通过总结,我们可以更好地总结经验,提高工作和学习的效果。写总结要注重逻辑性,遵循时间序列或者主题思路。以下是小编为大家整理的古诗词佳句,可以让您领略中国古代文化的魅力。
在这次教学中,也存在着许多不足。
教材所提供的主题图是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的素材。教后,发现学生能呈现的算法基本上局限在:345、354、453范围内,我们探索所需要的类似3(45)的算式是较难主动再现的。因此,教学中,要通过刻意的人为的引导得到,其实很不自然,有些强加的感觉。也许,直接呈现乘法结合律的事例给学生会更好些。
由于经验的欠缺,对课堂的调控与把握还是做得不到位。有时候我的语言有些随意,不够正式,评价语言不够丰富,这是非常不足之处,既而需要我今后努力学习的方向。还有通过有其他老师的点评,让我明白老师的辅助作用及提问题的技巧性也很重要的,只有这样才能更好地达到课堂的有效教学。
1.多听课,多学习。学习优秀教师的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2.加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。
3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数。
1、使学生理解和掌握乘法结合律,初步体验乘法结合律的应用。
2、通过乘法结合律公式的推导教学,培养学生思维能力,及科学的学习方法。
3、培养学生的分析、比较、综合能力以及初步的抽象概括能力。
4、通过学生的自主学习,激发学生学习数学的兴趣。
5、结合教学中具体的教学事例对学生进行学习习惯、道德品质方面的教育。
引导学生概括出乘法结合律,初步体验乘法结合律的应用。
一、复习准备,引入问题情境。
请同学们做口算题。
2×550×225×48×12540×25。
根据同学的回答总结出:5和2是一对好朋友,它们相乘等于十;25和4是好朋友,它们相乘等于一百;125和8是好朋友,它们相乘等于一千。
教师板书:5×225×4125×8。
请同学们要牢记这三对好朋友,一会儿它要给我们很大的帮助。
二、学习新课。
1、出示主题图。
师:同学们,要保护我们的家园,就要植树造林,绿化环境。
2、引导学生观察:图上的同学们在干什么?上节课我们根据这副图的信息提出四个问题,已经解决了两个问题,今天我们一起解决第三个问题。
板书:一共要浇多少桶水?
师:要解决这个问题,要知道哪几个信息?
3、小组合作,列出综合式。
学生做完后说出自己是怎么想的。(一种思路是先求一共种多少棵树,再求一共浇多少桶水;另一种思路是先求一组浇多少桶水,再求25组一共浇多少桶水。)。
板书:25×5×225×(5×2)。
=125×2=25×10。
=250(桶)=250(桶)。
答:一共要浇250桶水。
4、讨论、比较。
提问:
(1)这两个算式都有道理,而且它们的结果是相同的,说明这两个算式之间有什么关系?(是相等关系。)。
板书:25×5×2=25×(5×2)。
(2)等号左边和右边的算式有什么相同的地方?
议论后得出:等式两边算式中的3个因数一样,都是25,5和2;它们的运算符号是一样的,都是乘号。
(3)那它们有什么不相同的地方?
它们的运算顺序不一样,左边算式要把前2个数相乘,右边算式因为有小括号,所以要先算后边小括号里面的。
(4)哪个算式计算起来更简便呢?
师概括并启发提问:
这两个算式因数相同,运算顺序不一样,但结果都是相同的,这种现象是不是偶然的呢?
5、你能再举出几个这样的例子吗?如:
3×6×5=3×(6×5)。
7×4×20=7×(20×4)。
25×8×4=25×(8×4)。
启发提问:
(1)这三个等式中,每组等式的.因数一样吗?(一样的)。
(2)它们的运算顺序一样吗?(不一样的)。
(3)三个等式左边的算式的运算顺序是怎样的?
议论后明确:三个等式左边的算式运算顺序是一样的,都是把前两个数先乘,再与第三个数相乘。
(4)三个等式右边的算式运算顺序是怎样的?
议论后得出:三个等式右边算式的运算顺序是一样的,都是先把后两个数相乘,再同第一个数相乘。
(5)它们每个等式左右两边运算顺序不一样,但它们的积呢?(积是一样的)。
师概括:通过刚才的计算、讨论,看来咱们发现的现象不是偶然的,是有规律性的。
6、引导学生总结规律。
咱们再观察一下,在乘法中,三个数相乘,可以怎么算?还可以怎么算?
学生议论。在充分发表意见的基础上,概括并板书:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
7、用字母公式表示定律。
启发学生如果用a,b,c分别表示三个因数,乘法结合律的字母公式是什么?
板书:(a×b)×c=a×(b×c)。
师概括:我们学习了乘法交换律,可以改变乘法中的两个因数的位置,今天我们学习乘法结合律可以改变乘法运算当中的运算顺序,它们的积都是不变的。
8、看教科书,讨论小精灵提出的问题。
计算43×25×425×43×4。
先让同学独立计算,然后讨论,明确应用了什么运算定律。
10、练一练。
完成35页下面的“做一做”的第二题,请生板演,做完后集体订正。
三、巩固练习。
1、练习六第2题。
2、用简便方法计算。
42×125×825×17×4(25×125)×(8×4)。
一、教材分析:
本节课内容选自北师大版义务教育课程标准实验教科书第三单元。它是在学生掌握了乘法的意义、基本的多位数乘法计算方法和理解乘法交换律的基础上进行教学的,也是进一步学习乘法分配律和有关乘法简便算法的基础,是紧密连接前后教材的桥梁。
根据《新课程标准》的基本出发点,基本理念和学生以有的知识基础和学习经验,我把本节课的目标定为:
1、认知目标通过对问题情境的探索,使学生理解并掌握乘法结合律,并能应用乘法交换律和结合律进行简便计算。
2、能力目标培养学生初步的逻辑思维能力。
3、情感目标通过合作交流,培养学生的探究意识和合作学习的意识。
教学重点:理解乘法结合律的意义和乘法结合律的应用。
二、教法分析:
为了很好的完成上述教学目标,根据本节课是通过理解乘法结合律进行简便计算的教材特点和学生的认知规律。
在思维活动的组织上,采取比较对照、区别几种计算方法的异同突出两个数相乘凑整的优越性及由实例列算式到抽象出乘法结合律定理的方法。
三、学情分析和学法指导:
关于乘法结合律,在三年级的简便算法的教学中已有所孕伏,这是在学生已有初步认识的基础上,再通过具体例子概括出一般规律,学生在获取新知的过程中,以学生的自主探索,合作讨论为主,讲练结合,改变了传统的单纯传授知识模式,而更注意发展智力,培养能力。创设问题的情境,比较两种算法的相同点和不同点,引起学生的学习动机。使学生感到有学习和探索的需要和兴趣,并积极地参与到学习活动中。通过小组讨论对比几种计算方法后总结出把两个能凑整的数放在一起相乘有利于计算的方便快捷。利用原来学过的乘法交换律字母表示形式迁移得出结合律的字母表示形式。在教学过程中,讲练结合,练习循序渐进,掌握新知。
四、教学模式:
这个部分我分为4个环节:创设情境、建立模型、解决问题、拓展延伸。
(一)、创设情境:
“兴趣是最好的老师”,在教学中激发学生的兴趣是关键。因此我首先以学生熟悉的口算为切入点进行男女生竞赛。由此得出:两数相乘能够凑整的可以使计算比较准而快。
(二)建立模型:
这个环节我分4个版块进行:
1、情境引入。
(课件出示)在这里,我注重利用学生已有的知识经验,组织学生讨论:这两种解法有什么相同点,又有什么不同点?让学生通过互相交流说出自己的解法,并让学生议一议每种方法。在学生评议的基础上,给予学生赞扬和鼓励。根据学生的发言,屏幕上逐一显示各种解决方法。在这一过程中学生的主体地位得到尊重,从被动接受知识为主动探索,在具体的操作中进行独立思考,在相互的交流中不断完善自己的方法,促进学生创新意识的培养。
2、讨论交流。
在学生通过讨论交流得出结果,确定了哪一种计算方法更简便后(课件出示相等关系)继续观察几组算式及数字的特点,用自己能想到的方法确定两个算式之间的关系。(课件出示)这个设计环节是本节课的亮点,学生可以通过多种方法解决两个算式之间的关系,学生可能会通过计算得出,也可能利用乘法的意义和交换律得出,仔细观察的学生还可能会注意数字的特点和关系直接得出结果等等方法。从中体现了数学学习方法的多样性,学生的思维得到充分的拓展,也发展了学生的实践能力与创新精神。对于正确得出结论的给予鼓励。实践出真理。通过这几组算式的比较对照,学生会发现运算数字不变,改变运算顺序,结果不变。在得出规律后让学生自己举一些类似的例子。通过举例,培养了学生的发散思维能力,充分调动了学生的学习积极性,进一步加深了对规律的理解,为下一步总结定律做铺垫。起到点面结合的桥梁作用。
3、总结归纳(建立模型)。
接着,根据学生原来掌握的乘法交换律字母表现的形式,利用知识的迁移得出乘法结合律的字母表现形式(课件出示)。
在整个教学新知过程中,学生能够自主探索解决问题,充分体现学生的主体作用和老师的主导作用。
4、基础练习。
学生进行随堂练习。练习作业是课堂教学中必不可少的活动,犹如工业生产中的“产后服务”。它可以巩固新知,加深记忆。(课件出示练习)。
在练习过程中,如果出现学生对于(12×□)×5=□×(4×□)不懂填,那么可以马上结合字母公式找准a、b、c分别代表哪个位置的数,对号入座;在这里还要强调数字特点,括号的使用。
让学生判断各题是否符合乘法结合律,进一步加深了对乘法结合律的理解,也培养了学生的判断分析能力。
(三)解决问题。
学习不是为了学而学,而是要把我们所学的'知识灵活运用到我们的实际生活中,为我们的生活和进一步学习服务的。
(课件出示)。
学生利用乘法结合律找到最简便的计算方法,增强了应用数学的意识,对用最优化的过程得出结果的学生给予大力表扬,并在此渗透德育教育,教育学生保护环境,讲究卫生,不乱扔垃圾,争做社会好公民!
学生练习后进行阶段性小结:在几个数相乘的时候,如果其中有两个数相乘得整十、整百—————的数,就可以利用乘法交换律和结合律,把它们先相乘,使计算简便。
(四)拓展延伸:
课堂练习的目的在于巩固本节课的教学重难点,并找出不足及时补漏补差。
(课件出示作业)。
针对25×16,如果学生直接进行计算,则没有达到简算得目的,面对这种情况我会给学生回顾复习时的25×4,引导学生在算式中找出隐含的数字4,把16分成4×4再进行简算。如果学生是把16分成2×8,则全班讲解,这种方法也可以凑整简算,并提出表扬。
作业设计由浅入深,由易到难,既让学生巩固加强所学新知,又有意识的培养了学生的创新思维,使学生具有初步的创新精神和实践能力。
在课堂教学结束前引导学生从定律和简便计算的方法上进行课堂小结。
五、板书设计:(课件出示)。
一节课的板书目的是要突破教材的重难点,在我的板书设计中,板书学生通过感知体现重要性的三个算式,乘法结合律的定律是教材的重点,字母公式体现了由个体到一般的概括。这些都充分体现了新课标的教育理念。
教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
多媒体。
尝试法、观察比较法。
一、复习导入。
我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。
二、探究新知。
1、主题图引入。
(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。
(2)你能提出哪些问题?(指定多名学生说一说。)。
2、学习例1。
(1)出示例1:负责挖坑、种树的一共有多少人?
(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。
(3)学生独立列式计算。教师根据学生回答,边板书:
4×25=100(人)25×4=100(人)。
(4)教师引导学生观察,比较两种解法有何异同。
(5)你能再举出几个这样的例子吗?(学生举例)。
(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)。
(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)。
(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。
(10)我们学习哪些知识时用了乘法交换律?
(11)反馈练习:完成教材第35页“做一做”的第1题。
3、学习例2。
(1)出示例2:一共要浇多少桶水?
(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。
(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25×5)×2和25×(5×2)。
(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25×5)×2=25×(5×2)。
(5)哪一种方法计算起来更简便?
(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。
(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
(9)用字母怎样表示?(a×b)×c=a×(b×c)。
(10)反馈练习:完成教材第37页的第2题。
(1)出示:怎样简便就怎样算?
5×37×2125×4×8×25。
(2)思考:怎样计算简便?
(3)学生独立完成,教师巡视指导,指定学生上台板演。
(4)集体订正,指定学生说一说各题运用了什么运算定律。
5、反馈练习:教材第35页“做一做”的第2题。
6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。
三、小结。
学生小结本节课的学习内容。
教师引导学生回忆整节课的学习要点。
四、作业。
《练习册》第14页第1课时的所有习题。
4×25=100(人)25×4=100(人)。
4×25=25×4)a×b=b×a。
(25×5)×225×(5×2)。
=125×2=25×10。
=250(桶)=250(桶)。
(25×5)×2=25×(5×2)。
(a×b)×c=a×(b×c)。
乘法结合律是学生学习运算定律的第二阶段,在此之前学生已经熟练掌握了加法交换律和结合律。因为乘法交换律和结合律与加法交换律和结合律基本相同,通过知识的正迁移学生完全能够自己学会。因此我把本节课的学习目标定位为:让学生经历乘法结合律的探索过程,理解和掌握乘法结合律的内容并能用字母表示规律。运用乘法交换律,结合律达到简便计算;利用知识的正迁移,渗透规律的发现,验证的科学方法。培养自觉探索、合作学习的精神,并从中体验到成功感。
其实,很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:
一是教材本身和老师之前或多或少有渗透;
二是学生课外学习所得;
三是来自学生自身的计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
探索数学的规律是有一个过程的,对这个过程的认识并不是教师传授的,而是需要学生自己体验、感受的。对学生已有的体验与感受及时地进行梳理,是提高探索能力的重要一环。最后,当学生已经概括出乘法的.结合律后,如果能进一步追问:“请大家想一想,我们是怎样发现乘法结合律的呢?”通过学生对方方面面的反思,引出最后的概括。这样可能对学习方法的掌握会更深刻一些。虽然,学生要真正理解概括还需要大量地体验,但相信经历多次这样的过程,学生就能体会到探索的基本步骤。
反思整节课,本课中因为是让学生自己总结定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。但在课前对学生学情关注还是不够,做为代班四年的教师应该为此感到愧疚,应该想到有一部分孩子看不见屏幕上的字,课前就应该给孩子们将学案打印出来,那样能节省更多时间,效率会更高一些。
授人以鱼,不如授人以渔,数学思想方法比数学知识本身更为重要。这节课是在学生已经掌握了乘法的计算方法的基础上进行教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。在教学过程中,我主要通过学生的观察、验证、归纳、运用等学习形式,采用启发式教学方式,由浅入深,从直观到规律,让学生去感受数学问题的探索性,培养学生学习数学的兴趣。教学时,我是先讲乘法交换律,再讲结合律,因为乘法交换律在学生以前的学习中都有渗透,而乘法结合律的生成也有赖于乘法交换律,所以先讲交换律可以以旧引新,为学生下一步学习结合律做好铺垫。
一、语言不够严谨,要简洁、精炼。在叙述乘法结合律时,要紧扣乘法结合律的定义。
二、要注意一下细节问题。在学生讨论、举例时,要求孩子验证等式是否成立时,要求叙述得不够严谨。
三、针对学生错误的回答,解释得不是很到位,需要针对孩子的回答,来着重讲解。
四、对于教材提供的主题图的体会:
教材所提供的主题图是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的素材。教后,发现学生能呈现的算法基本上局限在:345、354、453范围内,我们探索所需要的类似3(45)的算式是较难主动再现的.。因此,教学中,要通过刻意的人为的引导得到,其实很不自然,有些强加的感觉。也许,直接呈现乘法结合律的事例给学生会更好些。
由于经验的欠缺,对课堂的调控与把握还是做得不到位。有时候我的语言有些随意,不够正式,评价语言不够丰富,这是非常不足之处,既而需要我今后努力学习的方向。还有通过有其他老师的点评,让我明白老师的辅助作用及提问题的技巧性也很重要的,只有这样才能更好地达到课堂的有效教学。
1.多听课,多学习。学习优秀教师的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2.加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。
3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数。
乘法结合律是学生在学习乘法的运算规律中的一个难点,容易和前面学习的乘法交换律混淆,所以在设计教学过程时,我紧扣课本中的例题,在本节课的导入环节,根据课本上例题引导学生进入情境,让学生一步一步的发现问题,学生学习兴趣较高,接着引导学生根据问题从不同角度思考列出横式,然后让学生观察这两个横式能用什么符号连接起来,学生很快的发现,能用等号,接着顺势总结乘法结合律。
本节课我尊重学生学习的主体地位,让学生发现问题并解决问题,而接下来的习题我也设计了不同类型的题来检测学生对知识的掌握,这个环节习题很丰富,但后来发现有孩子在做题时,能把(a+b)×c=a×c+b×c横式类型的题从前往后做,而不会从后往前做,这使我觉得在以后的教学中除了培养学生从不同角度看问题的同时也要引导他们举一反三的看问题。
通过本节课教学,由此引发了我的几点思考和体会:
1、提供主动参与的条件,促进教学资源动态生成。
传统的课堂教学是教师讲、学生听,依据教材给的例子,通过观察,发现规律,再进行模仿练习,课堂沉闷乏味。首先,通过教材重组,呈现教学内容结构,学生在感性认识上获得了基础,从而为发现、概括乘法结合律奠定了基础。其次,为学生提供足够的学习时间和空间,教师启发学生用抽象的算式来举例验证,引导学生进行小组合作探究,师生、生生多向互动,人人体验探索规律的过程。第三,改变了学生被动接受的学习方式,让学生根据自己对知识的理解和课堂中获得的信息进行判断和辨析,提出自己的见解和疑问。因此,课堂上体现学生在主动参与中思维的灵活性和开拓性,出现了许多令我意外而惊喜的资源。如有的学生提出:乘法结合律不仅是三个数相乘,还可以是四个数相乘。另一个学生提出:两个数相乘也能运用乘法结合律的例子等。
2、捕捉和利用教学资源,促进教学过程动态生成。
相乘”,可以看出学生的思维相当拓展,已经不惟书、不惟师,敢于质疑、批判的精神风貌。我再次引导学生讨论、交流:“怎样归纳乘法结合律,你能说说吗?”及时促进学生的思维提升到更高的层面,进行思维的聚合。当学生提出“125×16也能运用乘法结合律”时,我觉得这节课的教学已经成功了。学生学会迁移,学会从个别到一般的推理方法,从而进一步拓展学生的思维,把课堂教学再次推上新的“高潮”。
通过这节课的教学,我深深体会到:一个真实的教学过程是不可预设的,而是一个师生等多种因素间动态的相互作用的过程。教师应多关注学生,要为学生提供必要的资源,要善于开发和利用学生资源,使课堂成为一个资源生成和动态生成的过程,成为促进师生生命共同发展的场所。
乘法结合律(实用8篇)
文件夹