2024年积的变化规律教案(大全10篇)
文件格式:DOCX
时间:2023-11-13 08:49:05    小编:灵魂曲

2024年积的变化规律教案(大全10篇)

小编:灵魂曲

教案能够指导教师进行系统的教学,确保教学目标的达成。教案的编写过程需要教师根据学生的实际情况进行差异化教学设计。学习这些教案可以提高教师的教学效果,促进学生的学习兴趣和主动性。

积的变化规律教案篇一

教学目标:

1.使学生理解并掌握由小数点向右移动引起小数大小变化的规律;能应用规律正确口算一个数乘10、100、1000……的积。

2.在探索规律的过程中,培养学生初步的观察、比较、归纳,概括的能力和主动探索数字规律的兴趣。

教学重、难点:

探索由小数点位置的右移引起的小数大小变化的规律。

对策:

以生活情节激趣,以自主探索为主要学习方法,通过观察、比较发现规律。

教学过程:

一、联系生活,激发探索动机。

[使学生感受到小数点的重要性,不能忽视]。

2、用1个9、3个0和小数点组成不同的大于1的小数,并从小到大排列。(请先写在自己本子上。谁来说一说。)。

3、请仔细观察:这些数有什么相同的地方?有什么不同的地方?

[通过写数,使学生亲身体验到小数点的位置不同,小数的大小会发生变化]。

4、(揭示课题):小数点向右移动引起小数大小变化的规律。

二、自主探究,体验成功的喜悦。

1、出示例2:5.04乘10、100、1000各是多少?

(1)请同学们先列式再用计算器计算上述各题。(在本子上完成)。

(2)指名说说计算结果,并板书:

(4)验证、归纳规律。

三、应用规律,加深认识。“练一练”

1.指导完成“练一练”第1题、补充习题、第2题。

2、指导完成练习十一第6、7题。

四、全课。

教案。

积的变化规律教案篇二

教学要求:

1.使学生进一步学会用计算器进行整数、小数四则混合运算和大数目的计算,提高学生使用计算器计算的熟练程度,以及计算能力。

2.使学生能进一步学会用计算器探究运算的一些规律,培养学生探索问题和独立解决问题的意识和习惯。

学具准备:学生每人准备一个计算器。

教学过程:

一、揭示课题。

1.口算。让学生口算练习十七第8题。

2.揭示课题。

今天这节课,我们继续练习用计算器进行计算。(板书课题)。

通过练习,要进一步掌握用计算器进行整数、小数四则运算的方法,能正确用计算器进行整数、小数四则混合运算,并能通过计算器的计算来探索和验证运算里的一些规律。

二、计算方法练习。

1.用计算器计算。

934x1641000÷6.25‘、

学生练习后提问:用计算器进行整数、小数的四则主算,你是怎样进行计算的?

2.做练习十七第9题。

让学生自己计算,在课本上连线。集体交流计算结果。选择两题让学生说说是怎样算的,并说明一般按计算顺序分步依次计算出得数。

三、探索规律。

l做练习十七第11题。

(1)指名一人板演第(1)组前三题,其余学生做在练习本上。

提问:你发现这三题的积有什么有趣的地方?

请大家讨论一下,这里的得数有没有什么规律?

集体讨论前三题的得数有什么规律,发现积的数字与第一个乘数的数字完全一样,只要能确定积的最高位是哪个数字,就可以按顺序写出它的积是多少。让学生写出后两题的积,并用计算器进行验证我们发现的规律是否正确。

(2)分小组做第(2)组题。

让学生相互合作进行计算和讨论,并写出每一题的得数。组织学生在全班进行交流,说说前三题的结果和得数的规律,以及后两题的结果。要求学生对后两题的得数进行检验。

(3)你能把第11题里发现的有趣的现象用自己的话来说给。

大家听一听吗?

2.做练习十七第12题。

把学生分成几个小组,合作进行计算和讨论前三题有什么规律,写出最后一题的得数。

组织学生进行交流。

3,说明:在数学里有许多有趣的现象,它实际上是一种规律,只要我们平时多注意、多探究,我们就能发现这些规律,学到许多知识,甚至会有自己的发明和创造。

四、讲解思考题。

让学生读题。

分小组讨论,让学生找出规律,然后组织交流。

指出:只有当十位上的数都最大时,它们的积才能最大;反过来,也只有当十位上的数最小时,它们的积才能最小。

五、课堂。

这节课你进一步掌握了哪些内容?发现了些什么?你对学习数学有哪些想法?

积的变化规律教案篇三

1、新课伊始,出现有趣的思维体操题目,来启迪学生思维,来诱发学生的猜想,激发学生求知的欲望,扣住学生的心弦,产生良好的学习动机。

2、大胆地将教材提供的两组算式重新改编并打乱以口算的形式呈现,让学生在分类整理中初步感悟两组算式的特征,再让学生根据算式的特征从上往下观察、从下往上观察,在观察的过程中学生自然会去思考其中隐藏的规律,从而形成探究规律的冲动,再通过研究交流得出“一个因数变化时积的变化规律”,并适时进行验证。让学生在猜想验证中逐步概括提升。之后对研究出来的规律进行解释与应用。最后总结归纳本课的学习过程,让学生初步获得探索规律的一般方法和经验。

3、在研究规律时,因为张老师提供了大量的有规律的算式。学生建立在充分的感知上,所以水到渠成的总结出一个因数不变,另一个因数乘几,积也乘几。接着又请同学们讨论验证一下这个结果是否正确?这样,既调动了学生的积极性,又充分的体现了新课改的精神。然后让学生在大量的`例子的基础上,验证积的变化规律的正确性。尤其是在探索第二组题由下往上观察时,能放手让学生探讨积随因数缩小而缩小的规律,让学生用刚才掌握的研究过程,实现方法的迁移运用,再让学生根据规律举例,充分开阔了学生的思路,使学生在动脑,动手,动口,相互交流中,培养了学生自主探索能力与合作交流意识。

4、数学是思维的体操,课堂上必须要让学生亲历知识的形成过程,要养成善于用所学知识解决实际问题的习惯,这样才能激发学生的学习兴趣,拓宽学生的思维,从而掌握牢固的数学知识。这节课中张老师在这方面做的特别好,给学生提供了大量的时间和空间去探索、去发现、去创新、去总结积变化的规律,不急不燥。让学生充分自由的发挥,体验知识形成的过程,而不是急于让学生跟着教案走。跟着老师走。虽然没有完成自己预定的教学设计,但是落实了知识点,真正体现了以生为本的教学理念。

积的变化规律教案篇四

教学内容:

教科书第57~58页,例2、试一试、练一练,练习十第3题。

教学目标:

1、使学生结合具体情境,用平移的方法探索并发现把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律,会根据平移次数推算把图形分别沿两个方向平移后该图形覆盖的总数,并能解决简单的实际问题。

2、使学生主动经历自主探索和合作交流的过程,体会有序列举和思考是解决问题的基本策略之一,进一步培养发现和概括规律的能力,初步形成回顾和反思探索规律过程的意识。

3、在小组合作与交流中,努力克服数学活动中的困难,获得成功的体验。

教学过程:

一、复习引入。

1、12345678910111213141516。

每次框出3个数,需要平移几次?可以得到几个不同的和?

说说自己的方法。

2、今天我们继续学习图形被覆盖的次数的规律。

板书课题:找规律。

二、教学新课。

1、出示例2。1、如果小芳家浴室的一面墙上改用由4块瓷砖拼成的图案贴在这面墙的任意一个位置,有多少种不同的贴法?(出示情境图)。

理解题意。

3、不论你贴在哪,最多能够有多少种方法?你们能解决吗?

请同桌两人合作平移,看有多少种不同的贴法。平移好了后就请大家围绕下面三个问题在小组里讨论。(电脑出示)。

(1)怎样贴,才能做到既不重复有不遗漏?

(2)沿这面墙的长贴一行有多少种贴法?沿着宽贴一列呢?

(3)一共有多少种贴法,与这面墙的长和宽各有多少种贴法是什么关系?

学生动手操作,完成后小组交流讨论。

4、交流汇报。

怎样数才能做到比较有序?

学生边汇报边演示。沿着长一行一行的贴,沿着宽一列一列的贴。(电脑演示)。

师:沿这面墙的长贴一行有多少种不同的贴法呢?

学生回答:8—2+1=7(板书:8—2+1=7)(电脑演示)。

师:平移了几次?有几种贴法?

学生回答。(电脑演示)平移了几次?有几种贴法?

(板书:6—2+1=5)。

师:这样一列一列的贴,贴了这样的7列,求贴法总数,就是求7个5。

师:5个7或7个5都可以写成5×7=35。

5、一共有多少种方法?与这面墙沿长和宽贴各有多少种贴法有什么关系?

得出:贴法总数=沿长的贴法×沿宽的贴法。

6、小结规律。

7、试一试。

1、小芳家阳台上的一面墙要贴这种图案的瓷砖,你能算出有多少种不同的贴法吗?(出示情境图)学生尝试练习,教师讲解。(电脑演示)。

板书:10—3+1=86—2+1=55×8=40。

师:为什么一个减3,一个减2?

2、如果贴的瓷砖图案是这样呢?有多少种不同的贴。

法呢?仔细观察以下,这个图形与刚才的图形有什么不同?(电脑演示)。

学生异口同声:长方形。(电脑演示)。

师:你是怎样想的,可以和小组里的同学交流。

8、练一练。

独立完成。

汇报交流自己的思考方法。

三、巩固练习。

1、完成练习十第3题。

理解题意。

指导方法。

任意框9次?看看框出的每个数的和是多少?与中间的数有什么关系?

根据这个发现,你能解决第(2)小题的问题吗?

说说你是怎样框的?

2、独立完成第(2)、(3)小题。

说说思考过程。

四、课堂小结。

积的变化规律教案篇五

《积的变化规律》教案设计黑龙江省通河县实验小学孙雅琴教学内容:人教版99―100页积的变化规律教学目标:1、使学生经历积的变化规律的发现过程,感受发现数学中规律是一件十分有趣的事情。2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。3、初步获得探索规律的`一般方法和经验,发展学生的推理能力。教学重点:经历感受积的变化规律教学过程:一、复习旧知、引入新课。1、口算下面各题:45×86×240×66×20032×326×52、你们能找出这几道题的共同特点分分类吗?归为一类的是:6×2=126×40=2406×200=12003、师:观察这几道乘法算式,你有什么发现?学生回答。师:一个因数不变,另一个因数不断变化,积又是怎样变化呢?这节课我们就来研究“积的变化规律”。[本节课数学内容的情境并非来源生活,,而是来源于数学本身。因此,应从数学角度的角度提出引发学生积极思考的问题,尽可能让每个学生都投入到问题的探索当中。二、观察分析、探索新知师:为了观察方便,我们给算式标上序号(1)6×2=12(2)6×40=240(3)6×200=12001、从上往下观察:师:为了观察便于比较,以第一算式做标准,让(2)(3)两个乘法算式和它相比看因数和积有什么变化?学生观察后指名说。教师重点引导学生观察第二个算式因数和积的变化特点(指名说―自己练说―同桌互相说),自己独立观察第三个算式因数和积的变化特点,同桌再互相说一说。2、从下往上观察师:请同学们从下往上观察,要想观察方便,以第几算式为标准呢?(第三个算式做标准)那么(1)(2)两个算式和第三个算式比因数和积有什么变化呢?先独立观察后在小组内交流。学生汇报,教师引导学生语言要规范、有条理。3、初步判断:通过从上到下和从下到上的观察你发现了一个因数不变时,另一因数和积怎样变化呢?你能用一句简单的话把两个发现总结在一起吗?学生汇报时,教师引导学生把重复的话只说一次,乘以、除以用一个“或”字连接,注重数学语言的简洁美。学生汇报:一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。4、合作探究,验证判断:师:这只是一个初步的判断,是不是其它乘法算式也具备这个特点呢?要想知道怎样去研究呢?(任意出乘法算式验证)(1)师出一个算式:60×8=480你能根据一个因数不变因数和积的变化特点写出几道算式吗?学生汇报说出因数和积的变化特点。然后再横着算看结果是否正确。(2)学生合作相互出一道题,根据因数和积的变化特点再写出几道乘法算式。教师巡视适当引导点拨。师:通过师生合作学习,我们验证了许许多多乘法算式都具备了这个特点,证明了这个初步判断是正确的,这才把它确定为积的变化规律。【通过研究问题、归纳规律、验证规律这三个层次的学习,使学生不但发现了积的变化规律,而且学会了研究问题的一般方法:研究具体问题―归纳发现的规律--(或模型)--解释说明规律―举例验证规律。并从正反两方面的观察中受到辩证思想的启蒙教育。】三、应用规律、解决问题1、根据8×50=400,直接写出下面各题的积。16×5032×508×252、卡车在普通公路上,以40千米/小时的速度行驶,4小时权以行()千米,小汽车在高速公路上行驶的速度是卡车的2倍,小汽车用同样的时间可行()千米。3、找出规律填空:48×75=360048×()=1200()×75=720024×150=()【习题设计以阶梯式呈现的,从易到难,不断变换着形式。既体现了这一规律在计算中的应用,又体现了它在应用题中的简便。将课内延伸到课外,激发学生的学习热情,培养探究精神。】四、师生共同总结:通过这节课的学习你有哪些感受?【回顾课堂谈所学知识,谈合作情况,也可谈你的突发奇想。培养学生归纳总结能力,捕捉学生灵动的思维火花形成自己的学习方法。】板书设计:6×2=12200÷100=21200÷100=122×20=4012×20=2406×40=240200÷5=401200÷5=2402×100=20012×100=12006×200=1200一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。

积的变化规律教案篇六

四年级上册教材58页例4,做一做,练习九第1—4题。

1.知识技能:尝试用简洁的语言表达积的变化规律,培养学生初步的概括表达能力;

3.情感态度:培养学生团结协作、敢于交流表达的学习精神,体会与人交流和学习成功的体验,培养学生集体荣誉感。

1.用简洁的语言概括“一个因数不变,另一个因数改变引起积的变化规律”;

2.有序交流、表达自己的想法。

一、探究“一个因数不变,另一个因数扩大几倍,积就扩大几倍”

1.初步感受问题。

2010年8月,舟曲、汶川等地发生了严重的泥石流灾害,当地人民的生命和财产遭受了巨大的损失。为了帮助灾区人民渡过难关,4.1班的同学积极奉献自己的爱心,踊跃捐款,平均每人捐款约3元,照这样计算:

2名同学捐款多少元?(3╳2=6)。

20名同学捐款多少元?(3╳20=60)。

200名同学捐款多少元?(3╳200=600)。

(1)学生说出算式、口算;

(2)教师板书算式;

(3)进行德育。

2.研究问题。

观察算式,独立思考:以上算式有什么联系和规律?

3.归纳规律。

(1)小组交流:在小组内发表自己的看法,大家商讨:怎样用清楚简洁的语言记录表达所发现的规律。

4.验证规律。

(1)另外写一组算式,验证规律的正确性;

(2)根据发现的规律,在上面的算式下面再写两个算式。

二、探究“一个因数不变,另一个因数缩小几倍,积就缩小几倍”

1.按从下往上的顺序观察刚才的算式组,感知问题;

2.研究问题:思考,有什么规律;

3.归纳规律:

(1)在小组内用自己的话说说发现的规律;

(2)全班交流。

4.验证规律:

(1)小组内举例验证;

(2)按发现的规律把下面的算式再写两个:

80╳4=320。

40╳4=160。

20╳4=80。

三、运用规律、解决问题。

1.做一做:学生独立完成;说出思考过程。

2.练习九第1题:独立完成;说明,补充。

3.练习九第2题:齐读题;独立思考;小组交流;讲解。

4.练习九第3题:独立完成;;小组交流;讲解。

四、补充练习。

练习九第5题。供。

五、课堂总结。

六、作业:练习九第4题。

七、课后反思:

积的变化规律教案篇七

教学目标:

1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

教学设计:

一、出示尝试题,唤起学生得探求新知的欲望。

同学们的计算能力非常强,能快速口算这些题吗?(出示)。

6×2=1280×4=320。

6×20=12040×4=160。

6×200=120020×4=80。

非常好!同学们,请仔细观察上面每组算式,你能根据每组算式的特点接着再往下写2个算式吗?试一试。

学生独立写出。

二、自主学习,探索新知。

1.现在就请同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?

点拨:扩大的倍数相同。

教师进一步引导:刚刚在这组算式里同学们发现,一个因数不变,另一个因数扩大10倍,积也扩大10倍。

如果让你接着再往下写,你还能再写出来吗?

3.猜一猜,如果一个因数不变,另一个因数扩大5倍,积会有怎样的变化?

请同学们写出一组这样的算式验证一下。学生写出后汇报。

如果扩大30倍呢?如果扩大100倍呢?

你能试着用一句话来概括一下我们发现的这些规律吗?

让我们一起把刚才的发现记录下来:(板书)一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。

根据我们发现的规律,同学们来查一查你写的算式,对吗?

板书:一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。

谁来出一组算式,验证一下我们的猜想!

5.同学们,你能把我们发现的规律用一句话来概括吗?

板书:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。

6.你还有什么问题吗?

刚才同学们通过积极得动脑思考,交流探究,发现了……(学生读板书)这也就是我们这节课重点学习的“积的变化规律”(同时板书课题)。

运用这个规律,能帮助我们解决许多的数学问题。想不想试一试?

三、巩固拓展,运用新知。

59页3、2、4、5。

四、结束。

积的变化规律教案篇八

教学内容:

课本第116页例2。

教学目标:

1、让学生发现、探究图形和数字的排列规律,通过比较,从而理解并掌握找规律的方法,培养学生的观察、操作和推理能力。

2、培养学生的推理能力,并能合理、清楚地阐述自己的观点。

3、培养学生发现和欣赏数学美的意识。

教学重、难点:

引导学生理解图形和数字的对应关系,并结合图形的变化规律,发现相应的数字变化规律,很好地实现从图形变化规律的认识过渡到数字变化规律的.认识上来。

教学准备:

情境挂图、正方形卡片。

教学过程:

一、激发兴趣,引出课题:

1、出示情境挂图。

你们看哪些图案是有规律的?是按什么规律排列的?

2、同学们在图上找到了那么多的规律,看来生活中许多事物都是有规律的。我们今天就继续学习“找规律”(板书课题)。

二、自主探究,学习新知:

1、教学例2。

a、仔细观察我们刚才找到的规律,你发现它们有什么相同的地方?

b、出示例2的小正方形,你能看出这些图形的排列规律吗?拿出学具试一试。

c、谁来告诉大家这些图形的规律是什么?

d、括号里应填几?再往后你会摆吗?应摆几个?为什么?

(1)括号里应填16,再摆16个正方形。

11+()=(),肯定是11+5=16。

2、你可以仿照例2的规律自己创造出一些拥有这些规律的图形吗?

3、展示你创造出来的规律,并汇报你的规律是什么?

:通过学生的说一说,摆一摆等活动发现新的规律,并找出和原来的规律的不同点,然后放手让学生在此基础上探究,进一步了解这些规律的特点,最后再设计活动,创造性地利用规律,巩固新知。

三、深入探究,应用规律:

1、四人小组讨论,你能找到其中隐藏着的秘密规律吗?

2、你找到规律了吗?请告诉大家应该填几?为什么?

3、出示巩固练习题。

(1)括号里的数字是什么?

1、2、3、5、8、13、21、()、55。

(2)96、()、24、12、6、3。

:在例2的基础上,以小组为单位,让学生自己探究“做一做”的规律,并总结出找规律的方法,这样有利于激发学生的学习兴趣,使他们在活动中积极思考。

四、教学效果测评:

1、引导学生完成课本p118页4—7题。

要求学生说出规律和找规律的方法,并同时渗透数轴的知识和数位的知识。

2、出示课本p118页8的思考题,先由学生四人小组讨论,教师引导学生积极动脑,仔细思考,认真倾听。

五、课堂小结:

今天我们不但找出了图形的变化规律,还找出了数字的变化规律。每组图形的个数是怎么变化的,就有了相应的数字变化规律。

六、课堂作业。

积的变化规律教案篇九

教学目标:

知识与能力:让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。

过程与方法:使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。

情感态度价值观:通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。同时培养学生从正反两个方面观察事物的辨证思想。

教学重点:

积的变化规律教案篇十

知识与技能:

1、学生通过观察,能够发现并总结积的变化规律。

2、初步获得探索规律的一般方法和经验,发展学生的推理能力。

3、培养学生用数学语言表达数学结论的能力。

4、通过练习,进一步巩固积的变化规律,并能应用规律解决问题。

过程与方法:

1、使学生经历变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

3、初步获得探索规律的一般方法和经验,发展学生的推理能力。

情感、态度和价值观:

培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。

图片。

教师导学。

一、研究“两数相乘,其中一个因数变化,它们的积如何变化饿规律。

1、研究问题,概括规律(例4)。

观察下面两组题,说一说你发现了什么?(1)6×2=12。

(2)20×4=806×20=120。

10×4=40。

6×200=1200。

5×4=20。

6×2=。

8×125=6×20=。

24×125=6×200=。

72×125=组织小组交流。

归纳规律:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。

25×160=40×4=。

25×40=20×4=。

25×10=引导学生概括:

两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。

4、整体概括规律。

问:谁能用一句话将发现的两条规律概括为一条?引导学生总结规律。

2、验证规律1)先用积的变化规律填空,再用笔算或计算器验算。26×48=。

17×12=26×24=。

17×24=26×12=。

17×36=。

5、应用规律。

完成例4下面的做一做和练习9的1-——4题。

二、研究“两数相乘,两个因数都发生变化,积变化的规律“。

2、组织全班交流,概括规律。

两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的乘积不变。

三、巩固新知。

1、p51“做一做”

2、思考:一个长方形的面积是256平方厘米,如果长缩小到原来的。

四、总结。

这节课有什么收获?

五、作业:练习九第1题。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制