最新数学教案汇总
文件夹
在编写教案时,教师要合理选择教学方法和教学资源,以激发学生的学习兴趣和提高学习效果。教案要注重培养学生的思维能力和创新意识,引导学生主动参与学习。下面是一些教师编写教案的心得体会和经验分享。
已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。
本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。
1、在具体情境中进一步理解分数,体会分数的相对性。
教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。
在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。
2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。
除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。
3、经历知识的形成过程,探索分数的基本性质。
分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。
4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法。
本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。
“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。
(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。
(2)部分观察。先引导学生对其中一组数==,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:
得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。
接着,引导学生从右向左观察,并练习:
得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。
在让学生观察其他几组分数,能得出同样的规律。
(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。
教材分析:
本课教学是在学生学习了分数的意义、分数与除法的关系、比较分数的大小等知识的基础上进行的。分数教学有两个最基本的概念,一个是分数的意义,一个是分数的单位.学生在理解的基础上掌握了这两个概念,学习分数就可以举一反三,因此在教学真分数和假分数时,帮助学生从分数意义上理解和掌握新课的内容。
教学目标:
1.知识与能力:使学生理解真分数和假分数的意义及特征,并能辨别真分数和假分数。
2.过程与方法:培养学生观察、比较、概括的能力。
3.情感、态度与价值观:培养学生数形结合的`数学思想。
教学重点:
理解真分数和假分数的意义及特征。
教学难点:
理解真分数和假分数的意义及特征。
教具准备:
课件。
教学过程:
1.什么叫分数?
2.说出下列各分数的分数单位以及包含的分数单位的个数。
3.分数与除法有什么关系?填一填。
讲授。
1.做一做第1题:根据真分数与假分数的意义分辨出哪些是真分数,哪些是假分数?在直线上表示出来。
2.练习十三的第1~3题:独立完成,集体订正。
3.作业:同步练习十三1-2题,选作3题。
这节课学习了什么知识,你有哪些收获?还有什么不明白的问题?
板书设计:
真分数和假分数。
分子比分母小的分数叫做真分数,真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。
(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。
(3)观察,说说你发现了什么?==(课件揭示)。
(4)交流:你还有什么发现?
分数的分子和分母变化了,分数的大小不变。
分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以相同的数)(课件演示)。
3、出示做一做图片(2),学生独立填写分数。
(1)说说你是怎么想的?
(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)。
4、想一想:引导归纳分数的基本性质。
(1)从刚才的演示中,你发现了什么?
板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。
(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词“都”、
“相同的数”、“0除外”。“都”可以换成哪个词?——“同时”。
板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。
(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)。
5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12)(课件揭示)。
6、趣味比拼,挑战智慧。
给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。
交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?
三、多层练习,巩固深化。
1、考考你(第43页试一试和练一练第2题)。
2/3=()/186/21=2/()。
3/5=21/()27/39=()/13。
5/8=20/()24/42=()/7。
4/()=48/608/12=()/()。
2、涂一涂,填一填。(练一练第1题)。
3、请你当法官,要求说出理由.(手势表示。)。
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。()。
(2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()。
(3)3/4的分子乘3,分母除以3,分数的大小不变。()。
(4)10/24=10÷2/24÷2=10×3/24×3()。
(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。()。
(6)3/4=3×0/4×0=3÷0/4÷0()。
4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。
5、(1)把5/6和1/4都化成分母是12而大小不变的分数;。
四、拾捡硕果,拓展延伸。
(或用分数表示这节课的评价,快乐和遗憾各占多少?)。
2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)。
3、拓展延伸。
五、动脑筋退场。
让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边,与4/5相等的站在教室的左边。
1.通过观察实物、动手操作等活动,使学生认识长方体的特征,形成长方体的概念。
2.通过建立图形的表象的过程,发展学生的空间观念。
3.通过动手操作,小组合作学习,培养学生的立体思维,使学生在合作交流中体验到学习数学的乐趣,体验到生活中处处有数学。
长方体模型课件
一、情境创设新课引入
2.生活中,你还见过哪些物体的形状是长方体?
3.揭题:这节课进一步认识长方体。(板书课题)
二、引导探究小组合作
1.认识长方体各部分的名称。
(1)游戏:你们会玩摸长方体的游戏吗?
a你怎么确定摸到的一定是呢?还有什么方法?(他是用“面”、“棱”、“顶点”描述这个长方体的。)
b小组内互相说一说:什么是长方体的面、棱、顶点?(我想什么是长方体的“面、棱、顶点”你们可能有所了解,在资料袋中也有提示说明。)
c全班反馈
d教师小结:刚才同学们用自己的语言描述了长方体的面、棱、顶点。
2.探究长方体面、棱、顶点的特征
a它们之间有联系吗?各有什么特征?
b分小组活动。(下面小组分工合作,利用学具,通过摸一摸,数一数,量一量,剪一剪,比一比,看看有什么精彩的发现?将发现写在记录表上。)
c全体发馈,同学提问。(根据小组的发现,谁能向他们提出问题?)
d你们还有问题吗?
e教师提问:正方体与长方体有关系吗?为什么说是特殊的长方体?(预设:认识长方体长、宽、高特征;正方体与长方体的关系)
f教师小结:刚才同学们用自己的方法研究了长方体的特征,你可以画出一个长方体吗?
3.教学如何画长方体。(如果这样放最多可以看见他的几个面?还有哪几个面看不见?)(在画图时,除了画前、后两个面是长方形,其它的面看上去成了平行四边形,实际上它还是长方形)
三、运用新知体验价值
1.如果现在只看到长方体的长、宽、高,你还能画出一个长方体吗?(闭上眼睛,画长方体。)
2.说出长方体各个面的面积。说出长方体各个面的面积。
3.猜一猜:根据长、宽、高长度,它可能是生活中的什么物体?
4.做一个如图的长方体宝宝床的床架,至少需要多少分米长的木条?
5.你准备选择下面哪一种尺寸的床板?(单位:分米)
32×920×10
四、全课总结拓展创新
1.想一想:为何北大校区众多建筑设施的外观造型都是长方体呢?
2.实验活动:用准备的材料做一个长方体(再次体验长方体的特征)。
书第54――55页,有趣的测量及试一试第1、2题。
1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。
2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。
3.情感、态度与价值观:在观察、操作中,发展学生空间观念。
用多种方法解决实际问题。
探索不规则物体体积的测量方法。
不规则石头、长方体或正方体透明容器、水。
一、导入新课
老师出示准备好的不规则石快。
师:这个石块是什么形状的?(不规则)
什么是石块的体积?
你有什么困难?
二、教学新知
1.测量石块的体积
(1)小组讨论方案
师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?
(2)小组制定方案
(3)实际测量
方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。
师:为什么升高的那部分水的体积就是石块的体积?
方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
师:为什么会有水溢出来?
这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。
1.实际应用
(1)读题,理解题意。
(2)分析:你是怎么想的?
(3)学生尝试独立解答。
(4)集体反馈,订正。
让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)
三、课堂小结
学习了这节课,同学们有什么感受和体会?有什么提高?
1.书第55页第2题。
本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。
2.学生再找一些实物,测量出体积。
板书设计:
有趣的测量
方案一:
方案二:
“底面积×高”的方法计算。
2×1.5×0.2=0.6(立方分米)
1.理解和掌握循环小数的概念.
2.掌握循环小数的计算方法.
理解和掌握循环小数等概念.
理解和掌握循环小数等概念.
(一)口算。
0.8times;0.5=4times;0.25=1.6+0.38=。
0.15divide;0.5=1-0.75=0.48+0.03=。
(二)计算。
教师提问:通过计算,你发现了什么?
(一)教学例7。
例710divide;3。
1.列竖式计算。
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)。
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.
所以10divide;3=3.33……。
(二)教学例8。
例8计算58.6divide;11。
1.学生独立计算。
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6divide;11=5.32727……。
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)。
4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.
教师板书:循环小数.像3.33……和5.32727……是循环小数.
5.简便写法。
3.33……可以写作;。
5.32727……可以写作。
6.练习。
把下面各数中的循环小数用括起来。
1.5353……0.19292……8.4666……。
(三)教学例9。
例9一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了.大约用去了多少千克汽油?(保留两位小数)。
1.学生独立列式计算。
130divide;6=21.666……。
asymp;21.67(十克)。
答:小汽车大约装21.67千克汽油.
2.集体订正。
重点强调:保留两位小数,只要除到小数点后第三位即可.
3.练习。
计算下面各题,除不尽的先用循环小数表示所得的`商,再保留两位小数写出它的近似值.
28divide;182.29divide;1.1153divide;7.2。
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.
2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.
(一)计算下面各题,哪些商是循环小数?
(二)下面的循环小数,各保留三位小数写出它们的近似值.
1.29090……0.0183838……。
0.4444……7.275275……。
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)。
1、学生借助生活中的实例,学会用字母表示数,体会用字母表示数的必要性和重要性。在具体的情境中能利用字母表示数进行数学表达和交流。
2、在探索现实世界数量关系的过程中,体验用字母表示数的简明性,增强数学意识,初步体会归纳猜想、数形结合等数学思想方法在数学中的应用。
3、学生在自主探索、合作交流中获得成功的体验。
理解字母表示数的意义。
探索规律,并用字母表示简单的数学规律。
今天我们要上一节与字母有关的数学课,生活中你见到过与字母有关的事物吗?(出示下列图案。)。
(音乐课本中“1=f”表示f大调f音唱“1”;扑克牌中的字母表示固定的数……)。
字母的用处非常大,数学上我们经常用字母运算或表示数学规律,今天我们就来研究字母在数学中的运用。
设计思路:出示图案,联系乐理知识,在于激活学生的思维,实现学生生活经验与学习内容的和谐统一。
活动(一):儿歌接龙,初次尝试用字母表示数。
1、由儿歌“1只青蛙1张嘴,2只青蛙2张嘴,3只青蛙3张嘴……”让学生说说发现了什么。
2、(师生)由慢到快儿歌接龙,引出“n只青蛙n张嘴”。
师:n是什么?它表示什么?
3、板书课题:用字母表示数。
设计思路:用字母表示数意味着将把学生从数的领域领入代数的世界,这将促使学生的数学知识结构和数学观念、方法产生质的飞跃,同时用字母表示数又是用代数方法解决问题的基础。因此,设计这样的活动,自然而然引出用字母表示数;通过活动,让学生初步感知字母在不同的情况下可以表示一个确定的数,还可以表示任意数(甚至式)。下一个活动还将渗透字母也可以表示一个在一定范围内的数。
活动(二):推想(师生)年龄,体验字母的妙用。
1、猜年龄。
(1)让我猜猜你们今年有多大了?(大多数同学今年10岁。)。
(2)那你们知道刘老师今年有多大吗?猜猜看。
2、推想师生年龄。
(1)想一想当你们1岁时,刘老师有几岁?怎样列式?
(2)下面我们来做个游戏。让我们进入时空隧道:大家可以回到从前,也可以展望未来,推算当你几岁时,刘老师是多少岁。
(3)交流汇报,教师板书。
(4)用字母表示师生的年龄。
(5)讨论a和取值范围。
(6)如果用字母b表示老师的`年龄,那么同学们的年龄可以怎样表示呢?你是怎么想的?与同桌说一说。
设计思路:这一教学环节设计从具体的算式抽象出用字母表示数量关系,使学生感受到数学的符号语言比文字语言更为简洁明了,体现用字母表示数的概括性、简洁性。通过积累、体验和认识,不断提高学生的学习兴趣和理解所学知识的能力。
活动(三):数数猜猜,发现规律。
出示三角形图。
(1)搭一个三角形,要用几根小棒?搭两个互不连接(下同)的三角形呢?
(2)如果也让你搭三角形,你准备搭几个?要用几根小棒?
(3)观察:搭了这么多三角形,你有什么发现吗?
(4)我们知道m在这里表示三角形的个数,那么m可以表示几个这样的三角形?(m在这里表示除0外的任意自然数。)。
(5)自学教材“小博士的话。”(字母表示数时的简写方法。)。
设计思路:安排学生自学课本,培养学生的自学能力,逐渐养成阅读教材的习惯。
活动(四):小小“审判官”(判断下列各式的写法是否正确。)。
a×4可写成a4()(数与字母相乘时,数一般写在字母前面。)。
5×6可写成56()(数与数相乘时,乘号不能省略不写。)。
b+2可写成2b()(数与数相加时,加号不能省略不写。)。
a×b=ab()(字母与字母相乘时,乘号可以省略不写。)。
1×d=d()(1与任何数相乘得原数。)。
活动(一):续儿歌。
1只青蛙1张嘴,2只眼睛4条腿;
2只青蛙2张嘴,4只眼睛8条腿;
3只青蛙3张嘴,6只眼睛12条腿;
……。
()只青蛙()张嘴,
()只眼睛()条腿。
小组交流:你能用一句话说一说这首儿歌吗?
师:26个英文字母都可以用来表示数,但由于英文字母“o”在书写形式上非常接近阿拉伯数字“0”,所以在用字母表示数时,通常不选择英文字母“o”。
活动(二):一段有趣的话。
小明和妈妈乘公交车去商场购物,车上原有30人,汽车靠站时,下去x人,又上来y人;汽车继续行驶,小明和妈妈来到商场,一双袜子8元钱,妈妈买了a双,小明买了m米彩带,回家做手工时把它平均剪成6段。
小组讨论:根据这段话可以提出哪些数学问题?怎样解答?
设计思路:设计有价值的讨论题,让学生有话想说,使学生在自主探究的空间中达到对本节课所学知识的应用与巩固。
1、在古代埃及《兰特纸草书》中用x代表数,这是目前已知的人类最古老的使用字母的记载。
2、介绍数学家。
1、运用角色游戏活动,帮助幼儿建立初步的角色意识,丰富幼儿的生活经验。
2、复习区分圆形、三角形和正方形的外形特征,尝试描述图形的二维特征。
3、启发幼儿用礼貌用语,进行简单的交往,积累美好的情感体验。
重点:在游戏活动中积累生活经验,并愿意描述。
难点:区分物体图形、颜色的二维特征。
1、小熊两个;小鸭、小兔、小猫挂饰若干;各种形状的礼物若干。
2、供幼儿操作的圆形、三角形和正方形的、大小、颜色不同的饼干若干,贴有圆形、三角形和正方形标记的'盘子各一。活动设计:
一、引起兴趣:
1、今天,我们来做个游戏——扮小动物,你愿意扮谁就选一个挂饰挂在身上。
2、幼儿带上挂饰,你扮谁呀?(我是小兔、我是小鸭……)。
4、怎么去呢?买些什么礼物呢?
5、每位选一件礼物,你选的是什么?告诉你的好朋友。
6、出发——小熊家到了。(敲门进入)。
二、送礼物:
1、告诉小熊自己送的是什么礼物,并祝小熊生日快乐。
2、按小动物分组把礼物送给小熊。
3、请个别幼儿把礼物按图形分类。
三、小熊请客人吃饼干:
1、小黑和小白准备了点心给你们吃,(出示两盆饼干)小黑准备的是奶油饼干,小白准备的是葱油饼干。
3、小白请大家动脑筋:
(1)请小鸭吃红的三角形饼干;
(2)请小兔吃黄的圆形饼干。
(3)请小猫吃绿的正方形饼干。
四、结束部分:
1、我也准备了一份礼物(出示生日蛋糕),引导幼儿一起唱“生日快乐歌”。
2、时间不早了,我们该回家了,等到明年再来给小黑、小白过生日。为您服务学科吧。
1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。
2、能正确列式解答“求平均数”问题。
教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。
一、引入。
二、新授。
1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。
刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。
生:用4来表示……;用5来表示……。
遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。
2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。
第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。
师:你觉得用几来代表他1分钟的水平呢?
生:计算是4。
师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。
生:3+7+2=12个12÷3=4个(板书算式)。
生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)。
师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)。
我们说,4是3、7、2这3个三个数的平均数。
那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?
生:他投了3次,所以4是3、4、5的平均数。
师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)。
3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?
师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。
老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。
老师第四次投中了1个。我赢了还是输了?算一算。
如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?
三、练习。
1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……。
不然移多补少补给谁去呢?
2、平均身高160,但不是人人都160,排在中间的人一定是160吗?
3、平均水深才110,所以以他140的身高肯定淹不死,是吗?
生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。
出示水下图片。
师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?
5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20__年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。
四、总结。
1、比较系统地理解自然数、整数、分数、小数、百分数的意义。
2、自然数、整数、分数、小数、百分数的联系和区别。
3、对各种数进行分类,体验分类的原则与方法。
4、掌握十进制计数法。
教学重点:在已有知识经验的基础上,加深对各种数的意义的理解。
教学难点:分类,形成系统,理解数与数之间的联系与区别。
教学关键:数的意义的理解。
教学准备:多媒体课件
同学们,在小学阶段,我们认识了很多的数,你能说说我们已经学习了哪几种数吗?(教师板书各种数)
1、用数表示数轴上的各点,唤醒学生对数的认识。
(1)教师先确定“0”的位置,然后由学生分别指出1、2、-1、-2所在的点各用什么数表示。
(2)引导学生发现规律。
从这条线上,你能发现什么规律?
(3)请学生指出、0.3、1、2、2.9所在的点各用什么数表示。
能不能说说为什么这些点要用分数或小数表示?
你还发现了什么?
(4)请学生在上面的这些数中分别找出黑板上板写的各种数。
我们还学过哪些分数?分数的个数是怎样的?分数可以分成哪几类?
我们还学过哪些小数?它们的个数是怎样的?小数可以分成哪几类?
我们还学过哪些自然数?它们的个数是怎样的?
我们还学过哪些正数?它们的个数是怎样的?
我们还学过哪些负数?它们的个数是怎样的?
除了这些数,我们还学习过那些数?(引出百分数)
2、归纳分类
学生汇报。
(1)(2)
在分类的时候,我们要注意什么?
1、整数和分数之间有什么联系和区别?(负整数不在讨论的范围)(举例说明)
联系:(1)它们都有各自的计数单位。
(2)整数可以转化成分母是“1”的分数形式。
区别:(1)分数是把单位“1”平均分成若干份,表示这样的一份或几份的数,分数用来表示不满“1”的数,整数则是表示几个“1”。
(2)它们的计数单位不同。
2、整数和小数之间有什么联系和区别?(举例说明)
联系:进制相同,都采用十进制计数法。(填写数位顺序表)
区别:(1)小数是把单位“1”平均分成10、100、1000......份,表示这样的一份或几份的数,小数用来表示不满“1”的数,整数则是表示几个“1”。
(2)它们的计数单位不同。
3、分数和小数之间有什么联系和区别?(举例说明)
联系:(1)小数是分数的一种特殊的表现形式,都用来表示不满“1”的数量。
(2)分数和小数可以互相转化。
区别:它们的计数单位不同。
4、分数与百分数之间有什么联系和区别?(举例说明)
联系:百分数是一种特殊的分数。
区别:分数可以表示数量,后面可以加单位,分数也可以表示两个数之间的倍数关系,分数还可以表示两个数相除,分数的分母可以是零以外的任何一个整数。百分数则一般只用来表示两个数之间的倍数关系,分母是固定不变的。
1、将下面的数填在适当的()里。
(1)冰城哈尔滨,一月份的平均气温是()摄氏度。
(2)五(4)班喜欢运动的同学占全班同学总数的()。
(3)杨老师的身高()米。
(4)某市今年参加马拉松比赛的人数是()。
2、在括号里填上合适的数。
(1)270.46=2×()+7×()+4×()+6×()
(2)2:()=0.4===()%
(3)一个数由7个组成,这个数是(),它的倒数是()。
(4)把4千克葡萄干平均分成8包,每包是()千克,每包占总数的()。
同学们,这节课我们系统的复习了小学阶段我们所学过的各种数,这些数为我们的学习和生活奠定了基础,你们知道没有数之前人类是怎样来表示数量的多少的吗?如果现在没有了这些数,我们的生活会是怎样的?除了这些数你还知道那些数?数的知识浩瀚无比,你们要努力学习,打好基础,将来有更多的数等待你的发现和创造。
2、能沟通知识之间的相互联系,提高解决问题的能力。
1、第52页第10题
先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?
(1)先让学生联系分数的意义口头分析:把全班人数看作单位”1“,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。
(2)再让学生根据分数与除法的关系列出算式,并写出得数。
(3)独立做下面两题
(4)交流
2、做第11题
(1)学生先独立练习
(2)引导比较a三道题目计算方法有什么相同?
b算式中选择的.除数有什么不同?
c从中还能想到些什么?
(3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。
3、做第12题练习后加强对比
(1)计算方法有什么相同的地方?
(2)算式中选择的被除数为什么不同?除数为什么相同?
(3)商的表示方法有什么不同?
4、做第13题练习后加强对比
要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位”1“,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称”米“。
5、思考题
方法一:可以根据每个分数中分子与分母的大小关系来判断。
方法二:通过画图帮助思考
2、引导学生利用学生自主折纸得到的算式,经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化、建模等教学思想,提高学生解决问题的能力。
3、通过折一折,画一画、说一说,算一算等活动激发学生学习数学的兴趣,并让学生在学习活动中获得积极的、成功的情感体验。
1、重点:通过折纸探索并掌握异分母分数加减法的计算方法。
2、难点:利用折一折,画一画、说一说,算一算等活动理解先通分,再加减的算理。
(一)动手操作,明确目标。
1、谈话导入,开门见山板书课题:
异分母分数加减法,出示学习目标,生齐读。
(1)探索并掌握异分母分数加减法的计算方法。能正确计算异分母分数的。
加减法。
(2)通过直观的操作活动,理解异分母分数加减法的算理。
师:听说咱们班的同学个个都是折纸高手,这节课老师就要和大家一起来通过折。
纸研究解决解决异分母分数加减法的相关知识,有信心吗?
2、请看要求。
3、动手操作。
师:老师已经给每位同学都准备了两张大小一样的正方形纸张,请你拿出其中的一张按照要求动手操作。开始。(学生明确要求后,进行折纸、涂色、交流等活动,教师巡视指导。)。
4、学生汇报展示。
师:谁能说一说自己是怎么折的,涂色部分是这张正方形纸片的几分之几?(学生汇报,老师将学生的折纸和涂色情况贴在黑板上并在纸旁板书相应的分数)。
5、提出问题,明确目标。
师:同学们,如果现在要把黑板上两张纸中的涂色部分加起来你可以列出哪些加法算式?(学生口述算式,教师分别将学生提出的算式书写在黑板上。)。
想一想你能把这些算式分成几类?你是根据什么分的?(同分母、异分母)(教师根据学生的回答,将黑板上的算式进行整理。)。
还记得如何计算同分母分数加减法吗?谁来说说?(齐读同分母分数加减数的计算方法。同时将同分母分数加法让学生进行练习,口算出每道题的结果。)。
师:从学生汇报的'异分母加法算式中任意选择一道问:异分母分数如何加减呢?下面我们就来探索分母不同的分数相加减的计算方法。
(二)自主探索,理解算理。
1、自主探索进行算理探究。
师:出示生自编算式(1/2)+(1/4),请大家猜猜看,这道题的结果会是几呢?独立尝试,汇报各自的计算过程与结果。预设:可能出现的情况如下:
结论1:(1/2+1/4=1/6)。
结论2:(二分之一加上四分之一等于四分之三)。
结论3:(二分之一加上四分之一等于六分之二)。
2、讨论验证。
师:为什么同样的算式,会出现不同的结果呢?到底谁对谁错呢?
生:在全班范围内展开讨论,充分发表各自的意见。
3、理解算理。
师:刚才有人说结果是(---),有人说是(---),还有人说是0.75,到底谁对谁错呢?送给大家一句话“实践是检验真理的唯一标准”,请同学们用手中的纸折一折,一起来验证一下到底谁对谁错。开始。
注意通过展示学生的折纸过程,引导学生观察算式()+()的通分过程,明确()+()=()=()是错误的,感受异分母分数加减法不能将分子分母直接相加减。
师:在做异分母分数加减法,为什么不能直接将分子、分母直接相加或相减呢?
出示小数加法算式“4.21+5.3”,提问:“可不可以将百分位上的1加上十分位上的3”感受为什么异分母分数加减法不能直接将分子、分母相加。
师:可不可以将百分位上的1加上十分位上的3?
生1:不可以。因为相同的数位没有对齐。
生2:小数点没对齐。
师:小数点没对齐也就是什么没对齐?——数位没对齐。
师:数位不同也就是什么不同?(计数单位)。
师:也就是说当单位不同时不能直接相加减。我们在来看这道分数题,他们的什么不同?(分母),分母不同,也就是??(分数单位不同),可以直接相加减吗?(生:不可以。)。
4、小结算理。
谁来说究竟该怎样计算异分母分数的加法呢?
生汇报:先要通分,(也就是统一分数单位),把异分母的分数变成分母相同的分数,再计算,计算结果能约分的要约成最简分数。
(三)迁移应用,巩固提高。
1、迁移应用,解决减法问题:
1/2-1/4=。
2、完成“试一试”
出示试一试的+与-,再次为学生提供尝试机会。
(学生练习后全班回馈交流,并规范书写格式。)。
师:通过刚才的学习,你发现异分母分数加减法应怎样计算?
xx。
1、进一步熟练长方体、正方体表面积的计算方法。
2、通过解决粉刷墙壁的活动,提高学生对知识的综合运用能力和解决问题的灵活性。
通过解决粉刷墙壁的活动,提高学生对知识的综合运用能力和解决问题的灵活性。
结合生活实际,利用所学知识,灵活选择信息,解决实际问题。
今天,就让我们一起利用我们所学知识来解决粉刷墙壁的生活问题。(板书课题:粉刷墙壁)
2、提供信息,明确问题:
(1)出示信息。
课前经过实际测量和调查,同学们搜集了以下信息:
五年级一班的教室长8米,宽6米,高3米(每间教室门窗的面积大约19.3 2)我校有20间这样的教室。
品
种 规
格 价
格 粉刷
面积使用
年限人工
费用
仿瓷
涂料 20l/桶30元/桶0.5l/25年1元/2
多乐士乳胶漆易洗:10l/桶300元/桶0.2l/212年4元/2
普通:20l/桶400元/桶0.2l/212年4元/2
(2)明确信息的含义:请同学们,仔细观察这些信息,有不明白的地方吗?
(3)明确任务:选择哪种涂料呢?粉刷20间这样的教室至少准备多少钱?请同学们根据这些信息,在小组内一起讨论一下,把你们的想法说给同学听一听。
3、小组合作,解决问题。
学生小组讨论交流,解决一共需要花多少钱,从哪几个方面思考。注意了解学生的交流情况。
4、班级交流:要算一共需要多少钱?也就是算哪几个方面的费用?你们是怎样想的?引导学生,明确也就是算人工费和涂料费,但都应该先算出粉刷墙壁的面,再算出人工费和涂料费,后计算一共需要花多少钱。
6、交流汇报,比较:
学生根据自己选择的涂料,把计算的过程展示给大家。
根据计算结果,引导学生说出自己的想法。
教师小结:奥,同学们从不同的角度思考,制定了自己认为合理的方案!
经过我们粉刷墙壁的活动,你有什么感受?什么收获?
说来听听吧?
我相信大家,在生活的大舞台上,会有更多精彩的表现!
:教材第24―25页例1、例2及“做一做”。
练习七的第1―4题。
1.初步学会列方程解比较容易的两步应用题。
2.知道列方程解应用题的关键是找应用题中相等的数量关系。
1. 使学生能用方程的方法解较简单的两步计算应用题。
2. 引导学生能根据解题过程总结列方程解应用题的一般步骤。
3.能独立用列方程的方法解答此类应用题。
1.培养学生用不同的方法解决问题的思维方式。
2.渗透在多种方法中选择最简单的方法解决问题。
:列方程解应用题的方法步骤。
:根据题意分析数量间的相等关系。
1.口头解下列方程(卡片出示)
x-35=40 x-5×7=40
15x-35=40 20-4x=10
2.出示复习题
(1)读题,理解题意。
(2)引导学生用学过的方法解答
(3)要求用两种方法解答。
(4)集体订正:解法一:35+40=75(千克)
解法二:设原来有x千克饺子粉。
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
1.教学例1
(1)读题理解题意。
(2)提问:通过读题你都知道了什么?
(3)引导学生知道:已知条件和所求问题;题中涉及到“原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:
原有的重量-卖出的重量=剩下的重量
(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)
(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的重量乘以卖出的袋数)把上面的等式改为:
原有的重量-每袋的重量×卖出的袋数=剩下的重量
(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。
(7)引导学生根据等量关系式列出方程。
(8)让学生分组解答,集体订正时板书如下:
解:设原来有x千克饺子粉。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
(9)引导学生自己看118页例2上面一段话,提出问题:你能用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请几位学生汇报结果。都认为正确了再板书答语。
小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)
2.教学例2
小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?
(1) 读题,理解题意。结合生活实际帮助学生理解“付出”、“找回”等词的含义。
(2)提问:要解答这道题关键是什么?(找出题中相等的数量关系)
(3)组织学生分组讨论。
(4)学生自己解答,教师巡视,个别指导。
(5)汇报解答过程。汇报中引导学生讲解题思路,注意照顾中差生。
(6)教师总结订正。如果发现有列:2x=6-0.4和2x+0.4=6两种
方程的,教师要引导学生比较那种方法简单,并强调用较简单的方法解答。
3.学生自己学26页上面一段话,回顾上边的解题过程,总结列方程解应用题的一般步骤,总结后投影出示:
(1)弄清题意,找出未知数,并用x表示;
(2)找出应用题中数量间的相等关系;
(3)解方程;
(4)检验,写出答案。
4.完成26页的“做一做”
(1)学生独立解答
(2)集体订正,强化解题思路。
1.口答:列方程解应用题的关键是什么?
2.完成练习七第1题,在书上填写,集体订正。
3.按列方程解应用题的方法步骤学生独立做练习七4题,集体订正结果。
:引导学生总结本节课学习了什么知识。
练习七第2题、3题。
列方程解应用题
解:设原有x千克饺子粉。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
例2 小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?
解:设每节五号电池的价钱是x元。
8.5-4x =0.1
4x = 8.5-0.1
4x = 8.4
x = 2.1
答:第节五号电池的价钱是2.1元。
说课稿:
本节课选自九年义务教育五年制小学数学第八册第一单元列方程解应用题。
1.初步学会列方程解比较容易的两步应用题。
2.知道列方程解应用题的关键是找应用题中相等的数量关系。
1. 使学生能用方程的方法解较简单的.两步计算应用题。
2. 引导学生能根据解题过程总结列方程解应用题的一般步骤。
3.能独立用列方程的方法解答此类应用题。
1.培养学生用不同的方法解决问题的思维方式。
2.渗透在多种方法中选择最简单的方法解决问题。
列方程解应用题的方法步骤。
:根据题意分析数量间的相等关系。
要本节课中,我安排了这样几个教学环节,首先通过复习准备呈现解应用题的两种基本方法――用算术法解和用方程解,并通过学生的讨论分析让学生理解这两种解法的根本区别点,是从问题出发思考问题还是从等量关系出发思考问题,第二个环节就要求学生运用这两种方法分析同一道题,让学生理解用等量关系分析这类应用题要简单、容易得多,从中切实理解用方程解应用题的优越性,提高学生学习列方程解应用题的自觉性和积极性。第三个环节就紧紧抓住等量关系这个关键问题,引导学生分析解答应用题,从中掌握用方程解答应用题的一般步骤。第四个环节是通过例2的教学让学生直接运用这个解题步骤用方程解答应用题,放手给学生一个实践机会,形成在层次、有坡度、符合学生认知特点、符合知识发展逻辑顺序的合理的课堂教学结构。
最新数学五年级教案(汇总14篇)
文件夹