10(省略括号和加号)。
=—16+10。
=—6。
七、课堂小结。
八、作业布置。
1、课本第25页第26页习题1、3第5、6、13题、
九、板书设计:
第四课时。
1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、
归纳:加减混合运算可以统一为加法运算、
用式子表示为a+b—c=a+b+(—c)、
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思。
本课教学反思。
本节课主要采用过程教案法训练学生的听说读写。过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。它包括写前阶段,写作阶段和写后修改编辑阶段。在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。课堂是写作车间,学生与教师,学生与学生彼此交流,提出反馈或修改意见,学生不断进行写作,修改和再写作。在应用过程教案法对学生进行写作训练时,学生从没有想法到有想法,从不会构思到会构思,从不会修改到会修改,这一过程有利于培养学生的写作能力和自主学习能力。学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣,在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。
1.1正数和负数(2)。
教学目标:
教学重点:
深化对正负数概念的理解。
教学难点:
正确理解和表示向指定方向变化的量。
教学准备:彩色粉笔。
教学过程:
一、复习引入:
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.
二、讲解新课。
度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。
思考:教科书第4页(学生先思考,教师再讲解)。
三、课堂练习课本p4练习1,2,3,4。
四、课时小结。
引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.
五、课外作业教科书p5:2、4。
板书设计:
学习目标:。
1、理解加减法统一成加法运算的意义.
2、会将有理数的加减混合运算转化为有理数的加法运算.
3、培养学习数学的兴趣,增强学习数学的信心.
教学方法:讲练相结合。
教学过程。
1、一架飞机作特技表演,起飞后的高度变化如下表:
高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
记作+4.5千米—3.2千米+1.1千米—1.4千米。
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米.
2、你是怎么算出来的,方法是。
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.
如:(-20)+(+3)-(-5)-(+7)有加法也有减法。
=(-20)+(+3)+(+5)+(-7)先把减法转化为加法。
=-20+3+5-7再把加号记在脑子里,省略不写。
可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.
4、师生完整写出解题过程。
1、解决引例中的问题,再比较前面的方法,你的感觉是。
2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4。
3、练习:计算1)(—7)—(+5)+(—4)—(—10)。
1、小结:说说这节课的收获。
2、p241、2。
3、计算。
1)27—18+(—7)—322)。
五、作业。
1、p2552、p26第8题、14题。
1.1正数和负数(2)。
教学目标:
教学重点:
深化对正负数概念的理解。
教学难点:
正确理解和表示向指定方向变化的量。
教学准备:彩色粉笔。
教学过程:
一、复习引入:
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分界,是基准.
二、讲解新课。
度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。
思考:教科书第4页(学生先思考,教师再讲解)。
三、课堂练习课本p4练习1,2,3,4。
四、课时小结。
引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.
五、课外作业教科书p5:2、4。
板书设计:
文档为doc格式。
学习目标:。
1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算。
2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力.
3、培养语言表达能力.调动学习积极性,培养学习数学的兴趣.
学习重点:有理数乘法。
学习难点:法则推导。
教学方法:引导、探究、归纳与练习相结合。
教学过程。
一、学前准备。
计算:
(1)(一2)十(一2)。
(2)(一2)十(一2)十(一2)。
(3)(一2)十(一2)十(一2)十(一2)。
(4)(一2)十(一2)十(一2)十(一2)十(一2)。
猜想下列各式的值:
(一2)×2(一2)×3。
(一2)×4(一2)×5。
二、探究新知。
1、自学有理数乘法中不同的形式,完成教科书中29~30页的填空.
2、观察以上各式,结合对问题的研究,请同学们回答:
(3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。
提出问题:一个数和零相乘如何解释呢?
1、知识目标:了解有理数乘法法则的合理性,掌握有理数的乘法法则,熟练运用有理数的法则进行准确运算。
2、能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力。
3、情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯。
重点:有理数乘法运算法则的推导及熟练运用。
难点:有理数乘法运算中积的符号的确定。
1、在小学我们已经接触了乘法,那什么叫乘法呢?
求几个的运算,叫乘法。
一个数同0相乘,得0。
2、请你列举几道小学学过的乘法算式。
规定:向右为正,现在之后为正。
3分钟后蜗牛应在o点的()边()cm处。
可以列式为:(+2)(+3)=。
问题2:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟后蜗牛应在o点的()边()cm处。
可以列式为:
问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的()边()cm处。
可以表示为:
问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的()边()cm处。
可以表示为:
2、观察这四个式子:
(+2)(+3)=+6(—2)(—3)=+6。
(—2)(+3)=—6(+2)(—3)=—6。
正数乘正数积为__数:负数乘负数积为__数:
负数乘正数积为__数:正数乘负数积为__数:
乘积的绝对值等于各乘数绝对值的_____。
思考:当一个因数为0时,积是多少?
两数相乘,同号得,异号得,并把绝对值。
任何数同0相乘,都得。
1、你能确定下列乘积的符号吗?
37积的符号为;(—3)7积的符号为;
3(—7)积的`符号为;(—3)(—7)积的符号为。
2先阅读,再填空:
(—5)x(—3)。同号两数相乘。
(—5)x(—3)=+()得正。
5x3=15把绝对值相乘。
所以(—5)x(—3)=15。
填空:(—7)x4____________________。
(—7)x4=—()___________。
7x4=28_____________。
所以(—7)x4=____________。
[例1]计算:
(1)(—5)(2)(—5)。
(3)(—6)(—0.45)(4)(—7)0=。
解:(1)(—5)(—6)=+(56)=+30=30。
请同学们仿照上述步骤计算(2)(3)(4)。
(2)(—5)6==。
(3)(—6)(—0.45)==。
(4)(—7)0=。
让我们来总结求解步骤:
两个数相乘,应先确定积的,再确定积的。
1、小组口算比赛,看谁更棒。
(1)3(—4)(2)2(—6)(3)(—6)2。
(4)6(—2)(5)(—6)0(6)0(—6)。
2、仔细计算。,注意积的符号和绝对值。
(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
(4)(—2)(—)(5)(—)(—)(6)(—)5。
1、下列说法错误的是()。
a、一个数同0相乘,仍得0。
b、一个数同1相乘,仍得原数。
c、如果两个数的乘积等于1,那么这两个数互为相反数。
d、一个数同—1相乘,得原数的相反数。
2、在—2,3,4,—5这四个数中,任意两个数相乘,所得的积最大的是()。
a、10b、12c、—20d、不是以上的答案。
3、计算下列各题:
(5)(—6)(—5)=;(6)(—5)(—6)=。
理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。
二、过程与方法。
经历对有理数进行分类的探索过程,初步感受分类讨论的思想。
三、情感态度与价值观。
通过对有理数的学习,体会到数学与现实世界的紧密联系。
教学重难点及突破。
在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。
教学准备。
用电脑制作动画体现有理数的分类过程。
教学过程。
四、课堂引入。
2.举例说明现实中具有相反意义的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?
4.举两个例子说明+5与-5的区别。
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力。
三、教学重点。
有理数减法法则。
四、教学难点。
有理数减法法则。
五、教学用具。
三角尺、小黑板、小卡片。
六、课时安排。
1课时。
七、教学过程。
(一)、从学生原有认知结构提出问题。
1.计算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化简下列各式符号:
(1)-(-6);(2)-(+8);(3)+(-7);。
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;。
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算。
(二)、师生共同研究有理数减法法则。
问题1(1)(+10)-(+3)=______;。
(2)(+10)+(-3)=______.
教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).
(2)(+10)+(+3)=______.
(2)的结果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教师引导学生归纳出有理数减法法则:
减去一个数,等于加上这个数的。相反数。
教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数。减数变号(减法============加法)。
(三)、运用举例变式练习。
例1计算:
(1)(-3)-(-5);(2)0-7.
例2计算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数。
阅读课本63页例3。
(四)、小结。
1.教师指导学生阅读教材后强调指出:
由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。
(五)、课堂练习。
1.计算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。
2.计算:
3.计算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。
(4)(-5.9)-(-6.1);。
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理数减法解下列问题。
八、布置课后作业:
课本习题2.6知识技能的2、3、4和问题解决1。
九、板书设计。
2.5有理数的减法。
(一)知识回顾(三)例题解析(五)课堂小结。
例1、例2、例3。
(二)观察发现(四)课堂练习练习设计。
十、课后反思。
(1)正确理解乘方、幂、指数、底数等概念.
(2)会进行有理数乘方的运算.
2.过程与方法。
通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化思想.
3.情感态度与价值观。
培养探索精神,体验小组交流、合作学习的重要性.
重、难点与关键。
1.重点:正确理解乘方的意义,掌握乘方运算法则.
2.难点:正确理解乘方、底数、指数的概念,并合理运算.
3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义.
教学过程。
一、复习提问。
1.几个不等于零的有理数相乘,积的符号是怎样确定的?
答:几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.值观:体验小组交流,合作学习的重要性。
本章的主要内容是单项式、多项式、整式等有关概念,合并同类项、去括号、整式的加减运算。
课本首先通过实例列式表示数量关系,介绍了单项式、多项式以及整式等有关概念,然后通过具体问题的解决,类比有理数的运算律,明确了同类项可合并的道理,明确了整式加减法的法则和去括号法则.这些内容也是对前一章内容的进一步认识。
本章在呈现形式上突出了整式加减产生的背景,使学生经历实际问题“符号化”的过程,发展符号感,为探索有关运算法则设置了归纳、类比等活动,力求学生对算理的理解和法则的掌握。
本教案处理去括号法则是直接运用乘法分配律去括号的;并对某些内容和例题作了小范围的调整和增删。
教学目标。
〔知识与技能〕。
1、理解单项式、多项式和整式及有关概念,弄清它们之间的区别和联系。
2、理解同类项的概念,能熟练的合并同类项。
3、掌握去括号法则,能准确地去括号。
4、熟练地进行整式的加减运算。
〔过程与方法〕。
1、通过丰富的实例,经历观察、分析、交流、概括出单项式、多项和整式等有关概念。
2、经历类比有理数的运算律,探索整式的加减运算法则。
3、发展有条理的思考及语言表达能力和用数学知识解决实际问题的能力。
〔情感、态度与价值观〕。
1、培养学生主动探究,合作交流的意识。
2、通过将数的运算推广到整式的运算,在整式的运算中又不断地运用数的运算,使学生感受到认识事物是一个由特殊到一般,由一般到特殊的辩证过程,培养学生初步的辩证唯物观念。
重点难点。
理解整式的概念,会进行整式的加减去处理运算是重点;正确区分单项式的次数与多项式的次数,括号前是负数时去括号是难点。
课时分配。
2.1整式…………………………………3课时。
2.2整式的加减………………………………………3课时。
本章小结…………………………………………2课时。
2.使学生能够熟练地按有理数运算顺序进行混合运算;
3.注意培养学生的运算能力.。
教学重点和难点。
重点:有理数的混合运算.。
难点:准确地掌握有理数的运算顺序和运算中的符号问题.。
课堂教学过程设计。
一、从学生原有认知结构提出问题。
1.计算(五分钟练习):
(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
(24)3.4×104÷(-5).。
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、讲授新课。
1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.。
审题:(1)运算顺序如何?
(2)符号如何?
要想尽最大可能的发挥出课堂45分钟的效益,需要从许多方面去准备,去思考,比如对教学重点和难点的突破,对课堂的组织对突发事件的应对以及对学生实际情况的了解等等。要想上好一节课需要付出很多的精力。复习课并不是单纯的让学生去重复练习,更重要的是使学生在巩固基础的前提下,分析问题解决问题的能力得到提高。
教学目标:。
1、理清课文叙述的顺序,概括课文内容。
2、学习用心理描写塑造人物,表现人物性格的写法。
3、在熏陶感染中引导学生体味生命的意义,正确对待挫折和失败。
教学重点:学习用心理描写塑造人物,表现人物性格的写法。
教学难点:理解含义深刻的句子。
一、导入新课。
2、提问:为什么她能够忍受这么大的痛苦?
3、请学生简单发表自己的见解。
二、阅读与概括。
1、快速阅读。
要求:默读、注意速度、抓住内容要点(教师巡视,解答学生阅读过程中的问题)。
2、概括主要内容。
文章写“我”和战友在利比亚的撒哈拉沙漠的一场遇险。
三、细读文本。
1、粗读课文后,你觉得“我”被困沙漠中,总的感受是什么?(痛苦)。
2、请用“——”划出我遇到的苦。
3、对这些痛苦,作者心情如何?请用“~~~~~~”划出表心情的语句。
具体分析过程中加强词句的朗读、赏析。
四、质疑探究。
结合上下文,品味下列语句的含义。
1、我们期待黎明就像农人期待春天,我们期待中途站就像期待一片福地,我们在群星中寻找自己的真理。
2、我没有一点儿遗憾。我奋斗过,但我失败了。这对从事我们这个行业的人来说也很平常。不过,我总算是呼吸过海风了。(朗读、学生发表见解、教师补充纠正、朗读感受)。
五、拓展延伸。
1、故事背后的感悟。
《地震中最坚强的人》中的女孩为什么能忍受这么大的痛苦?
那是因为她心中有一种巨大的信念。因为她期盼着自己能够活着……。
2、走进作者。
这到底是怎样一个人呢?
1900年生在法国里昂。
1921年在法国空军服役。
1926年开始从事航空事业。
1939年参加抗德战争。
1940年埋头从事文学创作。
1944年执行第十次飞行侦察任务时消失于地中海上空,从此一去不返。
他就是被称为“蓝天白云耕耘者”的法国飞行员作家圣埃克絮佩里。
3、集体朗读文章结尾,感受作者的乐观、坚强。
1.了解老王的不幸。
2.把握老王、杨绛及家人的善良。
情感态度和价值观目标。
1.体会“我”和老王的善良,领会“我”的平等观念。
2.培养学生的同情心,学会以善良体察善良、回报善良。
教学难点:
领悟“我”平等观念。
教具准备:多媒体。
教学方法:主要采用品读法、合作探究法、谈话法。
教具准备:多媒体。
课时安排:1课时。
教学过程:
一、导入。
二、整体感知。
1.通过预习,你能从文章哪一句话看出杨绛对老王的感情?
2、文章的最后一句话。
3、文中“幸运的人”指的是谁,“不幸者”指的是谁?
三、合作探究。
(一)认识不幸。
1、请同学们浏览课文1-4段,完成下列表格,了解老王的不幸。
姓名性别职业。
身体状况。
家庭情况。
居住条件。
(二)寻找美德。
跳读课文1-16段,分别找出体现老王善良和我及家人善良的事件,用精炼的语言概括出来。
(1)老王的善良。
第一件事:送冰(冰大价等,费用减半)。
第二件事:送钱先生去医院(不要钱,拿了钱不放心)。
第三件事:改装三轮(乘客不会掉落)。
第四件事:送鸡蛋、香油(不要钱,送我们)。
(2)杨绛及家人的善良。
(1)照顾老王的生意,坐他的车。
(2)送老王大瓶鱼肝油。
(3)老王再客气作者也付给他应得的报酬。
(4)关心老王的生计。
(5)老王送来香油鸡蛋,也给了钱。
(6)担心老王摔倒,对没请他坐下喝茶感到抱歉,心里不安。
(三)品味善良。
请同学们速读8-16自然段,思考下列问题并在书上做好批注。
1.老王是在什么样的身体状况下给我送香油和鸡蛋的?
2.老王说了不要钱,为什么又接过了钱?他来的真正目的是什么?
3.面对送香油和鸡蛋的老王,我有哪些反应和感受?
四、感悟情感领会主题。
杨绛给予老王的是同情,老王给予杨绛的是感恩。
老王需要的是真诚、平等和尊重!
五、拓展延伸。
1、国家、社会在行动。2、学校在行动。3、关注他们,我们当代中学生准备做些什么呢?请拿出纸笔写写。
六、结束语:我们常常无法做伟大的事,但我们可以用伟大的爱去做些小事!)。
七、作业:1、课后练习三。
2、阅读《我们仨》。
1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数。
2、能力目标:能应用正负数表示生活中具有相反意义的量。
3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系。教学重难点。
重点:理解有理数的意义。
难点:能用正负数表示生活中具有相反意义的量。
教学过程。
一、创设情境、提出问题。
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分。两个队答题情况见书上第23页。
二、分析探索、问题解决。
分组讨论扣的分怎样表示?
用前面学的数能表示吗?
数怎么不够用了?
引出课题。
讲授正数、负数、有理数的定义。
用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数。启发学生再从生活中例举出用负数表示具有相反意义的数。
三、巩固练习。
1、用正数或负数表示下列各题中的数量:
(2)球赛时,如果胜2局记作+2,那么-2表示______;。
(3)若-4万表示亏损4万元,那么盈余3万元记作______;。
(4)+150米表示高出海平面150米,低于海平面200米应记作______.
分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量。
2、下面说法中正确的是().
a.“向东5米”与“向西10米”不是相反意义的量;
b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;
c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;。
d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米。
三、小结回顾、纳入体系。
学生交流回顾、讨论总结,教师补充如下:
概念:正数、负数、有理数。
分类:有理数的分类:两种分法。
应用:有理数可以用来表示具有相反意义的量。
七年级有理数的乘法教案板书(实用15篇)
文件夹