苏教版六年级数学教案二次备课(汇总13篇)
文件格式:DOCX
时间:2023-11-16 16:19:16    小编:笔舞

苏教版六年级数学教案二次备课(汇总13篇)

小编:笔舞

教案的编写应该注重培养学生的主体意识和实践能力,以实现教育目标为导向。编写教案前,教师需要仔细分析教学内容,明确教学重点和难点。下面是一些教案编写的注意事项,希望对大家有所启发。

苏教版六年级数学教案二次备课篇一

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2.分数的分类。

真分数:分子比分母小的分数叫做真分数。真分数小于1。

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数。

1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例。

将本文的word文档下载到电脑,方便收藏和打印。

苏教版六年级数学教案二次备课篇二

教学目标:通过复习使学生进一步理解立体图形的概念和特征,掌握立体图形的表面积和体积公式的推导过程,正确运用公式,熟练进行计算。

教学过程:

复习。

基本练习(立体图形的认识)。

说出各图形的名称,说一说图中各个字母表示什么。

如果把这些图形分成两类,可以怎样分?为什么?

说一说长方体和正方体有什么特点?它们有什么不同?

说一说圆柱和圆锥有什么特点?

完成131页“做一做”中的1、2题。

巩固练习。

练习二十八1、2、3。

第五课时。

复习立体图形的认识、表面积和体积。

教学目标:通过复习使学生进一步理解立体图形的概念和特征,掌握立体图形的表面积和体积公式的推导过程,正确运用公式,熟练进行计算。

教学过程:

(1)基本练习。(立体图形的认识)。

出示教材132页上面的五个图形,说出各图形的名称,说一说图中各个字母表示什么。

如果把这些图形分成两类,可以怎样分?为什么?

说一说长方体和正方体有什么特点?它们有什么不同?

说一说圆柱和圆锥有什么特点?

完成133页中的1、2题。

(2)复习立体图形的表面积和体积。

举例说明什么是立体图形的表面积?什么是立体图形的体积?

投影图片出示132页中间的三幅图形。

结合图示想一想:长方体、正方体和圆柱的表面积各应怎样计算?根据图中给出的条件,用字母表示它们的面积。

整理:长方体表面积()。

正方体表面积()。

圆柱表面积()。

v=v=v=v=。

结合图形,分别写出各图形体积的计算公式。(用字母表示)并说一说它们有什么联系。

苏教版六年级数学教案二次备课篇三

1.知识技能:学生经历用切割拼合的方法推导出圆柱体积公式。

的过程,理解圆柱体积公式的推导过程,掌握圆柱体积的计算方法。

2.数学思考与问题解决:在自主探究的过程中,运用圆柱体的体积解决简单的实际问题,培养学生独立思考及解决问题的能力。

3.情感态度:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重难点。

学生经历并理解圆柱体积公式的推导过程。

教学难点:圆柱体积的计算公式的推导过程及其应用。

教学过程。

一.情景导入,激起兴趣。

同学们,我们的图形世界十分丰富多彩,让我们一起来欣赏吧。这些图形都有什么特点?如何计算出它们的体积呢?你觉得圆柱的体积和什么有关?这节课我们一起来探究圆柱的体积。(板书:圆柱的体积)。

二.巧妙转化,探究新知。

1.呈现长方体、正方体和圆柱的直观图,它们都是直柱体,我们回忆一下长方体的体积公式。

长方体的体积=长×宽×高,长方体和正方体的体积的体积统一公式“底面积×高”,用字母怎样表示?(板书)。

2.出示圆柱体,它的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?回忆一下圆面积计算公式的推导过程。

学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径)根据学生的叙述,教师课件演示。(演示课件:圆转化成长方形,推导圆面积公式的过程。)。

3.现在老师给这个圆柱体变个魔术,仔细观察看看发生了什么变化?(动画演示)。

4.学生小组讨论、交流。

教师:同学们自己先在小组里讨论一下。

(1)圆柱体转化成什么立体图形?

(2)它是怎样转化成这个长方体的?

苏教版六年级数学教案二次备课篇四

1、从具体情境中体会学习圆锥体积公式的必要性并进行大胆猜想。

2、在操作、观察、思考、探究等学习活动中推导出圆锥的体积公式,并能有条理的说出推导过程。

3、根据圆锥体积公式,解决简单的实际问题。

教学重难点。

教学重点:圆锥体积计算公式。

教学难点:圆锥体积计算公式的推导过程。

教学工具。

ppt课件。

教学过程。

一、激趣引入:

师:同学们都很棒,为了帮助大头儿子解决这个问题,这节课我们就来学习“圆锥的体积”的计算好吗?(板书课题)。

二、自主探究,合作交流。

一、认识圆锥的体积。

1、出示圆锥,引导学生说出圆锥的体积的意义。

课件出示:圆锥所占空间的大小叫做圆锥的体积。

2、演示排水法求圆锥的体积。

引导学生回忆不规则物体的测量方法说出排水法。

3、冰激淋不能用排水法求体积,要怎样求呢?

(二)教学例2.(探究圆锥的体积公式)。

1、引导学生猜想。

师:出示长方体、正方体、圆柱体。

同学们猜一猜,圆锥的体积计算应该和哪一个立体图形有关?

师:同学们再大胆猜一猜,圆锥的体积计算应该和什么量有关?

2、认识等底等高的圆柱和圆锥。

师课件演示怎样是等底等高的圆柱和圆锥。

板书:学生猜想。

3、实验验证猜想。

(1)明确实验方法、理解实验表和实验要求。

(2)学生实验。

(3)交流实验结果。

学生小组汇报,老师课件演示。

(4)得出结论。

师:通过实验你发现了什么?

生1:等底等高的圆柱是圆锥体积的3倍。

生2:等底等高的圆锥是圆柱体积的三分之一。

师:那不等底等高的圆柱和圆锥两个容器的容积存在这个倍数关系吗?

生:不存在。

明确哪个学生的猜想是对的。

4、推导圆锥的体积。

引导学生推导圆锥的体积。

师:根据我们得出的结论,你能写出圆锥的体积计算公式吗?

根据学生回答板书:v圆锥=13v圆柱=13sh。

师:想一想,根据刚才的实验,你发现了什么?要求圆锥的体积必须知道什么?

生:圆锥的体积等于它等底等高圆柱体积的三分之一。

师:为什么有三分之一?

生:因为实验时,圆锥向和它等底等高的圆柱里倒了三次。

师:我们知道了怎样求圆锥的体积,那么假如圆柱形冰淇淋和圆锥形的冰淇淋是等底等高,你们说大头儿子买哪种合算呢?(这时同学们异口同声回答答案)。

师:所以,数学来源于生活,生活离不开数学,生活中有很多问题都可以用我们所学的数学知识来解决。

5、练一练(运用公式):

师:我们继续来解决生活中的数学问题。

课件出示34页做一做第1题,学生独立解决,全班交流。

(二)教学例3.(运用公式拓展)。

课件出示例3。

学生读题,分析题意。

学生独立解决,全班交流。

规范做题格式。

(三)思考;求圆锥的体积,还可能出现那些情况?

引导学生梳理:

已知底面半径求体积;。

已知底面直径求体积;。

已知底面周长求体积。

三、巩固练习。

1、填空(课件)。

2、判断(课件)。

3、34页做一做第2题,学生独立做,集体订正。

四、课堂小结。

同学们,这节课有什么收获?

苏教版六年级数学教案二次备课篇五

教学过程:

直线、射线、线段。

提问:1)分别说一说什么叫直线、射线、线段?

直线、射线和线段有什么区别?

完成123页上面的“做一做”。(学生笔做)。

提问:1)什么叫做角?

2)角的大小与什么有关?

整理:把表中的空格填写完整。

完成123页下面“做一做”的1题、2题。

锐角直角钝角平角周角。

大于0°。

小于90°。

垂直与平行。

提问:

1)在同一平面内,两条直线的相互位置有哪几种情况?

2)什么样的两条直线叫做互相垂直?

什么样的两条直线叫做互相平行?

回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平。

完成教材124页的“做一做”

三角形。

提问:

1)什么叫做三角形?

2)在下面的三角形中,顶点a的对边是指哪一条边?

先笔做:以顶点a的对边为底,画出三角形的高,并标出底和高。(前页一幅图)。

在下面的表中填写三角形的名称和各自的特征。

名称。

图形。

特征。

回答:锐角三角形、直角三角形、钝角三角形的联系与区别。

四边形。

提问:什么叫四边形?

回答:看图说出下面各图的特点,再说一说图中各字母表示什么。

完成125页“做一做”中的1、2题。

苏教版六年级数学教案二次备课篇六

()()=()()。

(3)45=210。

4:()=():()。

5.做一做。

完成课本中的做一做。

6.课堂小结。

(1)说一说比例的基本性质。

(2)你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;比值是否相等;内项之积是否等于内项之积。)。

三、巩固练习。

完成课文练习六第4~6题。

补充习题。

一题多变化,动脑解决它。

(1)在比例里,两个内项的积是18,

其中一个外项是2,另一个外项是()。

(2)如果5a=3b,那么,=,

(3)a︰8=9︰b,那么,ab=()。

教学反思:

比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

将本文的word文档下载到电脑,方便收藏和打印。

苏教版六年级数学教案二次备课篇七

1、讨论“练一练”

(1)看图说一说:图上熊猫馆在猴山的什么方向,距离是猴山多少米?孔雀园呢?

自己先算一算实际距离,然后与同座位的同学说一说。

汇报交流:熊猫馆在猴山的什么方向?距离猴山多少米?怎么算出来的?连起来怎么说?

孔雀园呢?

引导学生说出:熊猫馆在猴山北偏西60°方向120米处。孔雀园在猴山南偏东35°方向90米处。

(2)蛇馆在猴山南偏西45°方向150米处。怎么在图上表示出它的位置。

各自在图上画出表示南偏西45°方向的射线,再算出图上距离,最后标出蛇馆的位置。

练习后交流思考的方法和具体的画法。

2、讨论练习十二第3题。

(1)出示题目,理解题目所包含的信息。

(2)飞机a在机场的什么位置?

各自在图上表示出来,然后汇报交流。

苏教版六年级数学教案二次备课篇八

教学目标:

1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

教学重点:理解题中的单位“1”和问题的关系。

教学难点:抓住知识关键,正确、灵活判断单位“1”。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)。

1、先说下列各算式表示的意义,再口算出得数。

12××。

2、列式计算。

(1)20的是多少?(2)6的是多少?

3、学生得出:求一个数的几分之几用乘法。

二、新知探究。

(一)课件出示自学目标。

1、通过学习掌握求一个数的几分之几是多少的应用题的解。

题方法并会分析数量关系。

2、知道解这类应用题的关键是什么?

3、知道如何找单位“1”。

(二)、教学例1。

1、课件出示自学提示。

(1)、正确理解关键句“我国人均耕地面积仅占世界人均耕地面积的”。

(2)、结合线段图理解题意,找到解题思路。

(3)、如何来理解单位“1”?(小组讨论,理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。

(4)、在分析题意的基础上,学生独立列式、计算。

2、学生根据提示自学。

全班交流汇报:

2500×=1000(平方米)。

3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

三、当堂测评。

练习四第2题、第3题。

学生独立完成,教师巡回指点,照顾差生。

小组内订正后。

四、课堂总结。

解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出关键句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)。

设计意图:

本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我紧扣分数乘分数的意义进行复习,并事先复习如“20的是多少?”的文字题,为解决与此相似的应用题做好准备。

由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。

苏教版六年级数学教案二次备课篇九

教学要求:

1.使学生进一步掌握含有百分数统计表的结构及能够准确熟练地进行数据计算与表格填写。

2.进一步培养学生观察、分析的能力。

3.通过制统计表,培养学生认真、仔细的良好习惯。

教学过程:

1.讲述练习内容。

上节课我们学习了制作含有百分数的统计表,这节课我们进行巩固练习。

2.复习。

让学生观察教材52页例1统计表提问:制一张合格的统计表的步骤是什么?(要求边看书边讨论,然后回答)。

制复式统计表的步骤:

(1)设计“表头”

(2)定纵横栏目各需几格。

(3)画表。

(4)填写数据(包括总计、合计)。

(5)写上名称、制表日期

3.巩固练习。

在学生掌握复式统计表制作方法的基础上,出示练习十七第3题。

方法:指导做题,让学生研究后再制表。

(1)提问:“各年级”和“全年级”各表示什么意思?

(2)教师巡视指导,然后让学生结合题目说一说制表的步骤。

4.综合练习。

(1)完成教材练习十一第5题。

方法:独立完成。然后让学生回答第二季度合计数填写的位置,全班齐练。

(2)完成教材练习十一第4题。

方法:要求学生认真审题,抓住关键词语,弄清数量关系,正确列出算式,准确计算。在做题时一定要注意差后,发现普通的问题要统一纠正。

5.深化练习。

练习十一第6题,不要求所有的学生都能完成,教师提示引导,学生试做。

教师引导,表中各班占总数的百分几中的总数指的是谁平均每人植树的棵数又是什么意思?学生试做后讲评。

6.全课总结。

有关统计部分的知识在我们的生活中应用很广,因此这部分知识很重要,同学们一定要牢牢记住。

7.作业(补充)。

(1)请把下面统计表填写完整。

双林衬衫厂去年各季度生产情况统计表1993年1月。

(2)填表。根据统计要求将下表填写完整。

东方小学男、女生人数统计表。

苏教版六年级数学教案二次备课篇十

8.什么叫合数?9.什么叫质因数?10.什么叫分解质因数?

11.能被2、3、5整除的数各有什么特征?12.什么叫偶数?

13.什么叫奇数?14.什么叫倍数?15.什么叫约数?

16.怎样求两个数的最大公约数和最小公倍数?

17.什么叫加法?什么叫减法?什么叫乘法?什么叫除法?

18.加法各部分之间的关系有哪些?减法各部分之间的关系有哪些?

19.乘法各部分之间的关系有哪些?除法各部分之间的关系有哪些?

20.四则混合运算的运算顺序是怎样的?

21.什么是加法交换律?用字母怎样表示?什么是加法结合律?用字母怎样表示?

22.什么是乘法交换律?用字母怎样表示?什么是乘法结合律?用字母怎样表示?

23.什么是乘法分配律?用字母怎样表示?

24.四则混合运算中,第一级运算有哪些?第二级运算有哪些?

苏教版六年级数学教案二次备课篇十一

一、导入。

呈现例1图片在黑板上。

提问:把放大前后的两幅画相比,你能发现什么?

根据学生回答的情况,谈话导入:像刚才把一幅长方形画放大后,长方形的长和宽与原来相比,其中变化有什么规律?这就是我们今天要学习的内容。

板书课题:图形的放大和缩小。

二、教学例1。

1、认识图形的放大。

出示例1中两幅图片长和宽的数据。

提问:两幅图的长有什么关系?宽呢?

组织学生先讨论,启发学生用不同的方法比较出两幅图的长和宽的关系:第二幅图的长是第一幅的2倍,宽也是第一幅的2倍;第一幅图和第二幅图长的比是2:1,宽的比也是2:1,等等。

指出:把图形的每条边放大到原来的2倍,就是把图形按2:1的比放大。

提问:刚才我们在电脑上操作时,把原来的一幅长方形按怎样的比放大了?

2、认识图形的缩小。

各是多少厘米?

先在小组里说一说,再组织全班交流。

三、教学例21、出示例2,让学生读题。

(1)提问:按3:1放大是什么意思?放大后的长、宽各是原来的几倍?各应画几格?

(2)学生画图,再展示、交流。

(3)让学生尝试在方格纸上画出缩小后的长方形,再展示各自画的图形,并交流思考的方法。

重点指导学生说说缩小后的长方形的长和宽应是原来的几分之几,各应画多少格。

2、讨论:把放大和缩小后的图形与原来的图形相比,你有什么发现?

让学生明确:放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)。

3、教学试一试。

先独立画出按2:1的比放大后的三角形,再让学生说一说自己是怎么画的?

提问:量一量,斜边的长也是原来的2倍吗?你发现什么?

小结:把三角形按2:1的比放大后,各条边的长都是原来的2倍。

四、巩固练习。

1、做练一练。

2、做练习六第1、2题。

第1题要引导学生具体分析相关图形边的长度,并完成填空,再组织交流。

五、全课小结。

苏教版六年级数学教案二次备课篇十二

1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

2.能正确地计算圆柱的表面积。

3会解决简单的实际问题。

4.初步培养学生抽象的逻辑思维能力。

教学重点。

理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

教学难点。

能充分运用圆柱表面积的相关知识灵活的解决实际问题。

教学过程。

一复习旧知。

1计算下面圆柱的侧面积。

(1)底面周长2.5米,高0.6米。

(2)底面直径4厘米,高10厘米。

(3)底面半径1.5分米,高8分米。

2求出下面长方体、正方体的表面积。

(1)长方体的长为4厘米,宽为7厘米,高为9厘米。

(2)正方体的棱长为6分米。

3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

二新课导入。

1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。

2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

(1)学生分组讨论。

(2)学生汇报讨论结果。

3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。

4教师进行圆柱模型表面展开演示。

(1)学生说说展开的侧面是什么图形。

学生:圆柱展开的侧面是一个长方形。

(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。

(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

三新课教学。

1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。

2学生尝试练习,教师巡回检查、指导。

3反馈评价:

(1)侧面积:2×2×3.14=56.52(平方分米)。

(2)底面积:3.14×2×2=12.56(平方分米)。

(3)表面积:56.52+12.56=81.64(平方分米)。

答:它的表面积是81.64平方分米。

4学生质疑。

5教师强调答题过程的清楚完整和计算的正确。

6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

四反馈练习:试一试。

1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。

2学生交流练习结果(注意计算结果的要求)。

3教师评议。

教师:在实际运用中四舍五入法和进一法有什么不同?

学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

五拓展练习。

1教师发给学生教具,学生分组进行数据测量。

2学生自行计算所需的材料。

3计算结果汇报。

教师:同学们的答案为什么会有不同?哪里出现偏差了?

学生甲:可能是数据的测量不准确。

学生乙:可能是计算出现错误。

教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

六巩固练习。

1计算下面图形的表面积(单位:厘米)(略)。

2计算下面各圆柱的表面积。

(1)底面周长是21.52厘米,高2.5分米。

(2)底面半径0.6米,高2米。

(3)底面直径10分米,高80厘米。

3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。

苏教版六年级数学教案二次备课篇十三

1、出示以灯塔为中心的平面图。

(1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?

相机指出:东——e西——w南——s北——n。

(2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。

2、如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
苏教版六年级数学教案二次备课(汇总13篇) 文件夹
复制