比例的应用教学设计(大全11篇)
文件格式:DOCX
时间:2023-11-25 20:18:04    小编:字海

比例的应用教学设计(大全11篇)

小编:字海

日常生活中的点滴细节能够积累成为学习的宝贵财富。怎样理解一篇文章是每个阅读者都需掌握的能力,下面我来分享一些提高理解能力的方法。以下是我们为大家准备的一些总结范文,供大家参考,希望能给您的工作和学习带来一些启发和帮助。

比例的应用教学设计篇一

《正反比例的应用》本课选自青岛版数学六年级下册第三单元第四信息窗,本节课是在学生学习了比以及正反比例的意义的基础上进行教学的,也是今后学习数学和其他学科知识的重要基础。通过对教材的分析和学生的研究我确定了本节课的教学目标及教学重难点。

教学目标:

1、能正确判断问题中数量之间的比例关系。

2、会用比例知识解决简单的实际问题。

3、培养分析、判断和推理能力,感受数学的价值。

重点:

会用比例知识解决问题。

难点:

正确判断数量间的比例关系并列出比例式。

二、学情分析。

学生在以前的学习中,已经接触过很多数量关系和比的知识,基础掌握还可以,而且具备一定的自主探索能力,但是语言表达不够规范。

三、教法。

采取“引导—合作—自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。

激励评价法:“评价的目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。”我在学生提问题和解决问题中发现有独特见解的,都给予激励的评价,增强学生学习数学的自信心。

四、学法。

[新课程不但倡导教师教学方式的转变,而且着力于学生学习方式的转变。培养学生的学习能力首先要让学生掌握学习数学的方法。在这节课中,学生的学习方法主要有:

合作交流法:在获得新知的过程中,学生充分利用各自的资源,开展小组合作,在小组中分工明确,提高了学习效率,使学生的智力得到最佳的开发,树立的主人翁的意识。

反思法:方法注重反思,学生才能学得牢。在课将结束,学生对自己的获得的知识和学习方法进行反思,总结经验,取长补短。

1、复习导入。

下面每题中的两种量成什么比例关系?

(1)速度一定,路程和时间。

(2)总价一定,每件物品的价格和所买的数量。

(3)小朋友的年龄与身高。

(4)正方体每一个面的面积和正方体的表面积。

(5)被减数一定,减数和差。

谈话引入:我们今天运用正反比例的知识来解决实际问题。

意图:简单的复习为本节课学习做了铺垫,提高了教学效率。

2、出示学习目标,能用解比例的方法正确解答比较简单的应用题。

意图:带着目标去学习,让学生把握学习方向,而且可以让学生做好自我检测,课后有目的的复习巩固。

3、出示信息窗的情景,你能提出什么问题?

意图:培养学生提取信息能力以及提出问题能力。

4、让学生先独立解答,然后小组交流解题方法,找同学到前面板演解题过程。在这个过程中,教师做好引导,问题中出现的数量存在什么样的关系,指导用解比例的方法解决这个问题。

意图:通过这个过程可以强化学生对正比例意义的理解,培养学生分析解决问题的能力。

5、在经过思考掌握方法之后,直接引导学生用解比例的方法解决第二个红点问题,找代表汇报解题方法与过程。

意图:培养分析、判断能力、解决问题能力以及语言表达能力。

6、总结方法。

让学生自己总结用比例相关知识解决应用题的方法。

意图:培养学生分析概括能力。

7、达标检测。

意图:学生从课堂中所学的知识,如果不及时巩固、复习,与实践没有结合起来,就会稍纵即逝,因此设计合理的有效地练习是必须的。

8、课堂小结。

通过这堂课的学习,你有什么收获?你有什么易错点?

意图:这个环节给了学生充分参与课堂的机会,可以培养学习总结概括能力,也会让学生自我评价学习效果。也利于学生掌握学生学习情况。

(略)。

比例的应用教学设计篇二

教学内容:

教学目标:

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生能用比例方法正确解答比例应用题。

3、培养学生的推理判断能力及勇于探索的精神。

教学重难点:

正确地判断应用题中的数量之间存在什么样的比例关系,并能根据正、反比例的意义列出含有未知数的等式。

教学过程:

一、创设情境,导入新课:

同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)。

1、判断下面每题中的两种量成什么比例关系?

(1)单价一定,总价和数量、

(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、

(3)全校学生做操,每行站的人数和站的行数、

2、说说速度、时间和路程这三个量存在怎样的比例关系?

(当速度一定)。

二、探究新知:

1、导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。

2、学习例1.(课件出示例题)。

(1)先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。

(2)引导学生探究用比例知识解答。

提问:这道题能不能用比例知识来解答呢?

(课件出示问题,让学生思考)。

1、这道题中涉及哪三种量?(路程、时间和速度)。

2、哪种量是一定的?你是怎样知道的?(照这样的`速度就是说速度一定)。

3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)。

(课件出示思考的过程,并齐读)。

(3)提问:根据正比例的意义可以列出怎样的比例?

(教师根据学生的回答板书)。

(4)解这个比例。(教师板书解答过程)。

(5)怎样检验所求的答案是否正确?(把求出的未知数代入原方程,看等式是否相等)。

(6)写出答语。

(7)练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)。

(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。

(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。

3、学习例2:

(课件出示例题)。

(1)自主探究用比例知识解答。

1合作交流,小组讨论:

题中有哪几种量?这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?

2、汇报讨论结果。

老师板书方程并提问:这个方程是比例吗?为什么?

3、师生一起解答。(完成例2的板书)。

4、练习:(课件出示练习题)。

(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)。

5、教师小结。

(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)。

三、知识应用:(出示课件做一做)。

1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?

四、作业:练习中的1~4题。

五、课堂小结:

1、这节课我们学会了什么?

(学会了用比例知识解答应用题)。

比例的应用教学设计篇三

2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。

3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。

二、重、难点。

1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式。

3.难点的突破方法:

(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。

(3)(k0)还可以写成(k0)或xy=k(k0)的形式。

三、例题的意图分析。

教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

比例的应用教学设计篇四

教学内容:比例尺知识与技能:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,能根据比例尺求出图上距离或实际距离。

情感态度与价值观:学会用比例尺知识解决问题,培养学生解决实际问题的能力。

教学重点、难点:理解比例尺的含义,能根据比例尺求出图上距离或实际距离。

教学过程:

一、导入(略)。

二、探索新知。

1、教学比例尺的意义。

(1)、教师讲解:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们给它起一个名字叫做“比例尺”。(板书)。

(2)、教师指导学生看教科书,让学生说出它们的比例尺各是多少,表示什么意思。

(3)、教师指出:比例尺与一般的尺不同,这是一个比,不应带计量单位。

2、线段比例尺与数值比例尺的改写。出示例1:把教材第49页线段比例尺改写数值比例尺。

(1)、说一说方法。

解:设地铁1号线的实际距离为xcm。10:x=1:500000x=500000×10x=50000005000000㎝=50㎞巩固练习。做第52页的“做一做”。指名做,集体订正。

三、布置作业。

完成《练习册》第19页的练习。

比例的应用教学设计篇五

翁台小学:罗仁慧10月22日教学目标:

知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。

过程与方法:培养学生运用知识进行分析、推理等思维能力,

情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

教学重点:掌握按比例分配应用题的结构特点和解题思路。教学难点:正确分析解答按比例分配应用题。教法:启发引导法,演示法学法:观察比较,合作交流。教学准备:多媒体课件。教学过程:

一、复习解决下面各题:化简。

1.63:272.1.2千克:750克3.4千米:800米求下面各比的比值。

1.4:2.82.99:66学生独立完成,抽生板演,集体订正。

二、情景导入学生自由讨论。

2.我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。

(2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)。

(3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)(4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)。

水的体积:500×4=400(ml)。

答:稀释液100ml,水400ml。

这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。

师:把我们学过的比转化成分率,怎样来做?

生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5.可以写成:浓缩液的体积:500×1/5=100(ml)。

水的体积:500×4/5=400(ml)。

答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。四:巩固提高(幻灯片出示)。

做一做第。

1、2题,学生独立完成,抽生板演,集体讲评。

五、全课总结。

今天我们学到了什么?

六、家庭作业。

教材第50页,练习十二1-3题。教学反思:

本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。

比例的应用教学设计篇六

教学目标:

1、能正确的判断应用题中涉及到的量成什么比例关系。

2、能正确的用比例的知识解答比较简单的应用题。

3、培养学生的分析、判断和推理能力。

教学重点:

正确的判断应用题中的数量关系之间存在着什么样的比例关系。

教训难点:

能根据正比例、反比例的意义列出含有未知数的等式。

教学过程:

一、实际操作,引入新知识。

(2)让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。

(3)全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

(4)你是怎样算的,可以列出式子吗?

1、指导分析,理解题意。

2、学生自己想办法解答。

3、师生探究用比例的知识解答。

a、这道题中涉及到的量有哪些?

b、哪种量一定(不变)?从哪里知道的?

c、路程和时间成什么比例关系?判断的依据是什么?

2小时和140千米相对应,5小时和x千米相对。

应,即可以列出比例:140:2=x:5。

e、学生列式并解答。

f、说说怎样检验我们的计算结果呢?

4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?

学生自己解答,老师及时收集和处理反馈信息。

三、

教学例2。

1、引导分析,理解题意,找到相关的量。

2、准确判断它们成什么比例关系。

3、学生解答,及时收集和处理反馈信息。

比较例1、例2的异同。

四、小结:

用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。

比例的应用教学设计篇七

教学目标:

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

4、体会数学从实践中来又到实际中去的研究、应用过程;

5、培养学生的观察能力,及数学地发现问题,解决问题的能力.教学重点:

结合图象分析总结出反比例函数的性质;

教学用具:直尺。

教学方法:小组合作、探究式。

教学过程:

我们在小学学过反比例关系.例如:当路程s一定时,时间t与速度v成反比例。

即vt=;

当矩形面积s一定时,长a与宽b成反比例,即ab=。

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(s是常数)。

(s是常数)。

解:列表。

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)。

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小.同样可以推出的图象的性质.(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.函数的图象性质的讨论与次类似.4、小结:

比例的应用教学设计篇八

教学内容:

教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

教学目标:

1、理解比例的意义。

2、能根据比例的意义,正确判断两个比能否组成比例。

3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

教学重点:

理解比例的意义,能正确判断两个比能否组成比例。

教学难点:

在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神。

教学准备:

两张照片。

预习作业:

1、预习课本第40页例3,

2、分别写出每张照片长和宽的比,并比较这两个比的关系,知道什么叫做比例。

3、在课本上完成第40页练一练。

教学过程:

一、预习效果检测。

1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)。

还记得怎样求比值吗?希望这些知识能对你们今天学习的'新知识有帮助。

3、什么叫做比例?

二、合作探究。

1、认识比例。

(1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。

(2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)。

数学中规定,像这样的式子就叫做比例。(板书:比例)。

(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)。

(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

2、学以致用。

(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)。

(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

3、交流“练一练”的完成情况。

三、当堂达标检测。

1、做练习九第3题。

先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

2、做练习九第4题。

独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

3、做练习九第7题。

(1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

(2)分组完成,同时四人板书,再讲评。

完成后反馈、引导学生进行汇报交流,及时修正自己的答案。

提出疑问,总结全课。

比例的应用教学设计篇九

教学内容:

教学目标:

1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。

教学重点:

能按给定的比例尺求相应的实际距离或图上距离。

教学难点:

能按给定的比例尺求相应的实际距离或图上距离。

设计理念:

本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。

教学步骤。

教师活动学生活动。

一、复习旧知。

2、什么叫比例尺?求比例尺时要注意哪些问题?

学生练习,找出图上距离与实际距离,再写出比例尺。

二、理解明确。

实践运用。

1、出示例7,明确题意。

找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。

2、分析比例尺1:8000所表示的意义。

引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。

3、尝试列式。

根据对1:8000的理解你能尝试列出算式吗?

师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)。

4、归纳、选择、教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。

5、练习。

学生分析题意,明确已知比例尺,已知图上距离,求实际距离。

学生分析1:8000表示的意义。

学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。

学生可能出现的方法:

1、5×8000=40000……2、5×80=400……。

3、5/x=1/8000……。

图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。

学生列式5/x=1/8000并计算。

三、尝试练习。

巩固提高1、做“试一试”。

先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。

2、做“练一练”先独立解题,在组织交流。

3、做练习十一第4题。

引导学生在地图上测两地之间的距离和在地图上如何找比例尺。

3、做练习十一第5题。

引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

学生练习。

在图中表示医院的位置。

学生练习后交流。

四、全课总结。

回顾反思:

1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?

2、你还有什么疑问,或你能给同学提出什么新问题?

五、知识拓展。

激发兴趣p51“你知道吗?”

1、收集地图资料,展示给学生观看。

2、介绍国家基本比例尺地图。

学生观看。

阅读后适当交流。

比例的应用教学设计篇十

教学过程:

同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)。

1、判断下面每题中的两种量成什么比例关系?

(1)单价一定,总价和数量、

(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、

(3)全校学生做操,每行站的人数和站的行数、

2、说说速度、时间和路程这三个量存在怎样的比例关系?

(当速度一定)。

1、导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。

2、学习例1.(课件出示例题)。

(1)先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。

(2)引导学生探究用比例知识解答。

提问:这道题能不能用比例知识来解答呢?

(课件出示问题,让学生思考)。

1、这道题中涉及哪三种量?(路程、时间和速度)。

2、哪种量是一定的?你是怎样知道的?(照这样的速度就是说速度一定)。

3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)。

(课件出示思考的过程,并齐读)。

(3)提问:根据正比例的意义可以列出怎样的比例?

(教师根据学生的回答板书)。

(4)解这个比例。(教师板书解答过程)。

(5)怎样检验所求的答案是否正确?(把求出的未知数代入原方程,看等式是否相等)。

(6)写出答语。

(7)练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)。

(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。

(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。

3、学习例2:

(课件出示例题)。

(1)自主探究用比例知识解答。

1合作交流,小组讨论:

题中有哪几种量?这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?

2、汇报讨论结果。

老师板书方程并提问:这个方程是比例吗?为什么?

3、师生一起解答。(完成例2的板书)。

4、练习:(课件出示练习题)。

(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)。

5、教师小结。

(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)。

1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?

四、作业:练习中的1~4题。

五、课堂小结:

1、这节课我们学会了什么?

(学会了用比例知识解答应用题)。

教学内容:数学十二册《比例的应用》。

教学目标:

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生能用比例方法正确解答比例应用题。

3、培养学生的推理判断能力及勇于探索的精神。

教学重难点:

正确地判断应用题中的数量之间存在什么样的比例关系,并能根据正、反比例的意义列出含有未知数的等式。

比例的应用教学设计篇十一

教学目标:

1、理解比例尺的概念,能正确、熟练地进行求比例尺计算。

2、掌握根据比例尺求图上的距离或实际距离的方法。

3、培养学生对知识的灵活运用能力,从中感悟到比例尺在实际生活中的重要性。

教学重点:

根据比例尺的意义求图上距离或实际距离。

教学难点:

设未知数时单位的正确使用教学准备:多媒体课件1套,学具图若干张。

教学过程:

一、创设情境,揭示课题。

1、创设情境:播放歌曲《春天在哪里》,教师在音乐中朗诵描写奏的诗歌,音乐停,师问:你感受到了什么?有什么想法?(感受到春的气息,想去旅游)。

2、揭示课题:我们到一个陌生的地方旅游,首先要做什么呢?(找地图,了解城市情况)从地图上可以获取哪些信息(比例尺、图距、实距、方向)师:比例尺的计算方法我们已经学过了,今天我们就来学习比例尺在生活中的运用(板书课题:比例尺的应用)。

二、自主探索。

1、谈话:刚才同学们说了那么多想去的地方,老师想带你们到南京玩一玩,你想吗?(想)。

2、出示下面地图,思考从图上你能获得哪些信息。

4、学习求实际距离的方法。假设我们到南京旅游,住在金陵饭店,想去南京博物馆参观,你能计算出从金陵饭店到南京博物馆的距离吗?试试看。

(1)学生讨论计算方法,然后小组代表发言、集体交流。(要求实际距离可以根据比例尺的意义用解比例尺的方法做,也可以用其它公式做)。

(2)学生试做,并指名板演。

(3)集体订正,(采用不同方法解答,说一说每一种方法思路及注意点)。

5、学习求图上距离的方法。

(2)学生讨论解决方法,然后小组代表发言,集体交流。(可以根据比例尺的意义用比例的方法解答,也可以用公式图上距离=实际距离比例尺解答)。

(3)学生试做并板演。

(4)集体订正,说一说,每种方法的思路及注意点。

6、学生看书3738页,提出不懂的问题,集体解决。

三、反馈提高。

(1)1:1000。

(2)1:2000。

(3)1:5000。

(4)1:10000。

选第(3)个最合适,让学生说明原因。

2、量一量下图中小明家到学校公园、商场的距离各是多少厘米,然后算一算小明家到学校、公园、商场的实际距离各是多少米?指名板演,并说一说列式的依据及解题思路。

3、根据条件绘制金山镇镇区平面图(1)金石路在繁荣路和开发路之间并与两条路平行,距繁荣路300米(在图上画出金石路)(2)金山小学在金中路东侧,在开发路北100米处,(标出金山小学位置)。

四、小结:今天你学习了什么内容?有哪些收获?

五、作业:测量出学校的实际长和宽,然后选用适当的比例尺一出学校平面图。

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
比例的应用教学设计(大全11篇) 文件夹
复制