数学教学设计教案
文件夹
教案可以帮助教师明确教学目标、选择适当的教学方法和资源、组织课堂教学活动。编写教案要注意提供适当的教学资源和实例,以便学生更好地理解。以下是小编为大家收集的教案范例,供大家参考和借鉴。
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无_。
奇偶性。
定义。
一般地,对于函数f(x)。
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
1.认真研读《考试说明》和《考纲》。
《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。
命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。
《考纲》明确指出“创新意识是理性思维的高层次表现”。因此试题都比较新颖活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。
2.多维审视知识结构。
高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你需要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
3.把答案盖住看例题。
参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的与解答哪里不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的.“题眼”及巧妙之处,收益将更大。
4.研究每题都考什么。
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到多题。你需要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
与其一节课抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。习题的价值不在于做对、做会,而在于你明白了这道题想考你什么。
2、过程和方法目标。
(1)通过观察和实验了解弹簧测力计的结构。
(2)通过自制弹簧测力计以及弹簧测力计的使用,掌握弹簧测力计的使用方法。
3、情感、态度与价值目标。
通过弹簧测力计的制作和使用,培养严谨的科学态度和爱动手动脑的好习惯。
二、重点难点。
重点:什么是弹力,正确使用弹簧测力计。
难点:弹簧测力计的测量原理。
三、教学方法:探究实验法,对比法。
四、教学仪器:直尺,橡皮筋,橡皮泥,纸,弹簧测力计。
五、教学过程。
(一)弹力。
1、弹性和塑性。
学生实验,注意观察所发生的现象:
(2)取一条橡皮筋,把橡皮筋拉长,体验手感,松手后,橡皮筋会恢复原来的长度。
(3)取一块橡皮泥,用手捏,使其变形,手放开,橡皮泥保持变形后的形状。
(4)取一张纸,将纸揉成一团再展开,纸不会恢复原来形状。
让学生交流实验观察到的现象上,并对这些实验现象进行分类,说明按什么分类,并要求各类再举些类似的例子。(按物体受力变形后能否恢复原来的形状这一特性进行分类)。
直尺、橡皮筋等受力会发生形变,不受力时又恢复到原来的形状,物体的这种特性叫做弹性;橡皮泥、纸等变形后不能自动恢复原来的形状,物体的这种特性叫做塑性。
2、弹力。
我们在压尺子、拉橡皮筋时,感受到它们对于有力的作用,这种力在物理学上叫做弹力。
弹力是物体由于弹性形变而产生的力。弹力也是一种很常见的力。并且任何物体只要发生弹性形变就一定会产生弹力。而日常生活中经常遇到的支持物的压力、绳的拉力等,实质上都是弹力。
3、弹性限度。
2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。
3.情感目标:渗透数学来源于生活,运用于生活的思想。
重点让学生理解现阶段函数的概念,定义域的概念。
难点用函数模型去研究生活中简单的事物变化规律时,如何确定定义域。
学情。
分析授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。
教法与学法教法:微课视频中包含情境教学法、多媒体辅助教学法的使用。
1.动画设计《世界在不断的变化》。
2.专业录频软件;
3.视频后期处理软件;
;
5.其它图片、背景音乐。
课前准备。
教学过程。
环节设计:教师活动、学生活动、设计意图。
环节一创设情境。
兴趣导入首先让学生观看视频《世界在不断的变化》。
老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。聪明的人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。今天我们就来学习一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。
1看视频。
2听老师解说,函数是研究世界变化规律的数学模型之一。
3了解函数的作用,对函数产生兴趣。
通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的数学函数的定义。
在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量.用一个生活实例加深对知识的理解。
实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x去进行方便的运算。
在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的前提.所以我们重新定义函数,将自变量x的取值范围用集合d来表示.函数的定义:
知识总结。
(1)函数的概念。
(2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。
学生回顾本次微课所学习的知识。让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。
环节四实例检测。
实例:文具店出售某种铅笔,每只售价0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用表达式来表示这个函数.要求学生把做题结果拍成照片,发到邮箱,及时反馈.学生练习,并把做题结果拍成照片,发到我的邮箱,并通过qq与学生进行交流实例巩固今天学习的函数概念。
1.使学生通过观察,初步理解简单的同分母分数加法的算理,并能正确计算.。
3.培养学生抽象概括与观察类推的能力.。
教学重点。
1.理解同分母分数加法的算理.。
2.会计算简单的同分母分数加法.。
教学难点。
理解同分母分数加法的算理.。
教学过程。
一、铺垫孕伏.。
复习旧知.。
(1)用分数表示图中涂色部分(投影)。
问:是几个?是几个?是几个?
(2)填空。
是4个是是个是个.。
(3)口算并说明计算理由.。
30+28056+6139+20。
二、探究新知.。
1.导入新授.。
这样的分数加法应该怎样计算呢?这节课我们就来学习简单的分数加法.。
(板书:简单的分数加法)。
2.教学例1.【演示课件简单的分数加、减法】。
(1)出示例1。
一张长方形纸,做纸花用去,做小旗用去,一共用去这张纸的`几分之几?
(2)分析数量关系,列出算式.。
教师板书:
教师提问:这道题应该怎样想呢?(演示动画分数加法例1)。
是2个,是1个,2个加上1个是3个,就是.因此。
(板书:)。
(3)计算并说出思考过程。
3.教学例2.【演示课件简单的分数加、减法】。
(1)(演示动画分数加法例2)。
提问:怎样列式?
(板书:)。
思考:得多少?你是怎么想的?
(2)教师出示图片,板书。
(3)再让学生说的思考过程.。
4.练习.。
(1)口答:
(2)计算并说思考过程.。
提问:1用分数怎样表示?(可表示为、、、)。
小结:可以根据我们的需要写成分子、分母相同的任意分数.。
三、随堂练习.。
1.填空。
(l)2个加上3个,是5个;就是。
(2)3个加上4个,是个,就是。
(3)2个加上7个是个,就是.。
2.判断正误,把不正确的改正过来.。
3.计算.。
4.一块皮子,做皮包用去这块皮子的,做皮鞋用去这块皮子的,一共用去这块皮子的几分之几?(列式计算,并说明理由.)。
四、课堂小结。
今天我们学习了同分母分数加法,你们发现了什么规律吗?
五、课后作业.。
文档为doc格式。
一、教材分析(结构系统、单元内容、重难点)。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
积极做好集体备课工作,达到内容统。
一、进度统。
一、目标统。
一、例题统。
一、习题统。
一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
一、教材分析(结构系统、单元内容、重难点)。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
积极做好集体备课工作,达到内容统。
一、进度统。
一、目标统。
一、例题统。
一、习题统。
一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
弹簧的弹性有一定的限度,超过了这个限度就不完全复原了。使用弹簧时不能超过它弹性限度,否则会使弹簧损坏。
(二)弹簧测力计。
1、测量原理。
它是根据弹簧受到的拉力越大,它的伸长就越长这个道理制作的。
2、让学生自己归纳使用弹簧测力计的方法和注意事项。
使用测力计应该注意下面几点:
(1)所测的力不能大于测力计的测量限度,以免损坏测力计。
(2)使用前,如果测力计的指针没有指在零点,那么应该调节指针的位置使其指在零点。
(3)明确分度值:了解弹簧测力计的刻度每一大格表示多少n,每一小格表示多少n。
(4)把挂钩轻轻拉动几下,看看是否灵活。
5、探究:弹簧测力计的制作和使用。
(四)课堂小结:1、什么是弹性?什么是塑性?什么是弹力?
2、弹簧测力计的测量原理。
3、弹簧测力计的使用方法。
(五)巩固练习:
1、乒乓球掉在地上马上会弹起来,使乒乓球自下而上运动的力是,它是由于乒乓球发生了而产生的。
2、弹簧受到的拉力越大,弹簧的伸长就。它有一个前提条件,该条件是,就是根据这个道理制作的。
3、关于弹力的叙述中正确的是()。
a、只有弹簧、橡皮筋等这类物体才可能产生弹力。
b、只要物体发生形变就会产生弹力。
c、任何物体的弹性都有一定的限度,因而弹力不可能无限大。
d、弹力的大小只与物体形变的程度有关。
4、下列哪个力不属于弹力()。
a、绳子对重物的拉力b、万有引力c、地面对人的支持力d、人对墙的推力。
5、两个同学同时用4.2n的力,向两边拉弹簧测力计的挂钩和提纽,此时弹簧测力计显示的示数是。
(六)布置作业:
六、课后反思:
一、教材分析(结构系统、单元内容、重难点)。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、
教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
一、教材分析(结构系统、单元内容、重难点)。
第1页。
元一次不等式(组)与简单的线性规划问题及应用;。
二、学生分析(双基智能水平、学习态度、方法、纪律)。
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施。
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
第2页。
要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。长期坚持,不断训练,幼儿说话胆量也在不断提高。
第3页。
8月,世界数学家大会在我国召开。这标志着我国在数学领域的研究已经跨入世界先进行列。然而作为文化组成部分的数学,你又了解多少呢?罗素在1前说了一句经常被人引用的俏皮话:我们不知道数学研究的是什么,也不知道研究的结果是真是假;20世纪最伟大的数学家之一外尔给数学下定义说,“数学是无穷的科学”。这些都让人们渴望了解数学,今天我们就学习《数学与文化》一课,来真正认识数学这门无穷的科学。
二、解题。
课文节选自《数学与文化》一书的绪言,是全书的总论。课文论述了数学作为“现代科学技术的语言和工具”的重要地位,分析了数学能够影响人类生活的几个特点,高度评价了数学在促进人类思想解放、使人类摆脱宗教迷信等方面的历史功绩,认为它最根本的特征是“表达了一种探索精神”,并把数学提高到文化盛衰、民族兴亡的高度来认识。
作者齐民友是当代著名数学家、博士生导师,曾任武汉大学校长。
三、研习课文。
1.整体把握,理清思路。
(1)默读课文,画出文中出现的成语以及直接表明作者观点的句子。
明确:
成语:泽被天下、风调雨顺、淋漓尽致。
表明作者观点的句子:a.首先,它追求一种完全确定、完全可靠的知识。b.另一个特点是它不断追求最简单的、最深层次的、超出人类感官所及的宇宙的根本。c.再一个特点是它不仅研究宇宙的规律,而且也研究它自己。
以上三点说明数学在人类理性思维活动中的特点,学生很容易找到。下面两点则需要细读文章来概括:a.它是现代科学技术的语言和工具。b.数学作为文化的一部分,其最根本的特征是它表达了一种探索精神。
(解说:课文虽较长但语言通俗,适合学生自读。可以让学生边读边画,一方面标示出成语,一方面将直接表明作者观点的句子画出来。重在引导学生自读并摘取要点。)。
(2)划分文章层次结构。
第一部分:第1段,指出数学作为“现代科学技术的语言和工具”的重要地位。
第二部分:第2-5段,分析数学影响人类生活的几个特点。
第三部分:第6-8段,评价数学对人类精神生活的深刻影响,指出数学表达了一种探索的精神,并从文化盛衰、民族兴亡的高度来认识数学。
(解说:把握文章层次结构,是进一步理解文章的基础。可以让学生列出文章结构提纲,以提高学生整体阅读的'能力。)。
2.具体研习,攻克重难点。
(1)第1段中哪些语句能说明数学作为文化的一部分的重要地位?
明确:“它几乎是任何科学所不可缺少的”,“它是现代科学技术的语言和工具”,“它的思想是许多物理学说的核心,并为它们的出现开辟了道路”,“它曾经是科学革命的旗帜”,这些语句都能说明数学在文化中的地位。而最直接的是“它是现代科学技术的语言和工具”。
(解说:设计这一问题,旨在培养学生提炼主要信息并进行筛选的能力。也许有学生会找到“没有任何一门科学能像它那样泽被天下”这一句,教师要适时引导:这一句只是形象的描述,不是确定的结论。)。
明确:数学追求的“完全确定、完全可靠”不同于语言表述的严密与准确。数学的对象必须有明确无误的概念,其方法必须由明确无误的命题开始,并服从明确无误的推理规则,以达到正确的结论。
(解说:设计这一问题,旨在让学生理解“完全确定、完全可靠”的含义。)。
明确:三个概念都是一个含义,数学方法指的由明确无误的命题开始,服从明确无误的推理规则,以达到正确的结论的理性思维的过程。
(解说:设计这一问题,旨在引导学生清晰认识人在认识宇宙和人类自己时必须持有的客观态度和标准。)。
明确:逻辑的要求和实践的检验是一种求真的态度,只有用这种求真的态度才能解开“宇宙和人类的真面目是什么”这样一个伟大而永恒的迷。此外,“无论是几千年的习俗、宗教的权威、皇帝的敕令、流行的风尚统统是没有用的”,正是数学所具有的这种求真态度使人类摆脱宗教等方面的影响,从而得到思想解放。
(解说:这是一句很难理解的话,首先要搞清楚“习俗、权威”等对什么是没有用的――是对认识宇宙和人类自己。然后确定逻辑的要求和实践的检验是一种求真的态度。正是这种求真的态度使人类思想得到解放,并摆脱宗教等方面的影响。设计这一问题,旨在引导学生从上下文中找到相关信息并进行筛选整合,从而得出较为准确的理解。)。
四、课堂小结。
这节课主要分析了数学作为文化的一部分所具有的第一个特点。作者从数学探讨的对象和方法指出了数学追求完全确定、完全可靠的知识的特点,并指出其在摆脱宗教等方面影响的作用。
第二课时。
一、继续研习课文。
(5)是什么在驱使数学不断追求最简单的、最深层次的、超出人类感官所及的宇宙的根本?欧几里德、牛顿等例子说明了什么问题?明确:从古希腊起,人们就有一个信念:世界是合理的、简单的,是可以用数学来描述的。这一信念促使数学追求最简单的、最深层次的、超出人类感官所及的宇宙的根本。欧几里德、牛顿等例子说明了科学经过了多次伟大的综合,而这种综合正是对数学进行研究时的那种化繁为简以求统一的过程。
(解说:设计这一问题,旨在让学生理解数学是在极抽象的形式下进行研究的,研究的过程是化繁为简以求统一。)。
(6)“难道看不出这也是一种把生命归结为最简单成分的不同位置、不同形式、不同数量而成的数学味很重的结构吗?”“由一堆砖石固然可以建成宏伟的纪念碑,却也可以搭起一座马棚,它们的区别究竟何在?”结合上下文,说出这两句话的含义。
明确:第一句话作者借dna的双螺旋结构一例说明人们在用数学去讨论物种的进化与竞争,讨论遗传的规律,并使人们认识到这种数学味很重的结构。这也恰恰证明了数学所追求的宇宙的根本――可以用数学来描述的、简单的、合理的世界。这种深层次的研究能破除迷信,体现了数学对人类生活的深刻影响。第二句话中,“它们的区别”也许就是“一堆砖石”“在数量上、形状上、结构上的差别”,这正是数学想解决的深刻的问题,这种研究是在极抽象的形式下进行的。
(解说:对这两句话的理解是这一课的难点,重在让学生理解数学在影响人类生活时所表现出来的深刻性和抽象性。)。
(7)第4段作者举了哪些例子来说明数学的自我完善性?
明确:希腊人开辟了研究无理数系的道路,越来越多的“不可能性”的出现,体现了数学在不断反思、不断批判自己;理性思维感到有问题时就要变,体现了数学在不断否定自己;从怀疑部分到怀疑自己的整体,都体现了数学的自我完善性。
(解说:这一段的阅读比较简单,学生很容易理解数学的发展是一个不断自我完善的过程,因而只设计一个例子来说明问题。)。
(8)在对全文进行.总结时体现了作者怎样的思想?
明确:作者高度赞扬了数学在人类理性发展中的成就,它深刻地影响了人类精神生活,促进了人的思想解放。数学作为文化的一部分,其永恒的主题是“认识宇宙,也认识人类自己”。在探索中,数学的理性思维给人类的思想解放打开了道路。同时,作者站在文化盛衰、民族兴亡的高度阐明数学的重大意义。
(解说:设计这一问题,旨在让学生体会作者的思想认识,从而理解文章的内涵以及作者的主要思想。)。
3.课堂训练。
结合课后练习四,让学生讲述自己了解的数学史上的小故事,结合自己学数学的体会谈谈对数学这门学科的认识。
(解说:这是一个比较开放的课堂训练,目的在于加深学生对数学的认识和理解。学生可以自由表述观点,不求统一。)。
二、布置作业。
课后阅读《数学与文化》绪言全篇,以加深对本课的理解。还可以阅读相关数学史的普及读物,提高自己对数学这门科学的认识。
一、组织教学:师生问好。
二、欣赏。
1、导入。
师:同学们,课间你们都玩些什么游戏?
生:“打乒乓”;“跳绳”;“贴大饼”;“捉迷藏”;“抓人”……。
[从学生最贴近的生活入手,强调学生的生活经验。]。
2、初听。
师:现在老师播放一段音乐(《陀螺》),听完告诉我,你认为这段音乐表现的是你玩的什么游戏,并说出原因。
生1:我认为是跳绳,因为音乐一会儿高一会儿低。
生2:我认为是在打乒乓,因为音乐比较活跃,打乒乓时要来回走动。
……。
师:同学们说得不错,现在我们来听下一首(《骑竹马》),听听看这回表现的是什么游戏,当然也要说出原因。
生:我认为是骑马,因为音乐像马蹄声。
师:同学们说得有道理,现在我们再来听一首乐曲(《跳绳》),听听看这回表现的是什么游戏,说出你的原因。
生1:我认为是跳高,因为音乐一会高一会低。
生2:我认为是捉迷藏,因为捉迷藏要逃来逃去,我觉得音乐像。
……。
师:同学们很会想象,下面我们来听最后一首乐曲(《捉迷藏》),这回表现的是什么游戏,同样请你说出原因。
生1:我认为是“贴大饼”,因为“贴大饼”要跑来跑去,音乐比较快,很象。
生2:我认为是“捉迷藏”,因为“捉迷藏”也要跑来跑去。
……。
[音乐是想象的艺术,充分培养学生的想象力。]。
3、复听分析。
师:同学们听得很仔细,现在请你们打开书本,看着书上的标题和插图,我们再次把刚才的音乐欣赏一遍。
(1)听《陀螺》。
师:你认为老师播放的音乐表现的是什么游戏?为什么?
生:是《陀螺》。因为音乐上下跳动,好象陀螺在旋转,开头的响声好象是在抽陀螺。
师:回答得很好!谁来说一说这首乐曲的节奏和速度是怎样的?
生:这首乐曲的节奏比较跳跃,速度是快速。
师:很好。老师这里有陀螺,请一位同学玩一玩,体验一下。
师:现在让我们跟着音乐模仿玩陀螺。
[在聆听中体验。]。
(2)听《骑竹马》。
师:这首乐曲你们刚才已经听出,是《骑竹马》。那么这首乐曲的节奏和速度是怎样的?
生:这首乐曲的节奏是比较紧凑的;速度也是快速。
师:好的。老师和你们一起玩一玩“竹马”。(播放《骑竹马》)。
[在聆听中体验。]。
(3)听《跳绳》。
生:这首乐曲是《跳绳》。
生:音乐的节奏也比较紧凑,速度是稍快。
师:你们平时跳绳有几种跳法?
生:有“双飞”、“跳长绳”、“双人跳”……。
师:我请同学们上来示范一下。
师:现在老师分四大组,你们自己商量一下,然后老师播放音乐,你们边听边跳绳。
[在聆听中体验。]。
(4)听《捉迷藏》。
师:这首音乐表现的是什么游戏?为什么?
生:是《捉迷藏》。因为音乐忽快忽慢,比较快,好象一个小朋友在抓,其他小朋友在逃。
师:音乐的节奏、速度是怎样的?
生:节奏很连贯,紧凑,速度较快。
师:现在老师再播放一遍,你们藏好了,老师可要来抓你们了!
4、小结:《跳绳》的作曲者是丁善德,是位有名的作曲家,写过许多反映儿童生活、学习的钢琴小品,是上海音乐学院的教授;《捉迷藏》的作曲者是德国的舒曼,也是一位有名的作曲家,写过《梦幻曲》等有名的作品。
5、总听:颠乱乐曲次序,让学生听辨乐曲,并模仿游戏。
[遵循聆听——聆听——再聆听的原则,让学生通过反复聆听加深对乐曲的记忆、理解]。
三、总结:
这四首乐曲组成了《快乐的童年》的组曲,这几首乐曲惟妙惟肖地表现出了我们游戏时的情景。音乐可以通过节奏、速度、音色、音区的不同来表现不同的音乐形象,所以音乐的表现力是非常丰富的,我们只有通过自己的听辨、想象、思考来理解乐曲。
所谓三维目标是是指:“知识与技能”,“过程和方法”、“情感、态度、价值观”。
知识与技能:既是课堂教学的出发点,又是课堂教学的归宿。我们在教学过程中,需要学生掌握什么,哪些些问题需要重点掌握,哪些只需简单理解;技能是会与不会的问题。属显性范畴,具有可测性,大都采用定量分析与评价、知识与技能是传统教学合理的内核,是我国传统教育教学的优势,应该从传统教学中继承与发扬。新课改不是不要双基,而是不要过度的强调双基,而舍弃弱化其它有价值的东西,导致非全面、不和蔼的发展。
过程与方法:既是课堂教学的目标之一,又是课堂教学的操作系统。“过程和方法”维度的目标立足于让学生会学,新课程倡导对学与教的过程的体验、方法的选择,是在知识与能力目标基础上对教学目标的进一步开发。过程与方法是一个体验的过程、发现的过程,不但可以让学生体验到科学发展的过程,我们更多地要让学生掌握过程,不一定要统一的结果。
情感、态度与价值观:既是课堂教学的目标之一,又是课堂教学的动力系统。“情感、态度和价值观”,目标立足于让学生乐学,新课程倡导对学与教的情感体验、态度形成、价值观的体现,是在知识与能力、过程与方法目标基础上对教学目标深层次的开拓,只有学生充分的认识到他们肩负的责任,就能够激发起他们的学习热情,他们才会有浓厚的学习兴趣,才能学有所成,将来回报社会。
三维目标不是三个目标,也不是三种目标,是一个问题的三个方面。三维目标是三位一体不可分割的,他们是相辅相成的,相互促进的。
3、了解集合元素个数问题的讨论说明
通过提问汇总练习提炼的形式来发掘学生学习方法
培养学生系统化及创造性的思维
[教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.。
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.。
1.新课导入。
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)。
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)。
学生举例:平行四边形的对角线互相平.……(1)。
两直线平行,同位角相等.…………(2)。
教师提问:“……相等的角是对顶角”是不是命题?……(3)。
(同学议论结果,答案是肯定的.)。
教师提问:什么是命题?
(学生进行回忆、思考.)。
概念总结:对一件事情作出了判断的语句叫做命题.。
(教师肯定了同学的回答,并作板书.)。
(教师利用投影片,和学生讨论以下问题.)。
例1判断以下各语句是不是命题,若是,判断其真假:
2.讲授新课。
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)。
(1)什么叫做命题?
可以判断真假的语句叫做命题.。
(2)介绍逻辑联结词“或”、“且”、“非”.。
命题可分为简单命题和复合命题.。
(4)命题的表示:用p,q,r,s,……来表示.。
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)。
对于给出“若p则q”形式的复合命题,应能找到条件p和结论q.。
3.巩固新课。
(1)5;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0,则a=0.。
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)。
3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
一、预习检查。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为.
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.
3、双曲线的渐进线方程为.
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.
二、问题探究。
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.
探究2、双曲线与其渐近线具有怎样的关系.
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.
例1根据以下条件,分别求出双曲线的标准方程.
(1)过点,离心率.
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.
例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.
例3(理)求离心率为,且过点的双曲线标准方程.
三、思维训练。
1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.
2、椭圆的离心率为,则双曲线的离心率为.
3、双曲线的渐进线方程是,则双曲线的离心率等于=.
4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.
四、知识巩固。
1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.
2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.
3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.
5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的`如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
一、知识归纳
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
二、例题讨论
一)利用方向角构造三角形
四)测量角度问题
例4、在一个特定时段内,以点e为中心的7海里以内海域被设为警戒水域.点e正北55海里处有一个雷达观测站a.某时刻测得一艘匀速直线行驶的船只位于点a北偏东。
2、掌握标准方程中的几何意义。
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例3(理)求离心率为,且过点的双曲线标准方程、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、
将本文的word文档下载到电脑,方便收藏和打印。
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路。
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本p8,习题1.1a组第1题。
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
由学生整理学习了哪些内容六、布置作业。
课本p8练习题1.1b组第1题。
课外练习课本p8习题1.1b组第2题。
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的`知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的,能受到大家的欢迎!
本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1)、、各等于什么?
2)、、各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
对比、归纳、总结
1.重点:理解并掌握二次根式的性质
2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
1课时
五、教b具学具准备
投影仪、胶片、多媒体
复习对比,归纳整理,应用提高,以学生活动为主
一、导入新课
我们知道,式子()表示非负数的算术平方根.
问:式子的意义是什么?被开方数中的表示的是什么数?
答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1);(2);(3);
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系。
2、了解集合的运算包含了集合表示法之间的转化及数学解题的`一般思想。
3、了解集合元素个数问题的讨论说明。
通过提问汇总练习提炼的形式来发掘学生学习方法。
培养学生系统化及创造性的思维。
[教学重点、难点]:会正确应用其概念和性质做题[教具]:多媒体、实物投影仪。
[教学方法]:讲练结合法。
[授课类型]:复习课。
[课时安排]:1课时。
[教学过程]:集合部分汇总。
本单元主要介绍了以下三个问题:
1,集合的含义与特征。
2,集合的表示与转化。
3,集合的基本运算。
一,集合的含义与表示(含分类)。
1,具有共同特征的对象的全体,称一个集合。
2,集合按元素的个数分为:有限集和无穷集两类。
高一数学教学设计教案(通用19篇)
文件夹