考研数学学习专业
文件夹
总结可以提高我们的思维能力和组织能力,是我们在学习和工作过程中的重要技能。总结应当客观真实,同时要加入自己的观点和思考,使其更具个性和独特性。我们可以通过阅读下面这些范文,来学习如何写一篇好的总结。
对微积分中的基本概念重新过一遍。特别是在考纲中要求“理解”的概念更要重视。例如,函数(一元或多元)、极限、连续、导数(偏导数)、微积分(全微分)、各种积分;极值与最值、曲线的凹凸性与拐点;曲线的三支渐进线。曲率、曲率圆与曲率半径、梯度、散度、旋读;常数项级数的收敛与发散、任意项级数的绝对收敛与条件收敛。幂级数的收敛区间与收敛域。幂级数的和函数;微积方程的阶、解、通解和特解等。
对于微积分中的一些定理,要记住定理的条件和结论,知道怎样用这些定理解决有关问题。例如:在闭区间上连续函数的性质(有界性、最大值最小值定理、介值定理、零点定理)、微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理、柯西中值定理)、积分中值定理、隐函数存在定理等。
2.必须牢记数学公式。
一定要反复熟悉微积分中的一些公式,做到牢记公式。例如两个重要极限,一些等价的无穷小量,倒数基本公式,常用的简单函数的高阶导数公式、基本积分公式、牛顿-莱布尼茨公式、积分限函数求导公式、格林公式、高斯公式、斯托克斯公式、初等函数的麦克劳琳展开式、一阶线性微分方程的求解公式、函数的傅里叶系数公式等。
3.适当做些中档题,切忌死抠难题。
在考卷中,中档题(难度系数0.3~0.8之间)约占75~80%。中档题主要考查基本概念、基本知识和基本运算。每天适当做些往年考研真题和模拟题中的中档题。对于深入理解概念,牢记公式,掌握基本方法是有好处的。可以使你保持良好的备战状态,以便应考。在考前的几天中花时间做难题是不划算的。请考生注意。
战术一:多次基本训练,抓住考研重点。
通过对历年试题的统计分析可以得出常考的内容,考试的重点,通过对近几年考题的分析可得出考试热点,抓住重点、热点可使复习针对性增强,加快复习进度并节省大量时间,提高考研竞争优势,为考场取得高分打下坚实的基础。
考研就是考“熟练”,只有把内容、方法搞熟练,才能获得最后的成功。学数学只有做大量的高质量的练习题才能把基本功练熟、练透,才能提高应试和解题的能力,总之数学需多做题,不能眼高手低。做题时要完整、认真演算,过一段时间要翻出来再看几遍。
战术二:考研数学记忆与理解很重要,学会举一反三。
考研数学一般考察考生的基础知识的掌握和运用解题的能力。数学的复习需要一步一步的积累知识、循序渐进的学习方法。数学的考题总是有严密的科学性,精确的答案,因而在打牢基础的前提下,万变不离其宗的灵活运用概念,一切难题都会迎刃而解。
基本概念是课程知识体系的支撑点,掌握了基本概念就等于抓住了纲。高数里的概念一般都很抽象,必须理解其数学意义。"万变不离其宗",从概念入手,一旦了解了概念,把握住概念中的核心词汇,理解概念中蕴藏的精髓所在,就如同把握了解题的命脉。在做题的时候就有坚实的基础,容易对症下药。同时记忆是学习过程中一个非常重要的环节,是掌握知识的手段。从某种意义上说,没有记忆就没有学习,人在认识过程中就无积累,就没有继承。当然也不能死记硬背,正如歌德所说:“你所不理解的东西,是你无法占有的。”而很多考生认为数学会做题就可以了,不需要记忆,但是通过和考研数学得高分的同学交流可以知道,在准备数学的最终阶段,还是需要记忆。只有先把基本的概念、解释记住了,才能进行下一步的理解、运用。
数学科目是循序渐进的,基础没打好,积下的问题在未来的学习中就会像滚雪球一样越滚越大,让人不堪重负。而一道高数题涉及的内容回到课本上可能是跨越好几个章节。所以学习数学时必须要学会举一反三。通过做题发现哪几个知识点比较容易连着一起出题。哪几个知识点又比较孤立,假如出现在同一道题里,又是怎样,并且尝试自己给自己出题,或者同学之间相互出题。
战术三:找准方法,持之以恒。
还有的考生认为现在离考试还远,没有紧迫感。今天没事干就看看书做两个题,明天有些事情就把书放在一边不理会了。这样的结果是看了后面忘了前面,知识没有连续性,形不成体系。考研的路程是漫长的,数学的学习是枯燥的,在复习过程中需要考生具有坚强的毅力。虽然2013的数学考试大纲未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的大纲和试题进行复习。详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好的展开复习。凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是主要考点,务必要作为复习的重点。
数学复习不像英语、政治对辅导书的依赖性很大,主要靠课本来打下坚实的基础。翻一下数学大纲,上面列出的知识点全部来源于课本。所以考生一定要老老实实参照大纲的要求把原来的课本找出来,按照大纲对数学基本概念、基本方法、基本定理准确把握。数学学习中最重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对最基本的一些解题方法的掌握和运用。
战术四:正确选择资料。
选择资料:资料的使用关键要适合你的水平,这个要靠你自己在使用的过程中不断的总结和评价你的资料,必要的时候要即使的更换资料。因为我们都知道这个道理,拔苗助长。一本难度很高的资料,无疑于能够起到这种效果。如果出现这种情况,我认为那就得不偿失了。考研大约可以分为三个级别:高手、中手、庸手。高手水平很高,在他们的眼里,一切资料都那么简单。决个例子,那些能够考到400多分的,你可以设想一下,还有什么考研资料不是好的,不是简单,不是对他们来说有用。
市面上的资料五花八门,眼花缭乱,要想正确的选择,就要先进行了解。一般来说,考研复习资料根据内容、用途和针对性的不同,可以分为以下几大类:模拟试题、历年真题、考试大纲、专业教材以及各种考研辅导书和内部资料。试题及大纲一般网上都有下载,专业课的教材有的学校指定复习参考书目,应按学校指定参考书目去复习。不过近年不少院校都取消了参考书目的公布,所以大家更加要积极的去寻找往年的参考资料,以及你想考的专业本科阶段的教材去看。
制定任务:手头有一定复习资料后,就应该踏实看书复习了。关于如何复习,每个人都有自己的方法,当然也有一些大家经过摸索共同认可的方法。但考研复习毕竟是一个庞大的系统工程,复习课程多,时间跨度长,因此,考研复习必须有一个整体的规划,也就是说必须要制定一个适合自己的计划。这个计划是否合理,是否适合自己,往往在很大程度决定着你最后的结果。
最后,提醒同学们注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要在考研这条路,助大家早日修得正果!
纵观近三年的数一、数二和数三的试卷,我们不难发现极限、微分和积分依然是重中之重,也是考试经常会考的知识点和难点,尤其是极限和微分的结合,极限和积分的结合,更加需要考生深刻地掌握基本的概念、基本的理论和基本的方法。另外,还需要考生多做一些与考点、难点紧密相连的题目,在做题的过程中掌握基础理论、基本方法,以便在考试之中,面对不同的题目灵活运用。下面,我就近三年的高等数学中的考点、难点向大家进行深刻的剖析。
函数、极限、连续部分。极限的运算法则、极限存在的准则(单调有界准则和夹逼准则)、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理),这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。极限的最基本考法就是求极限,大家需要掌握求极限的方法,极限也多与微分、积分联合在一起进行考试;极限的存在性证明,高等数学中我们进行极限的证明就只有两种方法,一种是夹逼原理,一种是单调有界性定理,考生需要完全掌握这两种方法,在考试中,对不同的题目进行灵活的使用。
微分学部分,主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。微分学的应用也是考试的重点,如判断函数的单调性,求解函数的单调区间,函数的凹凸性、拐点及渐近线,也是一个重点内容,考生需要掌握基本方法以外,还需要深刻的了解单调性,极值点,凹凸性,拐点相互之间的关系。曲率部分,仅数一考生需要掌握,但是并不是重点,在考试中很少出现,记住相关公式即可。多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问题。方向导数、梯度,空间曲线、曲面的切平面和法线,仅数一考生需要掌握,但是不是重点,记忆相关公式即可。利用函数的微分性质,求解函数在固定区域中的最值问题也是难点,这一点除了需要考生掌握基本理论和基本方法以外,因为这一类的题目计算起来比较复杂,尤其是二元函数的极值问题,因此还需要考生多做一些相关的题目,增加自己的熟练度。
一元函数积分学的一个重点是不定积分与定积分的计算。这个对于有些同学来说可能不难,但是要想用简便的方法解答还是需要多花点时间学习的。在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,这种方法相信多数同学都会,但是如何准确地进行换元从而得到最终答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,同学们应牢记相关公式,通过多练掌握解题技巧。对于定积分在物理上的应用(数一数二有要求),如功、引力、压力、质心、形心等,近几年考试基本都没有涉及,考生只要记住求解公式即可。
多元函数积分学的一个重点是二重积分的计算,其中要用到二重积分的性质,以及直角坐标与极坐标的相互转化。这部分内容,每年都会考到,考生要引起重视,需要明白的是,二重积分并不是难点。三重积分、曲线和曲面积分属于数一单独考查的内容,主要是掌握三重积分的计算、green公式和gauss公式以及曲线积分与路径无关的条件。对于数一考生来说,这部分是重点,也是难点所在。散度、旋度同样是数一考生单独考查内容,但是不是重点,会进行简单计算即可。
空间解析几何,考试要求较低,并且空间解析几何多为多重积分服务,考试的时候多以选择题和填空题的形式出现。级数要求考生会判断敛散性和求出收敛区间、收敛域即可。对于常微分方程,主要是有两大类考点和难点,一为一阶常微分方程和可降阶的二阶常微分方程的解法,一为高阶常系数齐次(或非齐次)常微分方程的解法,考试考大题的几率较低,差分方程仅对数三有所要求,考试的几率几乎为零。
每一个例题,每一道习题,这是你以后成功的保证。对于概念,定理,要有自己的理解,可以用自己的语言来描述,可以知道他们彼此之间的关系,能做到合起书,将一个个定理在草稿纸上推导出来,知道书中各个章节的顺序,并且知道他们之间的联系。说得夸张一点,你可以默写出书中各个章节的标题,包括小标题。如果你能做到以上的,你的概念和理论就没有一点问题了。
再说例题,课本上的例题很简单,但是很典型,最简单的例子最容易说明最重要的问题,你就不会被繁琐的解题步骤弄的不知道例题到底想说明什么。举个例子,在一阶导数的例题里,仔细看看,你就会发现,例题中包括所有的求导方法。也许,你自己却从未意识到,还在看考研参考书里的分类,永远记住,课本是最好的参考书。
最后说习题,书上的习题,相信没有多少考研的人每一道题都认真做过。但是,习题,就如同例题,简单,但是最能要你明白你所需要学习的知识点。所以,对于课后习题,你用过仔细认真的去做每一道题。会做并能做对每一道题是最基本的要求,你还要明白你所做的每一道题是考察你什么知识点,用的'是什么方法,可以尝试在习题旁边写上出题人的意图。能做到以上3点,可以说你就拥有一个很好的基础了。高数,线代,概率,这三门课是一样的。线代,其实最简单,如果你能不看书推到出每一个定理(如果能,你就知道他们之间的联系,那思路一定会很清晰),那么我想如果你不会做的题,那90%的人肯定不会做。
概率,看起来公式太多,很难记住,同样,推导每一个公式,平时练习的时候做到不看书查公式,查定理,忘记了或者记不住了,就推导。慢慢你就会发现,你都可以记住了,即使考试一紧张忘记了,也能用很短的时间推导出公式了。曾经在考研论坛上看到过,刚开始复习的时候觉得高数简单,线代和概率太难。随着复习的深入,就会发现线代和概率是那么的简单,高数有点难,这就对了。我觉得课本至少看两遍,一直看到,闭着眼,能回想起书中的每一个知识点。当然,根据自己的基础,如果你还觉得哪些知识点薄弱,那就多做习题,不要把盲点留到最好。在复习课本的时候就可以做真题了,我选的是黄先开的那本历届数学真题解析,将近20年的数学真题分章节讲解,练习题也是真题,不过不是数一的。认真的做每一道题,然后思考出题者的意图,这一点很重要。
大概10月份的时候,我就复习完了。可以模拟考试了,那本书后面有数学的20年真题,那几张白纸,在白纸上写答案,3个小时做完。然后对答案,自己给自己打分。可以发现,前20年到前10年的题很简单,基本可以做到140,后10年难点,但不会低于120分。将自己做错的题分析一下,看看为什么做错了,是自己不细心还是方法不对还是压根就不会,认真总结错误的原因。第一遍模拟考试做完以后,将自己做错的题目再做一遍,然后就可以只做最近10年的题目,同样的方法,再做一遍,相信这个时候你就不会觉得自己担心数学了。
平时我模拟做真题都是130分以上,最后考了120分,还算不错。数学,是很细心的,所以你要从一开始就培养自己细心做题,踏踏实实一步一步的写,考试的时候才不会犯错误。选择,填空,最多只能错一个,不然你一定不会高分。我始终坚持一点,会做的题目一定不能失分,我可以有不会做的题目。这样,考试也就没压力,还能拿高分。在这里告诫各位,做题一定要大脑清晰,不要拿到题就梦着头做,要不了最后你还是觉得自己很多东西都不会。做题不在多少,一定要注重质量。到11月份以后,我基本上两天做一份真题,也就花3个小时来复习数学,这样才有时间复习专业课。随偶时间不多,但是最后却感觉有点简单,自己都有点担心,不过后来看来是多虑的,一定要相信自己。
将本文的word文档下载到电脑,方便收藏和打印。
高数定理证明之微分中值定理:。
这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。
费马引理的条件有两个:1.f'(_0)存在2.f(_0)为f(_)的极值,结论为f'(_0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(_0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(_0)为f(_)的极值”翻译成数学语言即f(_)-f(_0)0(或0),对_0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。
费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。
该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。
前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。
那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。
拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。
以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把_换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成_,再对得到的函数求不定积分。
高数定理证明之求导公式:。
2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。
当然,该公式的证明并不难。先考虑f(_)_(_)在点_0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由_0的任意性,便得到了f(_)_(_)在任意点的导数公式。
高数定理证明之积分中值定理:。
该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量_换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。
若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。
若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数a。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的a。
接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数a位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即a为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。
高数定理证明之微积分基本定理:。
该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。
变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点_处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。
“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。
该公式和变限积分求导定理的公共条件是函数f(_)在闭区间连续,该公式的另一个条件是f(_)为f(_)在闭区间上的一个原函数,结论是f(_)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。
注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(_)对应的变上限积分函数为f(_)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以f(_)等于f(_)的变上限积分函数加某个常数c。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。
近年来,考研日益升温,研究生院校的数学专业成为众多考生追逐的梦想。然而,数学作为一门理科学科,对学生的数理基础要求极高,学习起来也充满了挑战。在我学习考研数学的过程中,我总结了几点心得体会,希望能给后来的考生一些借鉴。
首先,要树立正确的学习态度。数学是一门需要耐心和毅力的科学,学习它需要付出大量的时间和精力。因此,考生首先要调整好心态,面对困难和挫折时要坚持不懈,遇到困难不退缩,要相信只要努力就一定能够取得好的成绩。
其次,确定学习目标和计划。数学的学习需要有一个明确的目标和计划,否则学习起来会很茫然。在制定学习目标时,要考虑自己的实际情况,合理分配时间和精力;在制定学习计划时,要将整个学习过程合理安排,分解任务,确保每天都有充足的学习时间。
第三,注重基础知识的学习。数学考研的内容非常广泛,但中心核心还是基础知识。因此,考生要从基础知识开始学习,构建起一个牢固的知识体系,才能够更好地理解和掌握后面的知识点。对于基础知识的学习,可以通过参考教材、习题册和网络等多种方式,做到既广泛又系统地学习。
第四,梳理思路,注重方法和技巧的学习。数学考研的题目往往有一定的难度,解题方法不唯一,需要考生灵活运用数学知识来解决问题。因此,考生需要梳理思路,善于运用各种方法和技巧解决问题。可以通过做大量的习题来提高解题能力,培养自己的思维灵活性。
最后,要进行合理的复习和总结。复习是学习过程中不可或缺的一部分,通过复习可以巩固已学的知识,找出自己的不足之处,及时纠正错误。总结是复习的重要环节,通过总结可以将知识点串联起来,思路更加清晰。因此,考生要在复习时注重对知识的回顾和总结,可以制作知识点归纳表,方便随时温故知新。
学习考研数学需要长期坚持和勤奋学习,没有捷径可走。通过树立正确的学习态度,确定学习目标和计划,注重基础知识的学习,梳理思路和掌握方法技巧,进行合理复习和总结,相信每个考生都能够取得优异的成绩。希望我的这些心得体会可以对广大考研数学学习者有所帮助,让更多的人能够实现自己的考研梦想。
考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中的基本概念。考生在复习过程中可以结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每一个基本概念准确的理解,公式理解的准确到位,并且多做些相关题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。
会用公式解题。
概率论与数理统计中的公式不仅要记住,而且要会用,要会用这些公式分析实际中的问题。我在这里推荐一个记忆公式的方法,就是结合实际的例子和模型记忆。比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛n次,正面朝上的概率是多少呢?这样才是在理解基础上的记忆,记忆的东西既不容易忘,又能够正确运用到题目的解决中。
对概率论与数理统计的考点整体把握。
考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。
心理上要重视。
考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!
在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自己的复习程度。
概念不清,只会背不会运用;。
不能正确地选择概率公式去证明和计算;。
不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。
分析有误,概率模型搞错。
考试、特别是升学考试,是一种高强度高难度的脑力劳动。因此,一定要在考试过程中保持健康的身体、清醒的头脑,考前要休息好。考试是一种缜密而紧张的思维活动,不宜太激动、太惧怕、需要保持一种平稳的心态,使答题过程达到并保持最佳的思维状态,才能可能正常或超水平发挥。
2、按顺序做题,先易后难。
总体来看,试卷题目的一般排列顺序是先易后难;有低分到高分。考生只需要按顺序对号做题。一旦碰到难题,稍加思索仍没有思路,千万不要紧张,暂时放下,直接进到下一道题,返回来再答,也许就会答了。因为后面的题目或许可以开阔你的思维,勾起你的回忆。
3、审题仔细,务求准确。
审题是答题的前提,宁愿多花五分钟把题审好,也不要急急忙忙写答案。因为审题多花的五分钟不会影响大局,但仓促间写下的答案有可能差之毫厘、缪之千里。殊不知,每年考完试,都会有不少考生捶胸顿足,遗憾万分“我答错题了”。特别是近年来出题趋势,题目要求并不是一目了然,简单易懂,而是设槛设陷阱,等着粗心的考生往里钻。例如政治的主观题部分、英语的写作部分。一定要仔细审清题目,做到心里有数后再下笔。
4、是题都需答,不论懂否。
不论主观题还是客观题,不管你是否了解,都需要回答。对于实在不懂的题目,要充分发挥主观能动性,尽情回忆、展开,把相近相关的知识点往上填。反正,不答不得分,答错也不扣分,倒不如试一把,碰碰运气,兴许某些知识点就撞上了正确答案。
5、答案层次分明,逻辑性强。
这是回答主观性题目的要求。考生需按题目要求逐一展开论述,分点回答。可分出(1)、(2)……,给人逻辑清晰、条理分明之感。
6、字迹清楚、卷面工整。
卷面犹如人的一张脸,长得好看总会招人喜欢。特别是阅卷老师在高强度、高效率的工作中,每天都会批改成千上百份试卷,身心疲惫,字迹优美,卷面整洁会让老师眼前一亮、心情放松!如果没有优美的字迹,那就务必要保证清楚。如果让老师千辛万苦去揣摩、去推测你写的是何字,那你的分数可想而知了。
7、答卷时的用笔问题。
我们通常选用的笔无非是三种颜色:天蓝、蓝黑、纯黑。科学研究表明,冷色调的色彩不容易使人焦躁。这些色调都属于冷色调,但值得注意的是,天蓝具有镇静作用。你可以想象,阅卷老师在大量重复劳动时焦躁的情绪,而蓝色正好起到镇静作用。所以,个人比较推荐蓝色中性笔或圆珠笔。
首先,基础阶段,在六月份之前完成对基础知识的梳理,主要是看课本。如何有效地看课本,并不是课本上的内容全部都看!要根据数学的考试大纲内容来看书。考纲中考什么,就看什么!这样既节约时间,又提高效率。在这阶段不用做太多的题,主要是掌握基础的知识点。
其次,强化阶段,要求大量的做练习题。根据考试内容,选择合适的考研辅导书,有针对性的做题,提高自己对知识的熟练程度及做题的方法与技巧。在开始做题时,准备好一个本,用来记录自己做错的题目,以及做错的原因,就是错题集。在做题过程中,希望同学们尽量避免一遇到不会的题目就看答案,最好自己先想一下,这样在看答案的时候就知道自己哪里没有想到,有利于发现自己哪里存在不足,及时查缺补漏,提高复习的效率。由于同学们会做很多的题,不仅要将错题整理出来,也要将重点的题目整理出来。有利于我们在后面的复习略去没有意义的题目。提高复习的效率。
最后,冲刺阶段,这个阶段要把在强化阶段整理的重点题型,或者是自己感觉做错的题型拿出来再做一遍。因为考研数学复习周期比较长,同学们还有学习其他的科目,有些同学复习到最后可能会把有些数一考查的知识点给忘了,要将考试知识点尤其是基础的部分认真复习一遍。并且要认真的做真题,从做真题中发现一些规律,以及经常考的知识点。最后到考前适当的做一些模拟题,通过练习模拟题保持一下手感,以最好的状态走上考场就可以了。
从历年的考试题我们不难看出,在考研数学试题中70%的题目都是对基础知识的考查,这就需要考生在复习过程中对基础知识及解题的基本方法有足够的重视,辅导老师建议大家要重视教材,对于教材中基础例题的解题思路要非常清晰,能够独立完成,举一反三。在复习过程中以明确自己知识框架和知识点的把握,题型方法的掌握是否过关,从而找到自己的“短板”,推进复习进度,有侧重点、有针对性进行复习,力求在有限的时间里做到事半功倍。
众所周知,做题时考研数学复习过程中必须要经历的,有些同学认为只要不断的做题,就能提高数学成绩,俗不知这样很容易勿入“题海战”。新东方在线提醒大家,考研数学复习题目的数量并不是决定胜负的关键,关键在于方法,在于不断的总结分析。为什么做相同的题目,不同的人收获的却大相径庭,关键就在这里,事实上,无论是做教材上的习题还是历年真题,都应该从宏观和微观两个层次上去总结分析题目的考点,归纳题目的解题方法,对于独特的处理方法和运算技巧还需要特别的留意,解答中的关键点和入手点要认真琢磨是如何在题目条件中挖掘出来的。
做题练习的另一个重要的工作就是学会把题目分类。通过自己亲自动手去练习大致可以把题目分成四类。
第一类:如果你学习完本章节知识内容后,能够轻松地将该题目解答出来,并且条理清悉,运算顺利,那么将这类题目归入第一类。这类题目对你而言已经是真的学会并已经掌握的题目,我们就不用在这类题目中花更多的时间和精力了,将其标注为"通过"。
第二类:如果有些题目你需要花费一定的时候(15分钟左右)才能将其它基本解答出来,那这类题目暗示着你对其所考知识点或是入手点亦或是关键点不熟悉,在以后的复习中要有意的训练自己这类知识或方法的学习。
第三类:再有些题目,如果只是依靠自己分析并花了很多时间也未能将其解答出来,但是在答案的帮助下能够动手解答出来,那这些题目就被分为第三类。这类题目将是你进入第二阶段复习是必须要攻克的目标。从而就为自己下一阶段的复习明确了复习目标,找到了复习重点。
很多人都说“考研难,考研数学更难”,这样的言论使得不少考生对考研数学产生畏惧心理,这直接导致在复习中就是消极应付,以致考生在考研数学复习中不能积极准备,所以,在这里我们要提醒大家一定要保持一个良好的心态,保持高昂的学习兴趣,不断的用目标刺激自己、鼓励自己,克服惧怕心理,树立必胜的信心,化消极被动为主动,才可以在数学的学习和解题中体会到真正的乐趣。
基础是提高的前提,打好基础的目的就是为了提高。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,现阶段应该以基础为主,基础扎实了,再行提高。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水平其实已经在不知不觉中提高了,因为有这样的想法说明考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,只要坚持下去,就有成功的希望。
考生在备考时还要多做例题,而不仅仅是练习题。做例题时应遵照下面的方法,也就是在看第一遍之前一定要遮住答案,自己先认真做;无论做出与否都要把自己的思路详记于空白处,尤其是做不出的,一定把自己真实的思考方式记录在案,留待日后分析,而不是对了答案就万事大吉,这样做可以迅速的找到做题的感觉。总之,考生在做题目时,要养成良好的做题习惯,做一个“有心人”,认真地将遇到的解答中好的或者陌生的解题思路以及自己的思考记录下来,平时翻看,久而久之,自己的解题能力就会有所提高。
对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高解题的针对性,又能提高解题速度和正确率。
当然,一味的靠做题来提高数学能力也是不足取的。有这样一些考生,平时的解题能力很高,但最后的考试成绩却不是很理想,谈到自己失利的原因时,他说,自己平时几乎全部靠做题来提高水平,而对知识点缺乏更高层次上的把握和运用,导致遇到陌生的题目时,得分率严重下降。所以考生不能为做题而做题,要在做题时巩固基础,提高自己对知识点更高层次上的把握和运用。要善于归纳总结,对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的'试题时能把握主动。
一、基本内容及历年大纲要求。
本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中的相关推论是如何得到的。
二、行列式在线性代数中的地位。
行列式是线性代数中最基本的运算之一,也是考生复习考研线性代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续章节中出现的重要概念还是重要定理、解题方法等都与行列式有着密切的联系。
三、行列式的计算。
由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式的计算。
1.数值型行列式的计算。
主要方法有:
(2)利用公式,主要适用二阶、三阶行列式的计算;。
(3)利用展开定理,主要适用出现零元较多的行列式计算;。
(4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算;。
(5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。
2.抽象型行列式的计算。
主要计算方法有:
(1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的;。
(2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的行列式的计算;。
(5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。
第一,对概率论与数理统计的考点要整体把握。考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。
第二,在学习概率论与数理统计的时候不要一头扎入古典概型的概率计算中不可自拔。概率论的第一部分就是关于古典概型与几何概型的计算问题,有很多问题是很复杂的,一旦陷入这一类问题的题海中,要么你的脑瓜会越来越聪明,要么打击你的信心,对概率论失去兴趣。一般同学都会处于后一种状态。那么怎么办呢?请转阅第二条。
第三,在心理上重视。考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。人的潜力是非常巨大的,这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!
中值定理包括费马引理、罗尔定理、拉格朗日定理、格西中值定理、泰勒中值定理,这四个定理之间的联和区别要弄清楚,罗尔定理是拉格朗日中值定理的特殊情况。除泰勒定理外的三个定理都要求已知函数在某个闭区间上连续,对应开区间内可导。柯西中值定理涉及到两个函数,在分母上的那个函数的一阶导在定义域上要求不为零,柯西中值定理还有一个重要应用——洛必达法则,在求极限时会经常用到。而且同学们需要掌握的不单单是这五个中值定理,而且关于他们本身的证明也是需要重点掌握的,尤其是费马引理、罗尔定理、拉格朗日定理、格西定理的证明过程,这个过程在教科书上都有证明的过程,同学们需要自己把这个都完全能够掌握,不仅仅是因为在09年的真题考查过这个的证明,而是这几个的证明思想是之后类似题目证明反复使用的。而闭区间上的连续定理主要是指的最值定理、介值定理、零点存在定理。
一般来讲闭区间上连续的定理是直接用的,也就是用来直接证明一些类似与存在一点在某个区间内使得某个函数是等于零的。而中值定理的应用一般是需要通过构造函数的,一般来讲都是三步走,第一步去构造函数,合理的去构造函数是能够做出这个证明题目最最关键的一步,而构造函数的方法一般是通过对要求的那个等式积分得到,同时也要注意两遍同时乘以一个函数,比如同时乘以ex,因为这个函数积分是不变的,所以会有这个。构造完成后就是第二步去检验条件,看是用那个定理,一般来讲,如果是求一阶的导数等于0优先想到的就是罗尔定理,如果是让你求高阶的一个式子等于零或者等于某个式子,那么优先想到的就是泰勒公式了,因为上面的五个中值定理中,只有泰勒公式是会涉及到高阶的,其他的几个都是一阶,如果知道的是一阶,最多也是求解二阶的。第三步就是求导验证自己求出来的是否是要求证明的结果。
1、函数必须在该点处有定义;
2、函数必须在这个点附近存在极限;
3、是前面1、2两点的内容必须相等,同时满足这三个条件,才叫做函数在某点处连续。
看到,判断函数连续,要先求极限,所以,如何求函数在该点处的极限值或是用极限存在的充要条件(左右极限存在且相等),是一个隐含的知识点。
1、函数在该点处没有定义;
2、若函数在该点有定义,但函数在该点附近的极限不存在;
3、虽然函数在该点处有定义,极限也存在,但是二者不相等。
对于间断点,根据左右极限存在与否,我们把它分为两类。若左右极限都存在的间断点,称为第一类间断点;若左右极限相等,这个间断点称为第一类间断点中的可去间断点;若左右极限不相等,这个间断点称为第一类间断点中的跳跃间断点。若左右极限中至少有一个不存在(包含极限等于无穷的情形)的间断点,称为第二类间断点;若其中一个极限是趋于无穷的,这个间断点就称为无穷间断点;若极限是在两个常数之间来回振荡的,就称为振荡间断点。
对于上面的知识点,我们看看在考研中是怎么考察的。对于连续的概念,难度上属于简单知识点。
首先,在十五年前,对于连续性的考查,更多的是给一个分段函数,然后判断分段点处函数的连续性,这是一个基本题型,只需判断连续的三个条件即可,其实主要是考查求函数某点处左右极限的值。
然后,进入20世纪,考查又倾向于在选择题当中,给一个函数,让大家来判断这个函数有多少间断点,间断点的类型是什么,这个又比之前考查的更高一层。
最后,就是在逻辑推理题中,考查零点定理,介值定理,通常,考查介值定理的时候也会用到最值定理。
我们归纳题型知道,判断方程根的情况的时候,一般用零点定理;题干中包含好几个函数值相加的时候,一般用介值定理。具体在证明题中怎么用,我们会在专门的证明题专题中讲解。
上面是对连续概念本身做出的分析。还有连续与极限存在,可导,可微的关系也是选择题中考查的热点,这个我们在后续一元函数导函数中详细说明。
考研数学是许多考生认为最难攻克的科目之一。然而,通过自己的努力和实践,我发现只要我们建立起正确的学习方法和态度,并且持之以恒地努力,数学并不是无法突破的难关。在接下来的文章中,我将分享我在学习考研数学过程中所体会到的一些心得和经验。
第二段:制定合理的学习计划。
学习考研数学需要一个良好的计划。首先,我们应该明确自己的目标,并根据目标制定一个合理的时间表,确定每天学习的时间和内容。其次,在学习计划中要注重分配时间给基础知识的学习和题型的练习。通过掌握基本概念和方法,我们可以更好地解题。此外,不要将所有的时间都用在刷题上,也要给自己留一些放松和休息的时间,这样才能更好地保持学习的效率。
第三段:多角度学习,形成全面的知识体系。
考研数学的涉及面很广,题型也十分多样化。为了更好地应对各类题目,我们需要建立起一个全面的知识体系。要做到这一点,我们可以尝试从多个角度学习,例如,除了专业教材之外,还可以参考教辅书籍、网络资源、相关论文等等。此外,多参加一些学术讨论会和数学竞赛,可以更好地帮助我们理解和运用所学的知识。
第四段:注重方法和策略。
在解决数学问题时,方法和策略是至关重要的。我们应该学会分析题目,发现问题的关键点,然后再运用所学的方法去解答。此外,数学的解题过程通常是逻辑性很强的,因此我们要注重培养逻辑思维能力。可以通过做一些逻辑推理题、数学证明题等方式来提升自己的思维能力。另外,在考试中,要学会合理分配时间,优先解决易解题,遇到困难的题目可以先略过,待有时间时再回头解决。
第五段:坚持,相信自己。
学习考研数学是一个漫长而充满挑战的过程。我们要有足够的耐心和信心去面对困难和挫折。相信自己的能力和潜力,并且相信只要付出努力就一定能够取得好成绩。同时,也要学会享受学习的过程,保持积极的心态。只有在乐观和自信的心态下,我们才能充分发挥自己的潜力。
总结:
通过制定合理的学习计划,多角度学习,注重方法和策略以及坚持和相信自己,我们可以战胜考研数学带来的挑战。这些心得和经验可以帮助我们建立起一个良好的学习方法和态度,提高学习效率,取得优秀的成绩。最后,希望每个考生都能够坚持不懈地努力,实现自己的考研梦想。
第一段:引言(100字)。
数学是考研的一门重要科目,对于许多考生来说也是最具挑战的一门。为了在考研数学中取得好成绩,我在备考的过程中不断总结经验,探索出一些有效的学习方法和技巧。本文将分享我在学习考研数学过程中的心得体会,希望对广大考生有所帮助。
第二段:制定合理的学习计划(200字)。
学习考研数学首先要制定一个合理的学习计划,明确每天的学习目标和时间安排。我在备考期间,一般会将每周的复习内容和学习任务分配到每天,以避免过度压力和拖延情绪的出现。此外,为了检验自己的学习效果,我会定期进行模拟测试,每次模拟测试后都会仔细分析自己的答题情况和错题原因,有针对性地进行针对性的强化训练。
第三段:理解概念,强化基础知识(300字)。
考研数学的学科体系庞大而且涉及广泛,因此在备考时,我一直强调理解概念和强化基础知识。首先,我会重点复习数学的基础知识,如代数、几何、数论等,通过细致的阅读教材和参考书籍,加深对这些知识的理解。其次,在学习过程中,我会使用脑图等形式将各个知识点和概念进行分类整理,使之成为自己脑中的知识体系,这有助于加深对知识点间关系的理解。
第四段:多做习题,培养解题技巧(300字)。
在数学这门学科中,只有通过不断练习和考察,才能真正掌握其中的解题技巧。为此,我在备考过程中,会选择一些经典教材和试题进行刷题练习。在做习题时,我会注意每一道题目的解题方法和思路,将难点和关键点分析总结整理,以备后续的学习和回顾。此外,我还会尝试寻找一些解题技巧和经验,例如利用对称性、代入法、排除法等,从而提高解题效率和准确度。
第五段:坚持课外知识的拓展(200字)。
虽然考研数学主要考察的是基本知识和解题能力,但根据往年的考研情况来看,课外知识的拓展也是很重要的。因此,我在备考期间会积极主动地拓展自己的数学知识。我会阅读一些数学类的科普读物和期刊,了解数学应用于生活的各个领域,这不仅提升了我的数学修养,也激发了我对这门学科的兴趣,加深了对数学的理解和热爱。
总结(100字)。
学习考研数学需要有一定的耐心和恒心,同时还需要合理的学习计划,理解概念强化基础,多做习题培养解题技巧,以及坚持课外知识的拓展。通过长期的积累和努力,相信每一个考生都能在考研数学中取得优异的成绩。希望本文的经验和体会能对广大考生有所启发和帮助。
很多文科生做数学题很喜欢:做题(有些人甚至是看题)——不会——看懂答案(或者看不懂)——结束,你是不是这样呢?合适的方法是:做题——不会——把目前能计算或推导的结论写出来,想想还差什么---看一眼答案,有些是一看就恍然大悟——那么就自己再重新算一遍,然后好好总结下为什么刚才没算出来,是方法没遇过还是要经过变形自己没看出来,有时候一道题做不出来答案一看就是种超纲题或者偏题难题,数学三一般考的都是最常见,最基础的方法,所以那些冷门方法一律放弃。
二建立独立思考的解题方式。
不要老是看答案,这样才能摆脱文科思维。如果只是一味地机械做题,背答案,即使你做了李永乐的全套也还是没用。
复习全书和指南我都用过,但我推荐全书,就数三而言,全书的题更好更全面,其实两本书很多题目都是重复的。不要说复习全书看了3,4遍,这样太笼统,就像我一站时全书做了7.8遍不也只有110左右嘛,我个人觉得2遍为宜,做得太多后来只会记住题目而不是思维方法。我推荐全书2遍后直接上真题,基础差的甚至660也不用做,因为660的题有些比全书还打,直接做数三真题,然后自己薄弱的地方找全书查漏补缺,而不是反复抱着全书死磕,因为你没个重点,以为全书每道题都要掌握。通过做真题,你知道哪些是数三常考内容,哪些不是,你慢慢会发现全书上哪些是有价值的题目,真题做完数三做做数一数二的相关题,然后上模拟卷,模拟卷至少上30套吧,推荐合工大10-13的,李永乐400题,陈文灯的模拟。
三严格掐时间做模拟题。
首先,很多经验帖不强调模拟题,甚至反对模拟,这和数学基础有关,正如前文所述。逻辑思维好的同学完全可以做做教材,全书,真题然后考个140+,因为他们数学基础好,他们懂得如何做题。而基础差的同学,像我,可能做个n遍全书仍不得其法。而模拟题或者说真题具有一下全书或者660之类的题集所不具备的几大优势:
1.通过严格掐时间做套题,可以培养你做题的时间优势,对难题有所放弃。今年数三小题难,大题简单,很多人慌了手脚,这就是平时缺乏演练的结果,本人后期保持一天一套题的速度模拟,懂得如何跳过难题,保证计算率,不慌张,可以说考试当天对我来说只是一场模拟,所以我很淡定,要知道基础越差的同学,越是对数学害怕的文科生越是容易在考场紧张!
2.套题一般都是集中出线常考的知识点,有些套题几乎是真题的翻版,改个数字,而数三真题的最大特点就是来自真题,就像13的数三来自往年数三和数一数二的太多了。所以做模拟就是加强对常考知识点的考核,而不像许多全书不分重点。
3.反复看以前做的题容易记住题目本身。许多同学做了7,8遍全书,全书的题都快背出来了,但考场变个型就不知道了,而模拟题很多都是对真题的适当变形,或者自创题,这里强烈推荐合工大的模拟,很接近真题,难度又稍高于真题,我平时合工大模拟130+,结果也是和最终成绩吻合的。
以上建议希望能给数学基础差,对其有恐惧心态的考生们一些启迪与精神上的鼓励。绝不要忽略数学基础的重要性,通过做模拟题的训练,提高做套题的思维强度。最后期待大家都可以一战成功,金榜题名!
数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题都在理解的基础上才能做好。
定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的`学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)
数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。
其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。
第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。
第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。
第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。
学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。
数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。
最后,预祝所有准备考研的学子都能榜上有名,考上理想的学校!
考生可根据自身的情况调整这个阶段的长短,基础好一点的同学,这个时间可以短一点,基础差一点的同学,这个阶段可以长一点。我们建议基础再差的同学也要尽量在六月份前完成基础阶段复习。数学基础阶段复习的指导原则是:注重大纲和基础,加强练习和应用。
(1)注重大纲和基础。
“纲”是《数学考试大纲》,“本”为课本。虽然今年的数学考试大纲尚未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的《数学考试大纲》和《数学考试大纲导读》进行复习,详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好地展开复习。凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是主要考点,务必要作为复习的重点。
考研数学的复习主要靠教材打下坚实的基础。翻一下数学大纲,上面列出的知识点全部来源于教材。现在市面上并没有专门针对考研的数学教材,有些辅导老师根据自己多年的经验会给出同学们一些建议参考的教材,如同济编高教版《高等数学》、同济编高教版《线性代数》、浙大编高教版《概率论与数理统计》等,这些教材仅仅是建议,因为相对于其他教材来说,编写更有条理一些,,也可以用自己已经习惯使用的大学数学教材,但关键是一定要老老实实参照大纲的要求进行全面扎实的复习,按照大纲规定对数学基本概念、基本方法、基本性质和基本定理进行准确把握。
数学学习中最重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对基本解题方法的掌握和运用。近几年的数学统考试题很少有偏题、怪题。新东方在线老师通过多年的分析和授课经验,发现很多考生由于对基本概念、定理记不全、记不牢、理解不准确而丢分,所以数学首轮复习一定要注重基础。
(2)加强练习和应用。
研究生数学考试注重考查考生的综合能力,最终要看解题的真功夫,而能力的提高要通过大量的练习,所以考生切忌眼高手低、只看书不做题。
这一阶段的复习可以将课本和复习指导书配套进行,在精读课本的基础上,配合一定的题目练习及时加以巩固。
近年来的数学考研试题的一大特征是要求考生能将一些范围并不固定的几何、物理或者其他问题先建模抽象为数学问题,再利用相应的数学知识解答(理工类已考过井底清污、雪堆融化、攀岩选址、压力计算、海洋勘测、汽锤作功、飞机滑行等问题)。考研也考熟练度,只有通过针对性的实际训练才能真正地理解和巩固数学的基本概念、公式、结论。在练习过程中还要总结解题的技巧、套路,积累经验,把分散的知识在实际运用中联系起来,在理解的基础上触类旁通,熟能生巧后才能运用所学知识解决实际问题,以不变应万变。
2.强化阶段。
这个阶段是需要将教材中的基础知识进行总结归纳,全局把握的时期。
(1)根据学科特点复习。
考研数学中包含三个学科:高等数学(微积分)、线性代数、概率论与数理统计。考研专家提醒广大考生:数学中的三个学科不可有所偏颇!每个考生都有自己相对优势的学科,同学们会因为对一门课程感觉良好而喜欢学它,因为对另一门课程接触得少而感觉困难并畏惧学它。
高等数学(微积分)--在考研数学科目所占比例中,高等数学(微积分)所占比例是最大的,数学一、三中是56%,数学二中是78%。这就决定了考生在复习的时候应该分配的精力与时间更多一些。而在这相对较多的时间与精力中,如果再能事半功倍,便为考研高分奠定了基础。
高等数学的基本内容可以分为三大块外加一小块:一元函数微积分,多元函数微积分(主要是二元函数),无穷级数与常微分方程,外加向量代数与空间解析几何。前三块是高等数学部分出题的重点,后一小块虽然大纲中也写了多半页纸的文字,但历年真题中直接针对这一块出题的很少,这也就是把这个部分归于一小块的缘由。
那么高等数学如何复习才能成为真正的高手呢?
选择合适的复习资料。根据以上对高等数学内容的分块划分,需要选择适合自己的复习资料。资料的选择要看其是否按考研大纲的要求编写,看其对基本内容的讲述是否深入且易懂,看其层次性是否分明等等,如《考研数学复习大全》相对来说就比较适合考生对基础知识的巩固及深入理解。
在中国任何考试都有一个共同的特点:在你复习时一定要全面撒网 重点培养!所谓全面撒网 就是大纲规定的知识点 不管重要性如何 都要进行一定的复习;所谓重点培养 就是根据大纲 真题 还有就是你的薄弱环节 来总结你的重点复习部分!
其次 考研数学中的了解 就是不重要的知识点 可能出填空题和选择题 但考的可能性不是很大;理解 最大的可能性就是出填空题和选择题 也有可能是解答题的一个小知识点;掌握和学会的重要程度大体相同 那就是极其重要 每年的解答题必考 不考的话就不是考研数学了!
再次 考研数学大纲中所作的规定只是相对的(个别知识点 比如不定积分和定积分 每年必考) 所以我认为考研数学的重点就是真题最近3年都考的知识点和你薄弱的知识点!
最后 很不好意思 我不知道你考数几 因为数一 数二与数三考的内容和知识点差别是很大的 数二不考概率和数理统计 但考的积分相当难 数一和数三考的书都是三本(高数 线代 概率和数理统计) 但数一考的内容要远多于数三(特别是概率和数理统计)!因为我考的是数一,它的结构包括高等数学、线性代数和概率论与数理统计,所占比重分别约为百分之56、百分之22和百分之22。我的数学复习方法,就是对每部分进行分类归总,然后进行细节展开与训练。
比方说,对于高数的12章内容,我将其划分为四大块,第一块是 函数、极限、连续 第一章 (准备知识);第二块是解析几何学,体现在平面和空间上 第八章 (过渡知识);第三块是微积分 包含三部分(核心知识),part 1. 一元函数 第二、三 、四、五、六章。分别是导数与微分、导数的应用、不定积分、定积分、定积分的应用;part2. 多元函数 第九、十、十一章。分别是多元函数微分学、多重积分、曲线和曲面积分;part3. 微分方程 第七章;第四块是级数 (幂级数和三角级数)第十二章 (引申知识)。通过这样一划分,我就很清楚地知道哪里是重点,哪里是常考点,哪里是难点,同时,也知道他们之间的关联。实际上,整个大学数学,主要是研究动态的变化,极限就是其中的魂,渗透于各个细节中。至于参考书,我就是反复阅读和研究教材,系统地复习一遍后,就是通过真题的测试与训练,发现自己的优势点与薄弱点,然后,实施有针对性的补充和强化。在整个过程中,对于一些重要的知识点要学会总结和归纳,便于后面更加轻松地复习,对于做错的题目应该要分析错误的原因,重新解答。数学就是问题,问题就是进步的动力。
考研数学的复习过程是一根长线,但这并不是说让大家在复习的过程中就只钻研难题,而对于容易的题和中等难度的题不屑一顾,这样只会导致考研失败。我们做题难度要适当,题量要适当。
在此建议大家不要进入做题的误区,要难度适当地练习,不要死扣难题,毕竟考研考察的是基础知识,使大家都能接受的水平。这就要求同学们在这个阶段付出巨大的努力,但是无论你多累都是值得的,通过这个阶段洗礼,无论是你对三基的掌握程度,还是你的解题能力都会有质的提高。这是大家考研数学复习备考路上第一次质的飞跃。下面说一下在复习过程中注意以下几点:
一、注重基础知识,对于概念、公式、定理、推论的理解要透彻、扎实。
数学最需要强调的是基础,但很多同学不重视基础的学习,反而只是忙着做题,想通过题海战术取得考研数学高分。这就像是不会走路的孩子总想着直接跑步一样,即便是投入再大的精力,当然也无法起到预期的效果。
数学试卷80%的题目都是基础题目,真正需要冥思苦想的偏题、难题只是少数。同学们回忆一下自己做题时,先不谈解题方法,题目中涉及到的知识点是否都清楚的了解?要用到的公式、定理是否提笔就能写出来?如果做不到,那我们怎么能进入下一步寻找解题方法并写出完整的解题过程呢?事实上,大部分同学经常是在遇到题目中涉及知识点的问题时需要去翻书查找,请考生明确这样一个事实——考场上没有课本。所以,要想游刃有余的拿稳那80%的基础分,考生一定要先把基础弄的扎扎实实的,进而再进行解题能力和解题速度的训练。
考生可以通过以下方法打好数学基础:
(1)把数学复习辅导书上总结好的知识点认真掌握住。不管什么版本的复习辅导书,全面、详细讲解的知识点,例题讲解当中总结出的解题技巧和方法、推导出的公式定理等,这些都要重点记忆。
(2)数学的复习也要做笔记。由于复习辅导书上的知识点过于详细,在以后的复习中,就没有时间去系统的看了,而且可能其中大部分你已经掌握了。这就需要在这一轮复习时把辅导书中精华、自己掌握的不好的地方以及考试常考的知识点总结在一个本子上,这样再复习的时候就可以直接看这个本子,可以节省下很多时间,提高效率,而且学习的间歇可以随时拿出来记一记、背一背。还有,这些基础知识如果一段时间不看就会有些生疏,用的时候拿不准,所以要每天都携带在身上,就像英语单词小册子一样,要经常温习。
二、勤动脑、多动手。
很多同学学习数学时就喜欢看例题,看别人做好的题目,看别人分析、总结好的解题方法、步骤。只这样是远远不够的,只是一味的被动的接受别人的东西,就永远也变不成自己的东西。第一遍复习看教科书时必须自己做一些题。做题时,先不看答案,完全通过自己的能力做着试试,不管做到什么程度,起码你要先自己思考,只有启动自己的大脑,才会使知识得到更深入的理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。还有在做题时不要太轻易的选择放弃,不要想一会儿没有思路就去看答案,要勇于挑战自己,不要轻易投降,一定要仔细开动脑筋想过之后,实在不行再求助于外力。
很多人认为写步骤很浪费时间,长期依靠眼睛看,不写步骤,这样的结果就是造成自己的眼高手低,遇到题目不能够细心对待。而且很可能在考试的过程中即使遇到再简单的大题,也不能拿到全分。所以,建议大家这一阶段也是养成良好的做题习惯的关键时期。
在数学试卷中,客观题部分主要分填空和选择。其中填空6道题,选择8道题,共56分。占据了数学三分之一多的分数。在历年的考试中,这部分题丢分现象比较严重,很多一部分同学在前面的56分可能才得了20多分,如果基本题丢掉30多分,这个时候总分要上去是一件非常不容易的事情。
【填空题】。
(1)考查点:填空题比较多的是考查基本运算和基本概念,或者说填空题比较多的是计算。
(2)失分原因:运算的准确率比较差,这种填空题出的计算题题本身不难,方法我们一般同学拿到都知道,但是一算就算错了,结果算错了,填空题只要是答案填错了就只能给0分。
(3)对策:这就要求我们同学平时复习的时候,这种计算题,一些基本的运算题不能光看会,就不去算,很多的同学看会在草稿纸上画两下,没有认真地算。平时没有算过一定量的题,考试的时候就容易错,这就要求我们平时对一些基本的运算题,不是说每道题都认真地做到底,但每一种类型的计算题里面拿出一定量进行练习,这样才能提高你的准确率。
【选择题】。
(1)考查点:选择题一共有八道题,这个丢分也很严重,这个丢分的原因跟填空题有差异,就是选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,就是容易混淆的概念和理论。
(2)失分原因:首先,有些题目确实具有一定的难度。其次,有些同学在复习过程中将重点放在了计算题上,而忽视了基础知识,导致基础只是不扎实。最后,缺乏一定的方法和技巧。由于对这种方法不了解,用常规的方法做,使简单的题变成了复杂的题。
(3)对策:第一,基本理论和基本概念是我们的薄弱环节,就必须在这下功夫,实际上它的选择题里边要考的东西往往就是我们原来的定义或者性质,或者一个定理这些内容的外延,所以我们复习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。比如说原来的条件变一下,这个题还对不对,平时复习的时候就有意识注意这些问题,这样以后考到这些的时候,你已经事先对这个问题做了准备,考试就很容易了,平时在复习的时候要注意基本的概念和理论,本身有些题有难点,但是也不是说选择题有很多有难度的题,一般来说每年的卷子里边八道选择题里面一般有一两道是比较难的,剩下的相对都是比较容易的。
第二客观题有一些方法和技巧,我们通常做客观题用直接法,这是用得比较多的,但是也有一些选择题用排除法更为简单,我们考研的卷子里边有很多题用排除法一眼就可以看出结果,所以要注意这些技巧,李擂老师在辅导班中都做了归纳和总结,大家不妨去听听李老师的课。
【计算题】。
(1)考查点:计算题在整份试卷中占绝大部分,还有一部分是证明题,计算题就是要解决计算的准确率的问题。
(2)失分原因:运算的准确率比较差。
(3)对策:首先,多做练习。大家基本的运算必须要把它练熟,数学跟复习政治英语不一样,数学不是完全靠背,要理解以后通过一定的练习掌握这套方法,并且一定自己要实践,这个准确率提高不是看书就可以看得出来的,肯定是练出来的,所以要解决计算题准确率一定要通过一定量的练习。其次,还有一类题就是证明题,应该说比较少,如果要出证明题比较多的是整个卷子里面最难的题,那就是难点。这个证明题都是在整个的内容里面经常有几个难点的地方是经常出题的地方,从复习的时候注意那几个经常出难题的地方的题的规律和方法,应该这个地方也不成大的问题。
考研数学的复习过程是一根长线,暑假是数学复习的黄金时期,这个阶段很多同学会落入题海战术中,大家在平时练习的时候做适量难度稍大的题,会有助于大家在考试过程中保持平和的心态,遇到难题不会慌。但这并不是说让大家在复习的过程中就只钻研难题,而对于容易的题和中等难度的题不屑一顾,这样只会导致考研失败。我们做题难度要适当,题量要适当。
所以,考研网校数学考研辅导老师们建议大家不要进入做题的误区,要难度适当地练习,不要死扣难题,毕竟考研考察的是基础知识,使大家都能接受的水平。这就要求同学们在这个阶段付出巨大的努力,但是无论你多累都是值得的,通过这个阶段洗礼,无论是你对三基的掌握程度,还是你的解题能力都会有质的提高。这是大家考研数学复习备考路上第一次质的飞跃。
考研网校建议大家在复习过程中注意以下几点:
数学最需要强调的是基础,但很多同学不重视基础的学习,反而只是忙着做题,想通过题海战术取得考研数学高分。这就像是不会走路的孩子总想着直接跑步一样,即便是投入再大的精力,当然也无法起到预期的效果。
数学试卷80%的题目都是基础题目,真正需要冥思苦想的偏题、难题只是少数。同学们回忆一下自己做题时,先不谈解题方法,题目中涉及到的知识点是否都清楚的了解?要用到的公式、定理是否提笔就能写出来?如果做不到,那我们怎么能进入下一步寻找解题方法并写出完整的解题过程呢?事实上,大部分同学经常是在遇到题目中涉及知识点的问题时需要去翻书查找,请考生明确这样一个事实——考场上没有课本。所以,要想游刃有余的拿稳那80%的基础分,考生一定要先把基础弄的扎扎实实的,进而再进行解题能力和解题速度的训练。
考生可以通过以下方法打好数学基础:
(1)把数学复习辅导书上总结好的知识点认真掌握住。不管什么版本的复习辅导书,全面、详细讲解的知识点,例题讲解当中总结出的解题技巧和方法、推导出的公式定理等,这些都要重点记忆。
(2)数学的复习也要做笔记。由于复习辅导书上的知识点过于详细,在以后的复习中,就没有时间去系统的看了,而且可能其中大部分你已经掌握了。这就需要在这一轮复习时把辅导书中精华、自己掌握的不好的地方以及考试常考的知识点总结在一个本子上,这样再复习的时候就可以直接看这个本子,可以节省下很多时间,提高效率,而且学习的间歇可以随时拿出来记一记、背一背。还有,这些基础知识如果一段时间不看就会有些生疏,用的时候拿不准,所以要每天都携带在身上,就像英语(论坛)单词小册子一样,要经常温习。
很多同学学习数学时就喜欢看例题,看别人做好的题目,看别人分析、总结好的解题方法、步骤。只这样是远远不够的,只是一味的被动的接受别人的东西,就永远也变不成自己的东西。第一遍复习看教科书时必须自己做一些题。做题时,先不看答案,完全通过自己的能力做着试试,不管做到什么程度,起码你要先自己思考,只有启动自己的大脑,才会使知识得到更深入的理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。还有在做题时不要太轻易的选择放弃,不要想一会儿没有思路就去看答案,要勇于挑战自己,不要轻易投降,一定要仔细开动脑筋想过之后,实在不行再求助于外力。
很多人认为写步骤很浪费时间,长期依靠眼睛看,不写步骤,这样的结果就是造成自己的眼高手低,遇到题目不能够细心对待。而且很可能在考试的过程中即使遇到再简单的大题,也不能拿到全分。所以,考研网校建议大家这一阶段也是养成良好的做题习惯的关键时期。
一、高等数学:
二、线性代数。
三、概率与数理统计。
基础薄弱的同学,春季,也就是现在就可以投入复习了。建议大家报数学春季基础班,可以初步建立自己的复习思路,为自己的复习起一个好头。一般来说复习分为四个阶段:第一个是基础复习阶段,这一阶段的任务是主攻教材和课本,达到基础知识的了解和掌握;第二个阶段是强化训练阶段,顾名思义这一阶段的主要任务是全书阶段,全面地掌握各类知识点,并且详细地做笔记,对常考的题型做大量的练习;第三个阶段是巩固提高阶段,这一阶段是通过真题和模拟题的训练和分析来完成将数学的整体框架结构搭建起来;最后一个阶段是冲刺阶段,这一阶段的时间一般较短,主要是做一些题目来达到稳固水平的目的,并且再次地强化之前所记忆的知识点。
如何选择复习资料呢?数学资料有两类,一类是复习教科书,一类是考研辅导专家针对考研而编写的资料。教科书应是深广度适当,叙述详略得当,通俗易懂,便于自学,如同济六版的《高等数学》,浙大版的《概率论与数理统计》,同济版的《线性代数》;辅导书的选择应该严格按照考试大纲进行,选择的资料要紧扣考纲,不要购买含大量超纲内容的考研辅导资料。考生应根据需要选择适合自己的资料。老师提醒考生,资料不在多,关键在看透、掌握。找准复习重心,有了明确的学习重心,有了完整的复习主干,有了良好的复习方法,接下来就是要考察考生自己的学习能力了。这里值得一提的是,不要在复习开始的阶段就拿大量的`试题来做,做题虽然是数学学习的重点,但是如果连基本的数学知识,包括基本的概念公式定理等都没有掌握好的话,做题肯定是达不到效果的,而且只能是倍受打击。老师提醒考生,在数学复习的这个阶段,也就是强化期,大家万万不可只用眼看,一定要亲手进行推导。当时认识自己看的很明白了,但是过不了多长时间,你就会忘得一干二净。参考书就是你这个阶段复习的重要武器,按着顺序慢慢来,一点一点来,一章一章的复习,先掌握知识,再在试题中检验自己。
基础是提高的前提,打好基础的目的就是为了提高。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,现阶段应该以基础为主,基础扎实了,再行提高。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水平其实已经在不知不觉中提高了,因为有这样的想法说明考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,只要坚持下去,就有成功的希望。
考研数学学习心得(专业20篇)
文件夹