数学教案反思 数学教案上册人教版
文件夹
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
一、实现教学目标的措施
为了使学生对分析数据的知识和方法形成整体认识,本节课沿着实际问题的提出产生方差的必要性方差公式的探索和推导方差公式的使用解决实际问题巩固练习总结反思,这样的主线设计的。
问题的提出:课本是由国家射击队选拔运动员的问题引入的,创设了一个很好的问题情境和统计知识的背景,但数据比较复杂。所以我改用了甲、乙两人五次考试的成绩,甲:85,90,90,90,95;乙:95,85,95,85,90;那学生计算起来比较简单。
1、求平均数: 甲=90,甲同学成绩与平均成绩的差=0
乙=90,乙同学成绩与平均成绩的差=0
所以不能用各个数据与其平均数的差的和来衡量这组数据的波动大小。
各数据与其平均数的差不取其绝对值,而将其平方后还是不能比较它们波动的大小。
3、如果两组数据不一样多,怎么解决数据个数的影响?
可去掉甲中的一个90分。从而推导出方差的概念和公式。
这样层层设疑,步步推进,教师和学生一起解决问题,确定知识点,使学生在一次次的解决问题中体会方差概念的发生发展形成过程。
学生对于公式比较难记住,可让学生分成四个步骤:①求平均数②求差③求差的平方和④再求平均数。
解决实际问题:为了培养学生会应用方差解决实际问题的能力,在对例1的教学中,我始终只做一个引领者,学生是解决问题的主人。在解决问题时,学生会容易漏写最后两步,因为 ,所以甲比乙更整齐。
巩固练习:学生独立完成课本后的练习,时间充裕的时候还可以多在练习册上练几题。加深学生对方差的理解和提高他们运用知识的能力。
以上过程中,老师自始至终地充当引导者,由浅入深、层层递进的教学风格,注重培养了学生的能力和良好的学习态度,很好地完成了这节课的教学任务,达到了既定的教学目标。更主要的是能让学生在探究过程中学习科学研究的方法,从而增强学生的自主意识,培养学生的探索精神和创新思维。
二、心得体会
1、创造性的用教材,在使用教材的过程中融入了自己的科学精神和智慧,对教材知识进行重组和整合,选取了更好的内容对教材深加工。
2、整个教学活动始终建立在学生的认识发展水平和已有的知识经验基础之上的,体现了学生学习的过程是在教师的引导下自我建构、自我生成的过程。
3、在整个过程中,老师自始至终地充当引导者,由浅入深、层层递进,学生作为学习的主人,注重学生能力的培养和探究精神。
教学目标:
1、知道负整数指数幂=(a≠0,n是正整数)、
2、掌握整数指数幂的运算性质、
3、会用科学计数法表示小于1的数、
教学重点:
掌握整数指数幂的运算性质。
难点:
会用科学计数法表示小于1的数。
情感态度与价值观:
通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、
教学过程:
一、课堂引入
1、回忆正整数指数幂的运算性质:
(1)同底数的幂的乘法:am?an = am+n(m,n是正整数);
(2)幂的乘方:(am)n = amn (m,n是正整数);
(3)积的乘方:(ab)n = anbn (n是正整数);
(4)同底数的幂的除法:am÷an = am?n(a≠0,m,n是正整数,mn);
(5)商的乘方:()n = (n是正整数);
2、回忆0指数幂的规定,即当a≠0时,a0 = 1、
3、你还记得1纳米=10?9米,即1纳米=米吗?
4、计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,mn)中的mn这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。
二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的、
三、科学记数法:
我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。000012 = 1。2×10?即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此发现其中的规律,从而有0。0000000012 = 1。2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1。
教学目标
1、理解并掌握等腰三角形的判定定理及推论
2、能利用其性质与判定证明线段或角的相等关系.
教学重点:等腰三角形的判定定理及推论的运用
教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.
教学过程:
一、复习等腰三角形的性质
二、新授:
i提出问题,创设情境
出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(b点)为b标,然后在这棵树的正南方(南岸a点抽一小旗作标志)沿南偏东60°方向走一段距离到c处时,测得∠acb为30°,这时,地质专家测得ac的长度就可知河流宽度.
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.
ii引入新课
1.由性质定理的题设和结论的变化,引出研究的内容——在△abc中,苦∠b=∠c,则ab= ac吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2.引导学生根据图形,写出已知、求证.
2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).
强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.
4.引导学生说出引例中地质专家的测量方法的根据.
iii例题与练习
1.如图2
其中△abc是等腰三角形的是[ ]
2.①如图3,已知△abc中,ab=ac.∠a=36°,则∠c______(根据什么?).
②如图4,已知△abc中,∠a=36°,∠c=72°,△abc是______三角形(根据什么?).
③若已知∠a=36°,∠c=72°,bd平分∠abc交ac于d,判断图5中等腰三角形有______.
④若已知ad=4cm,则bc______cm.
3.以问题形式引出推论l______.
4.以问题形式引出推论2______.
例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.
分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.
练习:5.(l)如图6,在△abc中,ab=ac,∠abc、∠acb的平分线相交于点f,过f作de//bc,交ab于点d,交ac于e.问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件ab=ac,其他条件不变,图6中还有等腰三角形吗?
练习:p53练习1、2、3。
iv课堂小结
1.判定一个三角形是等腰三角形有几种方法?
2.判定一个三角形是等边三角形有几种方法?
3.等腰三角形的性质定理与判定定理有何关系?
4.现在证明线段相等问题,一般应从几方面考虑?
v布置作业:p56页习题12.3第5、6题
本节课是讲角平分线的性质与判定。下面从本节课的教学设计、课堂效果以及本节课的不足之处进行了反思。
在设计这节课时,我想如果在一节课的时间里把性质和判定学完,那只能是把本节课设计为探究课,而对于性质与判定的应用只能放在下一节课,于是我把这节课设计为探究课,把对角平分线的性质与判定定理的探索作为本节课的重点。本节课的教学方法是启发探究式。为了增加课堂密度和教学效果以及突破本节课的教学难点,我仔细研究了一个课件,知道了以增加学生对角平分线上任意一点的理解。在学生探究角平分线的性质与判定时,我分别创设了情境,一是为了给学生的探究搭建平台,培养学生的动手操作能力。二是为使学生感受到数学知识来源于实际并应用于实际。同时也体现了新课程标准下的课堂应体现学生的主体性。
如果说一节课的课堂设计是上好一节课的根本,那么课堂上老师的传授方式更是关键。这其中包括老师对课堂气氛和学生的把握,老师的教态是否大方得体,尤其有很多老师听课的时候,还包括语言是否精炼,知识的逻辑感是否连贯,层次是否清楚等。首先说本节课的课堂气氛,不知是否是第一节课的缘故亦或是学生有点紧张,平时爱回答问题的学生不太敢发言了,所以感觉课堂的气氛还是有些沉闷。当然,老师在调动学生的积极性时,要设法消除学生的紧张感,让学生在课上轻松而愉快的学习知识。这是对任何一位老师的考验。其次通过看自己的录像,平时自己没有在意的细节,包括自己在讲台上的站位和站姿,自己不经意的手势和说话的口头语都暴露出来。感觉自己精心锤炼的语言在录像中仍有些罗嗦等等。总觉得自己上课时怎么会留有那么多的遗憾。再次对课堂所用时间把握不够准确,由于在开始的尺规作图中浪费了一部分时间,当然这一环节时间的浪费与我讲授尺规作图的方式不够合理是分不开的,以至于在后面所准备的习题没有时间去练习,给人感觉这节课不够完整。再就是课堂上安排的内容过多,也是导致前面所提问题的原因。这也使我注意到在授课内容的安排上不应死板教条,而应根据内容和学生情况进行更合理的配置。
通过这堂课,感觉自身的课堂教学还有很多地方有待于改进和完善。尤其是对课堂语言的锤炼,不仅仅是表达清楚,更要言简意赅,把更多的时间留给学生,让学生在课堂上有更多的时间去思考。还要注意,发挥学生的主体性不应停留在口头上,还要在实际操作时充分体现教师是学生学习的引导者,学生是学习的真正的主人。更要在实际教学中始终贯彻先学后教的模式,更好地培养学生的合作精神与个人能力。
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
学生已经学习了一元一次去探究分式方程的解法及分式方程检验的必要性。
讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。
八年级数学教案反思 八年级数学教案上册人教版(5篇)
文件夹