一次函数教学设计(优质8篇)
文件格式:DOCX
时间:2023-11-21 18:20:23    小编:紫薇儿

一次函数教学设计(优质8篇)

小编:紫薇儿

总结是一个机会,一个机会去审视自己,发现自己的潜力和不足。在情感表达中,语言和非语言因素都起着重要的作用。希望下面这些范例能够对大家的写作提供一些借鉴。

一次函数教学设计篇一

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

情感与态度目标。

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

重点:二元一次方程的概念及二元一次方程的解的概念。

难点。

1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

创设情境导入新课。

1、一个数的3倍比这个数大6,这个数是多少?

师生互动探索新知。

1、发现新知。

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)。

2、巩固新知。

相同点:方程两边都是整式,含有未知数的项的次数都是一次。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

它山之石可以攻玉,以上就是为大家带来的3篇《一次函数与二元一次方程课教学设计》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。

一次函数教学设计篇二

3、经历一次函数概念的认识,和利用一次函数解决实际问题的过程,逐步认识利用函数观点认识现实世界的意识和能力。

一次函数的概念以及一次函数和正比例函数的关系。

理解一次函数和正比例函数的关系。

引导发现、探究指导。

自主学习、合作学习。

多媒体。

一、情景引入。

母亲节快到了,红红想送一大束康乃馨给妈妈,花店老板告诉她,若买10支以及10支以下,每支3元,买10支以上,超过的部分打8折,如果红红买了x支康乃馨(x10),付给老板y元钱,请写出y与x之间的函数关系式。

二、探究新知。

1、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式?

(4)把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(单位:cm2)随x的值而变化。

2、这些函数解析式有哪些共同特征?

3、你能仿照正比例函数的概念,归纳总结出一次函数的概念吗?

4、一次函数和正比例函数有什么关系?

三、展示归纳(学生做后,解答过程学生说老师写,发动学生纠正和完善并总结归纳出一次函数的概念)。

1、学生先用独立思考,在进行小组讨论,老师准备板书,巡回指导,了解情况;

2、学生逐一回答,其他学生逐一补充完善;

3、教师火龙点睛,强调关键。

四、练习巩固(过渡语:了解了一次函数的概念之后下面老师就来检验一下同学们,看看同学们能判断一个函数是一次函数吗?)(每个练习先让学生做,教师巡回指导,然后让有一定问题的学生汇报展示,发动学生评价完善,教师强调关键地方,在进行下一个练习)。

练习1下列函数中哪些是一次函数,哪些又是正比例函数?

(1)y=—8x;(2)y=—;(3)y=5x+6;(4)y=—0。5x—1;

(5)y=—1;(6)y=—13;(7)y=2(x—4);(8)y=。

练习2已知一次函数y=kx+b,当x=1时,y=5;当x=—1时,y=1。求k和b的值。

五、小结与归纳(由学生来陈述,百花齐放。教师不做限定,没说到的,教师补充。)。

1、通过本节课的学习,你有何收获?

2、反思一下你所获得的经验,与同学交流!

六、作业:必做题:教科书第91页第3题;

选做题:请写出若干个变量y与x之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项。

七、板书设计(以课堂生成为准)。

八、课后反思:

在上一节课,学生整体感受了研究函数的一般思路与方法,但在具体知识理解的深度上还是不够,尤其作业上学生对概念中的自变量的次数理解不够到位。在这节课的学习中,应当促进学生从整体把握的高度深刻的理解一次函数与正比例函数的概念以及它们之间的关系。在概念的学习中,教师对学生提供的经验性材料太少,仅从正面入手不足以使学生真正理解概念,还必须从侧面和反面来理解概念,通过多举例,多练习来巩固概念。

教学中,需要分清并抓住本质现象,鼓励学生用自己的语言阐述自己的看法,学生在经历大量源自实际背景下的解析式的分析比较后,抽象概括出它们的一般结构,从而形成一次函数的概念,教师在强调概念需要注意和容易出错的地方。在知识的获取过程中,始终交织着旧知与新知、变与不变、相同与不同的对立与统一,这些都触动着学生对数学学习的情感。

另外,课前备学生是十分必要的,只有充分了解学生,课时尽量关注每一个学生,做到心中有学生,使每一个学生都参与课堂活动中来,让他们感受到自己是这节课的主角,从而学习数学的积极性提高,降低两极分化。

一次函数教学设计篇三

知识目标:了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

能力目标:通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

情感目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

一、引入、实物投影。

2、请每个学习小组讨论(讨论2分钟,然后发言)。

这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)。

师:同学们能用方程的。方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)。

师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程。

一次函数教学设计篇四

过程与方法。

(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。

情感与态度。

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

教学重点。

教学难点。

数形结合和数学转化的思想意识。

教学准备。

教具:多媒体课件、三角板。

学具:铅笔、直尺、练习本、坐标纸。

教学过程。

第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。

内容:

1.方程x+y=5的解有多少个?是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。

内容:

1.解方程组。

2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。

第三环节典型例题(10分钟,学生独立解决)。

探究方程与函数的相互转化。

内容:例1用作图像的方法解方程组。

例2如图,直线与的交点坐标是。

第四环节反馈练习(10分钟,学生解决全班交流)。

内容:

1.已知一次函数与的图像的交点为,则。

2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。

(a)4(b)5(c)6(d)7。

3.求两条直线与和轴所围成的三角形面积。

4.如图,两条直线与的交点坐标可以看作哪个方程组的解?

第五环节课堂小结(5分钟,师生共同总结)。

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

2.方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;

(2)两条直线的交点坐标是对应的方程组的解;

(1)代入消元法;

(2)加减消元法;

(3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。

第六环节作业布置。

习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。

一次函数教学设计篇五

1、问题导入:

请同学们思考后回答:

(1)找出问题中的变量并用字母表示,列出函数关系式、

(2)这两个函数关系式有什么共同点?自变量的取值范围各有什么限制?

以上这些问题,请各小组讨论一下,派代表回答、引出课题(板书课题)教师最后总结一次函数的概念、(板书)。

1、做一做:

我们已经学习了用描点法画函数的图象,请同学运用描点法画出下列函数的图象(老师用多媒体打出题目)。根据学生的动手实践、观察与讨论,得出结论:一次函数的图象是一条直线、特别地,正比例函数的图象是经过原点的一条直线。

2、接下来教师提问:

(1)观察所画出的四个一次函数的图象,比较各对一次函数的图象有什么共同点,有什么不同点。

4、巩固训练:

(1)在同一平面直角坐标系中画出下列函数的图象。

将直线向上平移5个单位,得到直线_______________________、

(由学生到前板演)、

函数反映了客观世界中量的变化规律,那么一次函数又有什么性质呢?

1、请同学们来一起观察大屏幕上函数图象(教师用多媒体演示函数的图象),并回答:当一个点在直线上从左右移动时,它的位置如何变化?你能从中得到函数值的变化与自变量的变化规律吗?(教师运用现代化的教学手段来演示点的移动情况,进一步促进了学生对一次函数的变化规律理解)由学生讨论出结果:也就是说,函数值随自变量的增大而增大、(教师板书)。

一次函数教学设计篇六

一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。

先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。

练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!

反思:1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。

2、本节课讲到第三个性质。

3、练习题要精而且少,难易适中。

4、注意课前准备,上课注意语言。函数教学反思反比例函数教学反思。

一次函数教学设计篇七

本节内容是人教版《义务教育课程标准实验教科书·数学》八年级上册“14.2.2一次函数”(第二课时)。

一、本课数学内容的本质、地位和作用分析。

二、教学目标分析。

三、教学问题诊断分析。

四、本节课的教法特点及预期效果分析。

3.八年级的学生好奇、好学、好动,所以在教学过程中通过让学生自己动手画图,同学之间交流画法,谈谈想法等活动,充分发挥学生的主体性,进一步激发学生的求知欲,课件中的动画过程使数与形的关系可视化,有利于学生对问题的感知。

以上是我对这节课的教学设计的说明,不妥之处恳请各位专家批评指正。

一次函数教学设计篇八

(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

(2)二元一次方程组和对应的两条直线的关系。

数形结合和数学转化的思想意识。

教具:多媒体课件、三角板。

学具:铅笔、直尺、练习本、坐标纸。

第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。

内容:

1.方程x+y=5的解有多少个?是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。

内容:

1.解方程组。

2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。

第三环节典型例题(10分钟,学生独立解决)。

探究方程与函数的相互转化。

内容:例1用作图像的方法解方程组。

例2如图,直线与的交点坐标是。

第四环节反馈练习(10分钟,学生解决全班交流)。

内容:

1.已知一次函数与的图像的交点为,则。

2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。

(a)4(b)5(c)6(d)7。

3.求两条直线与和轴所围成的三角形面积。

4.如图,两条直线与的交点坐标可以看作哪个方程组的解?

第五环节课堂小结(5分钟,师生共同总结)。

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的。图像的关系;

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

2.方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;

(2)两条直线的交点坐标是对应的方程组的解;

(1)代入消元法;

(2)加减消元法;

(3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。

第六环节作业布置。

习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
一次函数教学设计(优质8篇) 文件夹
复制