人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
在以往的实际学情中,有大部分学生都会算小数乘法,明白当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊,以往教这部分知识时学生会出现以下问题,学生直接写得数,有些计算三位小数乘一位小数在列竖式算第一步就点小数点了,学生列竖式计算不用尺子划线,,算出积后,划去了0再数因数共有几位小数,点上小数点,也有大多数学生列竖式时,受小数加、减法的影响,居然对齐了小数点,而不是因数的末位对齐,有部分不懂数数位,很多学生算5.23×50时,不懂得处理50中的0,干脆忽略了,错漏百出。
本以为小数乘法只需要看成整数乘法的计算,然后处理好小数点就行了,其实真正操作起来,并不那么容易,千万不能忽视,今年我是这样处理的:这是学生第一次接触小数乘法,教材安排了复习积变化的规律,透过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。教学小数乘整数时,我抓好了以下几点:
在教材中积变化的规律是复习,我在教学中却将当它是新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数。引导学生直接运用这个规律计算出0.3×2,
同时运用小数乘整数的好处进行验证,感受规律的正确性。
教材中没有安排小数乘整数的口算,而实际在口算中由于数目比较小,计算结果能够比较快速的反馈,易于检验学生计算的正确与否,同时能够帮忙学生理清计算小数乘整数的计算思路,所以在计算中我增加了小数乘整数的口算练习,让学生说出自己的想法,同时用小数乘整数的好处检验方法的正确性,让所有的学生都明白计算小数乘整数能够看成整数的计算。
有了前应对算理的理解,当遇到用竖式计算3.85×59时,学生不再感到困难,但要他们说出为什么这么写,部分孩子还是不能理解,所以我抓住小数点为什么不对齐了引导学生思考,我们已经将3.85扩大100倍,计算的是385乘59了,所以根据整数乘法的计算方法计算,而不是小数乘法了,最后还得将积缩小100倍。
小数位数的变化是本节课的一个难点,因此我为这个安排了两个练习,一个是推算小数的位数,二是决定小数的位数,在决定小数的位数后选取了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的。在课的结尾还安排了头脑风暴,填写()×()=4.8,让学生体会积的小数位数和因数的小数位数之间的关系。
到教小数乘小数时,学生就容易多了,实行了知识的迁移,我收集了历届的一些学生的错竖式,全部板书在黑板上,让学生当医生先在小组内讨论,再汇报。在周五我就进行了小测,发现学生学习的效果好多了,但一部分学生因为整数乘法还但是关,影响了小数乘法的计算,有待下周进行查漏补缺。
透过小数乘法的教学,学生明白了根据积的变化规律,即:先按整数乘法的计算方法得出积,再看两个因数共有几位小数,就从积的右边起数出几位,点上小数点。积的位数不够,要在积前用0补足后再点小数点。
这时有一道决定题引起了不小的争议。这道题是决定“三位小数乘一位小数,积必须是四位小数”。对于这道题,大家众说纷纭,结果理由各不相同。
有的同学认为是对的,意见归纳如下:
书中关于小数乘法计算法则说:“计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点”。两个因数一共有4位小数,那么积肯定是四位小数。
有的同学认为是错的,意见归纳如下:
三位小数乘一位小数,如果积的末尾有0,那积就不是四位小数,如0.125×0.8的积本来是0.1000,但因小数末尾的零能够省去,便得到积为0.1,于是就出现了三位小数乘一位小数,积不必须是四位小数的状况!
针对学生出现的不同意见,我先让学生充分发表自己的意见。最后我提醒同学们,数学讲究严密性,处理后的积不能与原先的原始积混为一谈。做1.25×0.08时,我们先用125×8=1000,然后看因数当中一共有4位小数,于是就从积的右面起数出4位点上小数点!
而不是先去零后,再数位数!要注意的是我们在点上积的小数点时就已经确定了一点:积是四位数!虽然为了书写简便,在不影响积的大小的状况下,我们根据小数的性质将小数部分末尾的0省略掉。但省略不等于没有。我们在决定小数乘法的积是几位小数时,要根据小数乘法的计算法则,对原始的积进行决定,所以三位小数乘一位小数,积必须是四位小数。
小数乘法学习过程中,学生感到困难的不是小数乘法的计算方法的掌握,而是对算理的理解和表述。因此,教学时应给学生提供充分的思考、交流的机会,帮助学生对计算的过程做出合理性的解释。针对小数乘法的教学,谈几点我在教学过程中的几点感受和做法:
1、对四年级学生来说学习小数乘法应从生活经验开始,激发童心、童趣,而且能促成学生利用“元、角”之间“米、分米”之间的十进关系顺利沟通小数乘法和整数乘法的联系。学生接受起来感到亲切。
2、淡化小数乘法意义的教学,突出计算的教学。在谈话中创设了一个生活情境:一本数学本的价格是1.50元,每位同学开学的时候都发到了4本数学本,请你算算每个人一共要多少钱?提出要求:怎样列式?为什么可以这样列?(1.50+1.50+1.50+1.50,1.50×4或4×1.50)这样做的目的是让学生明确:小数乘以整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
3、引导学生用转化的方法学习小数乘法。教学时紧抓住将未知转化为已知,“你能将1.50×4转化为已知学过的乘法算式吗?学生经历将未知转化为学习过程,同时获得用转化的思想方法去探索新知的本领。
4、引导学生对几种不同的解题思路进行分析。学生解答后,应将主要的几种解法有序地、整齐地显示在黑板上,或用实物投影显示出来。然后引导学生对不同的解法做出评价,并从中选出一种较为简单的方法进行重点分析、说理。先让用该法解答的学生说:然后教师帮助学生用简洁的话总结、概括。
生活情境的引入,调动了学生的学习兴趣,渗透数学来源于生活应用于生活的思想,为学生自主的探究知识提供条件。在实际的问题情境中,让学生运用原有的知识经验自主地进行估算、笔算,培养了学生的估算能力、计算能力的同时,让学生懂得估算也是检验笔算的一种方法通过独立思考与合作交流,充分展示学生的知识潜能及合作能力,并自主获取小数乘整数的计算方法,理解算理。通过多种形式的练习,即加强了学生对小数乘整数的理解,又使学生能够灵活应用所学知识解决问题,并使不同层次的学生从中体会到成功的快乐。变式练习既能培养学生的学习兴趣,又能拓展思维和探索的空间,学生在自主迁移和强化巩固的过程中完成了知识的建构。
小数除法的意义是在整数除法的意义的基础上进行教学的。教材首先提出一组应用题,通过用整数计算奶粉的总重量、每筒的重量和奶粉的筒数,列出三个算式,复习了整数除法的意义。接着把题中的重量单位克改成千克,使原来例题中的整数乘、除法算式相应地转变成小数乘、除法算式,让学生直观地看到,小数除法的意义和整数除法的意义相同,也是已知两个因数的积与其中的一个因数,求另一个因数的运算。在整数除法中,被除数、除数和商都是整数;在小数除法中,这三者有的是小数。然后,通过“做一做”中的练习,使学生进一步熟悉小数除法的意义。
小数除法可以根据小数点处理的方法不同,分成两种情况:一种是除数是整数的小数除法,另一种是除数是小数的小数除法。由于除数是小数的除法要通过商不变的性质转化成除数是整数的小数除法来计算,所以除数是整数的小数除法是学习小数除法计算的基础,一定要让学生弄清算理,切实掌握。
教材主要通过第16页的例1和例2教学除数是整数的小数除法。通过例1着重说明除数是整数的小数除法的计算步骤与整数除法基本相同,唯一不同的是解决小数点的位置问题。为了说明商的小数点要和被除数的小数点对齐的道理,例题的竖式中在除过被除数的整数部分后还有余数,着重说明要把它化成用较小的计数单位表示的数,并与被除数中原有的同单位的数合并在一起,再继续除。例如,除到个位余6,把6化成60个十分之一,并与被除数中原来十分位上的4合在一起,是64个十分之一;除到十分位余4,再把4化成40个百分之一,并与被除数中原来百分位上的数合在一起,继续除下去。除的时候,仍然是除到哪一位,就把商写在那一位上面,由于要除的数是用小数计数单位十分之一、百分之一……表示的数,以后的商也应该是十分之几、百分之几……因此,要在商的个位数字的右面点上小数点来表示。从而说明了商里的小数点要和被除数的小数点对齐的道理。
接着,教材通过例2说明,如果除到被除数的末位仍然有余数,可以在后面添上0继续除,直到除尽为止(注:教材在这里暂时先不出现除不尽的情况)。这实质上也是把余数化成用较小的计数单位表示的数再除。在例2中是用整数去除整数,除到被除数的个位余9,就在被除数和商中个位数的右面点上小数点,再在被除数的后面添上0继续除。当9和添上的0合在一起继续除时,让学生联系例1中的计算想一想,这个90表示什么,以帮助学生理解添0继续除的道理。
教学完例1和例2,并试算“做一做”的练习以后,引导学生概括总结除数是整数的除法的计算法则。
第17页例3教学被除数比除数小的情况,着重说明个位不够商1,就要在商的个位上写0,再在0的右面点上小数点继续往下除,而且像整数除法那样,除到哪一位不够商1,都要在商里写0占位。这样的题目稍难一些,学生容易出错。计算完了还要求学生能够用乘法进行验算。例3下面“做一做”的第2题是让学生想一想,什么样的小数除法得到的商比1小,这对学生检验计算结果很有益处。“做一做”的第3题是判断题,题中的两个除法计算都有错。一个是忘了点小数点,一个是忘了用0占位,这是学生容易发生的错误,除了要求学生说出对不对以外,还要求学生能说出错在哪里。
练习四中的第1~3题是为配合小数除法的意义和例1的教学而编排的。除了练习除法的计算以外,其中第2、3题还通过文字叙述题和应用题来说明,小数除法还可以用于平均分和求一个数是另一个数的多少倍。这里求出的倍数也不再限于整数倍,而是扩展到小数倍,例如1.8倍、2.5倍等。练习中的其他练习题是为配合例2、例3的教学和进行巩固练习而编排的。在学生经过一段笔算练习,对小数除法有些熟悉以后再进行口算(第11题),小数除法口算的范围是参照整数除法口算的范围规定的,一般能归入一位数除两位数或两位数除两位数,其中小数位数一般不超过两位,而且限于能够除尽的小数除法。
小数乘法这节课课是学生第一次接触。教材中的安排是让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学习情况中,有大部分学生都会算小数乘法,知道当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是从以下几个方面安排:
在教材中积变化的规律是复习,我在教学中却将当它是新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数。引导学生直接运用这个规律计算出0.3×2,同时运用小数乘整数的意义进行验证,感受规律的正确性。
教材中没有安排小数乘整数的口算,而实际在口算中由于数目比较小,计算结果可以比较快速的反馈,易于检验学生计算的正确与否,同时可以帮助学生理清计算小数乘整数的计算思路,所以在计算中我增加了小数乘整数的口算练习,让学生说出自己的想法,同时用小数乘整数的意义检验方法的正确性,让所有的学生都知道计算小数乘整数可以看成整数的计算。
有了前面对算理的理解,当遇到用竖式计算3.85×59时,学生不再感到困难,但要他们说出为什么这么写,部分孩子还是不能理解,所以我抓住小数点为什么不对齐了引导学生思考,我们已经将3.85扩大100倍,计算的是385乘59了,所以根据整数乘法的计算方法计算,而不是小数乘法了,最后还得将积缩小100倍。
小数位数的变化是本节课的一个难点,因此我为这个安排了两个练习,一个是推算小数的位数,二是判断小数的位数,在判断小数的位数后选择了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的。填写()×()=4.8,让学生体会积的小数位数和因数的小数位数之间的关系,学生想了很多,但时间关系,没有能发现所填算式之间的联系。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,而让我觉得困惑的是,在前面这一部分我让学生发现规律,运用规律去口算,然后去笔算,一切都在我的安排之中,教学的过程是流畅的,顺利的引导学生进行知识的迁移和扩展,学生掌握的情况也是很好的, 但过多的暗示是否束缚了学生的思维,如果不铺垫,直接出示小数乘整数的问题让学生思考,对于培养学生的思维能力是否好些?
小数乘法计算法则的基础是整数乘法,整数乘法的列竖式计算对学生来说是有一定基础的,可是如何让学生理解“小数乘法的计算法则同整数乘法的计算法则相同”其实有一个很重要的环节:如何使学生从整数乘法列竖式计算过渡到小数乘法的列竖式,理解好计算的算理显得非常重要。
在教学中我首先给出几组口算题,引导学生发现规律,体验发现的乐趣。充分理解(1)一个乘数不变,另一个乘数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数;(2)一个乘数扩大(缩小)多少倍,另一个乘数也扩大(缩小)多少倍,积就会扩大或缩小它们倍数的乘积倍。引导学生直接运用这个规律口头计算出0.3times;2,同时运用小数乘整数的意义进行验证,然后再计算出2.6times;0.8感受规律的正确性。
有了前面对算理的理解,当遇到用竖式计算0.85times;0.4时,受以前学过的整数乘法竖式和小数加减法竖式的影响,大部分学生都认为应该把小数点对齐,也就是数位对齐,为了让学生理解,我就引导孩子思考在计算时我们是把它们看成整数进行计算,也就是计算85times;4,而85times;4列竖式的话应该怎么对齐?应该4和5对齐,所以0.85times;0.4也应该把4和5对齐,也就是末尾对齐,这样讲过之后学生自然就理解了为什么不把小数点对齐。小数乘法其实就是整数乘法的延伸,用整数乘法算出后点小数点。后来学生在计算象12.7times;23、5.2times;0.64等题时,都能正确列出竖式进行计算了。
“计算小数乘法,先按照整数乘法的法则算出积,再看乘数中一共有几位小数,就从积的右边起数出几位,点上小数点”。
在本节课我充分利用旧知,让学生主动学习,学会学习,激发了学生学习的积极性,真正成为了学习的小主人。不足的是学生作业正确率不太高,计算性错误屡错屡犯。在以后还得加强口算能力的培养,分析能力的培养。总之,在计算的课堂上,要多练习,计算不在多做,而是要精密,做一道会一道做一道对一道。每天练习,持之以恒,终会攻破难关。
一、教学内容
1.小数乘法的计算方法
2.积的近似值
3.有关小数乘法的两步计算
4.整数乘法运算定律推广到小数
二、教学目标
1.探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释。
2.会用“四舍五入”法截取积是小数的近似值。
3.理解整数乘法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便运算,进一步发展学生的数感。
4.体会小数乘法是解决生产、生活中实际问题的重要工具。
三、教学措施
1.重点引导学生用转化的方法学习小数乘法。
由于小数乘法与整数乘法之间有着十分密切的联系,因此,教学时应紧紧抓住这种联系,帮助学生将未知转化为已知。
2.指导学生对小数乘法的算理做出合理的解释,提高简单的推理能力。
本单元学习过程中,学生感到困难的不是小数乘法计算方法的掌握,而是对算理的理解和表述。因此,教学时应给学生提供充分的思考、交流的机会,帮助学生对计算的过程做出合理性的解释。
3.注意引导学生探索因数与积之间的大小关系的规律。
让学生学会探求模式、发现规律是数与代数领域学习的重要目标。在组织学生自主小结小数乘法计算方法的同时,应注意引导他们去探索因数与积之间的大小关系的规律。教学时,应重视练习一中第4题、第10题的练习,以此为载体,培养学生养成探索隐含在数字、算式后面的规律的习惯。
教学要求:
1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。
2、使学生会用“四舍五人法”截取积、商是小数的近似值。
3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。
教学重点:
1、使学生掌握小数乘、除法的计算法则。
2、能正确地进行小数乘、除法的笔算和简单的口算,提高学生的计算能力。 3、能正确应用“四舍五入法”截取积是小数的近似值,并能解决有关的实际问题。
4、会应用所学的运算定律及其性质进行一些小数的简便计算。
教学难点:
在理解小数乘、除法的算理和算法的基础上,掌握确定小数乘法中积的小数点位置。
教学课时:小数乘法(9课时左右)(机动3课时左右)
《小数乘法》单元教学后记
进入五年级第一个单元安排的是小数乘法的计算,小数乘法是在整数乘法的基础进行的。原本以为学生已经对整数乘法非常的熟练,学习其小数除法应该不会有什么困难,但是在实际的教学过程中,并不是我想像中的那么顺利。
首先我认为是对算理不理解。如:0.75×0.3,先把0.75扩大100倍,0.3扩大10倍,按照75×3来计算得225,再将得数缩小回去1000倍(即小数点向左移动三位)得0.225,就是0.75×0.3的结果。学生会出现因数3与因数中的0相乘的现象,说明他们没有看成75与3的相成,而是按照以前整数乘法的顺序两个因数中的每个数字都依次相乘一遍 。 这就违背了小数乘法的算里与计算方法。不但使计算过程繁杂了,而且小数点位置也出现问题,在因数相乘过程中就将小数点点上了。
其次,是 计算马虎。(1)忘记进位。满十进一学生清楚得很,可是计算过程中丢三落四的毛病屡犯,不是不会,就是粗心。(2)忘记点小数点,按照整数乘法计算完后,忘记向左移动小数点。(3)横式忘记写得数,或者横式没有化简。
再次,学生不会对位。如:32×0.006,应该末尾对齐,有的学生开头对齐、有的学生末尾对齐了,前面的三个0都与3对齐。
这是我在教学小数乘法时遇到的一些问题,在反复的强调与练习中已有了很大改善,学生的计算能力有很大提高,但个别学生仍会出错,还需要继续练习,在习题中逐步改掉不足。
这节课主要使学生理解整数乘法的运算定律在小数乘法中同样适用。
0.7×1.2 1.2×0.7
(0.8×0.5)×0.4 0.8×(0.5×0.4)
(2.4+3.6)×0.5 2.4×0.5+3.6×0.5
让学生先分组计算再观察每组算式有什么特点,实际上这三组算式分别运用的是整数乘法的交换律、结合律、分配律,但是这三组算式都是小数乘法,也符合吗?通过让学生观察、计算,自己找出每组中两个算式的关系,自己探究出“整数乘法的交换律、结合律和分配律对于小数乘法也适用。”培养了学生的合情推理能力.在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去计算、观察、发现。
学到了知识,然后用学到的知识去解决问题才是数学学习的真谛。既然发现了整数乘法运算定律在小数乘法中同样适用,再运用这些定律使小数计算变得简便,这一步教学能激起学生运用新知识的欲望。
0.25×4.78×4 4.8×0.25
0.65×201 1.2×2.5+0.8×2.5
在简算的过程中让学生体验成功的快乐。
不足之处:只重视了运算定律,而忽视了口算能力,在练习时,乘法分配律的逆向应用不够灵活.。
针对这一现象我认为在练习课时要加以改进。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。
这是学生第一次接触小数乘法,我大胆改变教材没有使用课本上的情景图,安排了复习积变化的规律,通过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学情中,有大部分学生都会算小数乘法,知道当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是从以下几个方面安排:
在教材中积变化的规律是复习,我在教学中却将当它是新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数。引导学生直接运用这个规律计算出0.3×2,同时运用小数乘整数的意义进行验证,感受规律的正确性。
有了前面对算理的理解,当遇到用竖式计算3.85×59时,学生不再感到困难,但要他们说出为什么这么写,部分孩子还是不能理解,所以我抓住小数点为什么不对齐了引导学生思考,我们已经将3.85扩大100倍,计算的是385乘59了,所以根据整数乘法的计算方法计算,而不是小数`乘法了,最后还得将积缩小100倍。
小数位数的变化是本节课的一个难点,因此我为这个安排了两个练习,一个是推算小数的位数,二是判断小数的位数,在判断小数的位数后选择了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,而让我觉得困惑的是,在前面这一部分我让学生发现规律,运用规律去口算,然后去笔算,一切都在我的安排之中,教学的过程是流畅的,顺利的引导学生进行知识的迁移和扩展,学生掌握的情况也是很好的,
但过多的暗示是否束缚了学生的思维,如果不铺垫,直接出示小数乘整数的问题让学生思考,对于培养学生的思维能力是否好些?
课的下半部分,学生对计算已经不感兴趣了,有几个孩子已经开小差了,事后调查得知,他们觉得问题太简单了,就是积的小数位数的问题,只要移动小数点位置就行了,计算没有什么多大意思.学生说得是实话,最近学的都是计算,都是讨论计算方法,而计算方法的发现有时不需要让他们经历发现、探究的过程,更多的是老师的提醒和告诉,充满好奇心的孩子怎么喜欢被动的接受呢。看来计算的教学还需要教师将练习的形式变的丰富些,吸引学生的眼球和大脑。
《小数乘法》具体教学任务有:小数乘整数;小数乘小数;积的近似数;连乘、乘加、乘减以及整数乘法运算定律推广到小数;用小数乘法解决问题等。这一单元知识是在学生学习了整数四则运算和小数加减法的基础上进行教学的。原本我以为这一单元学生已有了整数乘法为基础,只要重点掌握了小数乘法的计算方法,学起来应该是比较轻松的,可现实出乎我的意料。
在每节新知教学后的练习中,学生的正确率都不容乐观。
1、计算上的失误:看成整数乘法算好后,忘加小数点;算完竖式,不写横式的得数;计算过程中字迹不清或丢三落四现象。
2、方法上的错误;不会对位;小数乘法和小数加减法计算方法混淆,乱点小数点。
面对学生出现的这样那样的错误,使我不得不开始重新审视自己的课堂,审视我的学生,并对此我进行了深刻的反思。
1、加强学生口算能力的培养。《新课程标准》指出:口算既是笔算、估算和心算的基础,也是计算能力的重要组成部分。因此,提高学生口算的正确率以及加强学生口算的速度,对提高学生计算的能力一定会有帮助。
2、重视学生的作业习惯培养。我把学生在明白算理后出现的错误,都简单的归于“马虎”,其实加强良好作业习惯的培养才是最重要的。良好的习惯不但能改学生“马虎”的毛病,它还能为学生今后的学习生活带来帮助。它体现在我们平日数学教学的点点滴滴中,需要我们老师的正确引导和激励。
3、培养学生良好的上课习惯。课堂上要让学生“活”起来,主要是思维要灵活,要全身心的投入到学习中去,而并非乖乖的坐着,要成为课堂的主人,时时都要展示自己。
4、要培养学生“向上”的心态。每一次的评比后都要帮学生找准自己失利的地方,并及时改正过来,更要帮学生树立荣辱感,要下定决心,下次超过他人,只有这样才能有动力,有了动力就会行动起来。
心有多大,舞台就有多大;不是做不到,只是没想到,无论什么事情只要有了目标,就会有行动,有了行动就会有成功的喜悦。