2023年线性代数教学总结(实用15篇)
文件格式:DOCX
时间:2023-11-26 15:39:20    小编:花花的花花呀8

2023年线性代数教学总结(实用15篇)

小编:花花的花花呀8

通过总结,我们可以发现成功的经验和方法,加以借鉴和推广。总结要言之有物,突出重点,避免泛泛而谈。以下是小编为大家收集的总结范文,仅供参考,大家一起来看看吧。

线性代数教学总结篇一

考研数学包括:线性代数、高等数学、概率论与数理统计,高等数学占考研数学的大部分比例,而线性代数所占的分值比例是22%.线性代数知识点多、定理多、概念多、符号多、运算规律多,知识点之间的联系非常紧密。复习线性代数的时候,要对基本概念、基本定理、结论及其应用、各种运算规律及基本题型的计算方法都要掌握。下面针对各章节进行考点的总结,并给出复习重难点。

第一章行列式。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算方法主要有两种,第一种方法是三角化法,即利用行列式的性质把复杂的行列式化为上三角或者下三角来计算,第二种方法是降价法,即利用行列式按行(列)展开定理把高阶行列式降为低阶行列式来计算。

第二章矩阵。

首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。最后就是矩阵秩。这是一个核心和重点。矩阵的秩是整个线性代数的核心。要清楚,秩的定义,有关秩的很多结论。针对结论,大家最好能知道他们是怎么来的,自己动手算一遍。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。

第三章向量。

向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。

第四章特征值与特征向量。

掌握特征值与特征向量的概念与性质;数值型矩阵特征值与特征向量的计算方法;理解掌握矩阵乘法运算与特征向量的.联系;抽象矩阵行列式的计算;特征值重数与无关特征向量的关系。

第五章二次型。

二次型这一章的重点实质还是实对称矩阵的正交相似对角化问题。要掌握二次型的矩阵表示,用矩阵的方法研究二次型的问题。化二次型为标准形:主要是利用正交变换法化二次型为标准型,这是考研数学线性代数的重点大题题型,考生一定要掌握其做题的基本步骤。化二次型为标准型的实质也是实对称矩阵的正交相似对角化问题。二次型的正定性问题:对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象矩阵的正定性判断可以通过利用标准形,规范形,特征值等得到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

线性代数教学总结篇二

基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够透彻,在答题中对基本性质的应用不知如何下手,因此,造成许多不应该的失分现象。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基本知识。

二、加强综合能力的训练,培养分析问题和解决问题的能力。

从近十年特别是近两年的研究生入学考试试题看,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,在打好基础的同时,通过做一些综合性较强的习题(或做近年的研究生考题),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。

三、注重分析一些重要概念和方法之间的联系和区别。

线性代数的内容不多,但基本概念和性质较多。他们之间的联系也比较多,特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。

线性代数教学总结篇三

由浅而深线性代数中一些新概念如秩,特征值特征向量,应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系、它们的作用,一步步达到运用自如境地。

二、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。

1、线性代数的概念很多,重要的有:

代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

2、线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:

行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

三、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。

线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

四、注重逻辑性与叙述表述。

线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解学生对数学主要原理、定理的理解与掌握程度,考查学生的抽象思维能力、逻辑推理能力。大家学习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

线性代数教学总结篇四

[论文摘要]随着计算杌的普及与应用,多媒体教学已经逐步走进课堂,而且在现代教学中起着越来越重要的作用。本文分析了线性代数多媒体教学的优势与不足,并根据多年从事线性代数教学的经验,给出了如何将多媒体技术运用于线性代数教学的几点建议。

线性代数是理工类、经管类数学课程最重要的基础课之一,其基本内容是讲授向量空间和矩阵的理论。线性代数在数学、力学、物理学和技术学科中有着各种重要应用,因而它在各种代数分支中占居首要地位。在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。随着科学的发展,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。线性代数对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用,但普遍被学生认为是比较困难的一门课程,主要的困难是太抽象。多媒体作为一种现代的教育技术,在很多方面显示出其优越性,如何将多媒体技术与传统的教学手段良好的结合并应用于线性代数的教学中,是一个值得关注的问题。

1.扩大课堂容量,提高教学效率。

教学内容多,课时少一直是很多高等学校线性代数课程的一个重要矛盾。我们都知道线性代数课堂教学的特点是板书量大,费时,费力,而用多媒体教学一些重要的定义、定理作成课件直接播放,节省了教师的板书时间,同时增加了更多的'讲解和补充其他内容的时间,可以在短时间内向学生提供更多更有效的信息,有效节省了师生的时间和精力,提高了课堂的学习效率。

2.活跃课堂气氛,增强学习兴趣。

传统教学中都是教师在讲台上讲解,学生面对黑板这样单一的教学模式,利用多媒体技术,通过图像、声音、动画等形式,可以形象直观的展现一些问题的求解过程。另外,利用多媒体还可以增加数学史,数学家轶事等内容,拓展学生的知识面,从而提高了学生的注意力,降低了传统授课方式的枯燥感,增加了学生的学习兴趣。

3.提高教学质量,促进能力培养。

线性代数是一门应用性很强的学科,而传统的教学模式教学效果差,不利于学生创新意识和创新能力的培养。随着科学技术的不断发展,计算机的大规模普及,使得数学实验和数学模型进入到教学环节,运用线性代数中的矩阵、线性方程组等内容建立投入产出模型、leslie人口模型等数学模型,有利于培养学生分析问题和解决问题的能力,为培养创新型人才奠定基础。

随着科学技术的发展,教学手段的日益现代化,多媒体教学已成为现代课堂教学的主要教学手段之一,其教学手段的直观性,教学内容的丰富性,使其具有广阔的应用前景。但多媒体作为一种新兴的教学手段,必然会存在着一定的不足,尤其在线性代数这门具有高度逻辑性和严密推理性的学科的教学中。例如,节奏快,不利于保持学生思维的连续性,不利于学生记笔记;纠错,应变能力差,不利于教师临场的即兴发挥;过多色彩动画、音效使学生眼花缭乱,分散学生注意力;不利于教师和学生良好的互动。"。

线性代数教学中需要多媒体技术,但如何合理的将多媒体技术应用于线性代数课程的教学,是一个值得我们思考的问题。下面结合本人多年线性代数课程的教学经验,对于多媒体技术在线性代数课程中的运用给出一些建设性的建议。

1.虽然多媒体教学相对于传统的教学模式有很多的优势,但并不是所有的教学内容都适合运用多媒体教学,尤其对于线性代数这门具有很强逻辑性的学科。这就需要教师认真备课,钻研教材,根据教学内容有选择的选用多媒体教学。当然,传统的教学模式也有其优势所在,课堂上将传统的教学模式与多媒体教学良好的结合,做到优势互补,以期达到最好的教学效果。

2.色彩、声音、动画是多媒体教学的一大特色,也是最容易吸引学生的注意力,产生学习兴趣的一大亮点,但这些元素的运用不宜过多,否则将会适得其反。因此,教师在制作课件时应该注意,色彩要鲜明,但不要太花哨,声音和动画的运用不要太频繁,以免分散学生的注意力,影响学生对教学内容的理解。而且要充分利用这些优势,例如,对于一些重要的内容要用特殊的颜色加以强调,以加深学生的印象,加强学生的记忆;对于一些概念之间的联系可以采用动画的形式进行演示,使其更直观、形象,易于学生理解。

3.在进行多媒体教学时一定要注意教师与学生之间的交流和互动,把握课堂节奏,不要只顾点击鼠标,照本宣科,让学生感觉是在听报告,而忽略了学生的理鹪和接受情况。课堂上,要多提问,适当的做练习并走到学生中间,了解学生的掌握情况,以便及时调整课堂教学进度,避免教学进度过快,影响教学质量。

4.对于已经讲授完的课件可以传到校园网上,供学生浏览和下载,便于学生温习和记笔记。另外,对于一些习题,思考题也可以在网上给出简要的解题思路,供学生参考和借鉴。

四、结束语。

多媒体教学作为现代化教学的一种手段在优化教学效果中起着越来越重要的作用。在教学过程中,恰当地选择运用多媒体技术,可以激发学生创造性思维,提高学生的洞察力,有效地实施素质教育。当然,多媒体也有其局限性,随着科学的发展,其作用将会更大,其局限性也将逐步减小.

线性代数教学总结篇五

线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如van的名著代数学第二卷就把线性代数作为其中的短短一章。

回顾线性代数的历史基础上,分析了关于线性代数的几个核心问题:第一介绍了几种关于线性代数基本结构问题的看法;第二介绍了关于线性代数的两个基本问题,即“线性”和“线性问题”;第三介绍了线性代数的研究对象;第四分析了线性代数的结构体系。

上世纪80年代以来,随着计算机应用的普及,线性代数理论被广泛应用到科学、技术和经济领域,因此线性代数也成为高等院校理工科各专业的一门基础课程,文章简述线性代数的相关核心核心问题。

线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如van的名著代数学第二卷就把线性代数作为其中的短短一章。但是线性代数的一些初级内容如行列式、矩阵和线性方程组的研究可以追溯到二百多年前;19世纪四五十年代grassmann创立了用符号表述几何概念的方法,给出了线性无关和基等概念,这标准着线性代数内容近代化开始;19世纪末向量空间的抽象定义形成,并在20世纪初被广泛用于泛函分析研究,从而使线性代数成为以空间理论为终结的独立学科,因此可以说线性代数是综合了若干项独立发展的数学成果而形成的。从上世纪六七十年代起线性代数进入了大学数学专业课程,在我国这门课程称为高等代数,它以线性代数为主体并纳入了一章多项式理论。

无论是高等代数或线性代数,这个课程有两个特点:一个特点是各部分内容相对独立,整个课程呈现出一种块状结构,原因是线性代数学科的形成过程本身就没有一条明确的主线。我们几乎可以找到从线性方程组,行列式,向量,矩阵,多项式,线性空间,线性变换中的任何一个分块开始展开的教材,其展开过程主要取决于作者串联这些分块的形式逻辑的脉络。另一个特点是内容抽象,要真正掌握线性代数的原理与方法必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,而这两种能力要求几乎超越了大多数学生在中学阶段的能力储备,而必须在学习这门课程的过程中重塑。主要是这两个原因,线性代数被认为是一门非常难掌握的课程,而克服这一困难的关键就是针对线性代数课程的这两个特点进行有效的课程改革。

线性代数基本结构问题,学者们历来有许多不同的看法,较为常见的是以下几种:

第一种是以矩阵为中心。

这一看法认为整个线性代数以矩阵理论为核心,将矩阵理论视为各个内容联系的纽带。在求线性方程组、判定方程组的解以及研究线性空间问题时,矩阵理论是重要工具。例如正交矩阵和对称矩阵主要应用于欧氏空间和二次型方程问题中。可见,只要对矩阵知识有了全面系统的理解后,就能将各种问题都化解为矩阵理论中的一部分,引申为矩阵问题。

第二种是以线性方程组为中心。

这一关观点认为线性方程组是线性代数研究的基本问题。具体操作过程中,将线性方程组的理论和方法应用到各个章节,由此引出矩阵、行列式、向量等理论,最后列出方程组、求解,然后进一步应用,串联起各部分内容。这一理论较为系统、科学,常常被初学者采纳。

第三是一种线性代数体系,以线性变换和线性空间为核心。

在学习线性代数之前,学生要先掌握关系、集合、环、群、域等概念,形成对高等数学的研究对象、知识结构、表达方式的初步认识。线性代数体系依次安排了线性空间、内积空间、线性变化、矩阵概念和性质等章节。掌握线性变换基础后,再教学线性方程组求解知识,在此基础上,进一步引出特征向量、特征值和二次型理论。整个体系以线性代数为核心,内容介绍、理论讲解及方法系统化为一个整体。

第四是以向量理论为核心。

对二维、三维直角坐标系的研究是线性代数的起源。学生在中学时就已经了解了关于平面向量的一些基本知识,因此,将向量作为整个线性代数知识的核心,有利于使各部分内容的联系更加密切、理论体系更加完整完善,学生的空间概念也能得以加强。矩阵、行列式、线性方程组一般为研究维向量空间所必须的表示工具、向量的`线性相关性的判别工具)和未知向量的计算工具,从宏观讲它们独立于体系之外,从微观讲它们也是维向量空间的一些具体内容。而二次型仅仅是对称双线性函数的一个简单应用。

四、线性和线性问题。

“线性”这个数学名词在中学数学课程中,学生从未接触过。而这一课程是大学数学的基础课程,学生刚进入大学,对这一词汇的具体内容知之甚少。所以在学习之前,学生必须对什么是“线性”有所了解,在“线性代数”这一课程中有对于“线性”概念的明确介绍。这是学习线性代数要解决的第一个基本问题,即什么是“线性”。

了解了什么是“线性”、什么是“线性问题”后,离完成线性代数的教学目的还有很长一段距离。如今的高校教育,一味灌输给学生行列式、向量、矩阵、线性变换等空洞的数学定理,指导学生用这些理论来思考线性代数的基本结构、具体应用等问题。教师在教学线性代数问题时更是一味强调理论的选择与应用,却忽视了学生发现问题、分析问题、解决问题的能力的培养。

稍微观察一下我们可以发现,中学的初等代数就是线性代数的前身,只是在其基础上的进一步抽象化。初等代数研究的多是具体的问题,运用加减乘除的运算方法即可解决问题;线性代数中则引入了许多新的概念,如向量、向量空间、集合、空间、矩阵等等,问题展现的形式发生了变化,要想解决问题,我们的思维方式也应该发生变化。涉及到新概念的数学问题往往都很抽象,如向量指的是既有数值又有具体方向的量;向量空间是许多量组成的集合,这一集合中的元素全都符合特定的运算规则;集合是具有某种属性的事物的总和;矩阵理论则是一种更加抽象化的理论,因此我们的研究方法和思维方式都要随之进行改变。如初等代数中的基本运算法则性代数中经常会失效,线性代数的研究对象是向量运算、矩阵运算和线性变换,解决问题时,需要采用一种特殊的运算方法。

综上所述,线性代数的学习中应重点培养两个方面的能力:

一个是知识掌握的能力的培养。介绍知识时应坚持从易到难、循序渐进。先掌握好中学的运算法则,再慢慢学习向量、矩阵知识,之后学习线性变换,最后综合学习线性运算。学生经过中学阶段的学习,完全掌握了加法和乘法这两种基础运算法则,简单了解了向量运算。矩阵知识相对于前者更加抽象,因此应放在之后学习。线性变换则是线性代数教学中的重点和难点所在,也是最容易被忽视的地方。由于线性变换可结合映射知识学习,而映射知识在中学数学和微积分教学中都有详细的介绍,在此基础上学生更容易理解线性变换及运算的相关知识,更容易解决矩阵特征值问题、线性方程组问题及二次型问题等。

另外一个是思维能力的培养。在学习中,注意引导学生带着问题学习,并在学习中进一步发现问题、解决问题,这是最有效的思维方式和学习方法。前文提到了学习线性代数必须先了解的两个基本问题:什么是“线性”、什么是“线性问题”。这两个基本问题应该始终贯穿性代数的学习过程中。无论在什么阶段的学习,都要注重理论知识和实际问题的有效结合。学生在掌握了一定的理论知识后,可尝试去解决相关的实际问题。在这一过程中,学生会加深对理论知识的理解,并进一步发现自身知识储备的不足之处。若单单追求知识的应用,而不加深自己的理论素养,最终也无法具备良好的思维能力。所以,在学习线性代数时,要培养好两方面的能力,使之相辅相成、相互促进。

结语:

20世纪后50年计算技术的高速发展,推动了大规模工程和经济系统问题的解决,使人们看到,线性代数和相关的矩阵模型是如微积分那样的数学工具,无所不在的线性代数问题,等待着各层次的工程技术人员快速精确地去解决相关线性代数问题。因此绝大对工科学生而言,数学课应该使他们有宏观的使用数学的思想,要使工程师了解工程中可能遇到的各种数学问题的类别,并且知道应该用什么样的数学理论和软件工具来解决,这是一种高水平的抽象。而了解线性代数的核心问题,无疑对线性代数课程的学习有重要的价值。

线性代数教学总结篇六

20考研线性代数重点内容和典型题型总结,线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,考研教育网就将线代中重点内容和典型题型做了总结,希望对20考研的同学们学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《年全国硕士研究生入学统一考试数学120种常考题型精解》。

矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的`计算与证明、解矩阵方程。

向量组的线性相关性是线性代数的重点,也是考研的重点。2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。

特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求a、有关实对称矩阵的问题。

由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

线性代数教学总结篇七

在考研数学中,线性代数部分所占分值为22%,虽然所占比例不及高数分值高,但同样重要。在线性代数的学习上,同学们经常走两个极端,有一部分同学感觉线性代数这部分是比较好掌握的,也有一部分同学感觉这部分难度比较大,这个跟线性代数本身的特点应该说是紧密相连的。线性代数课程的特点是系统,前后知识的联系非常紧密,概念性很强,对于抽象性与逻辑性有较高的要求,题型比较固定。考研辅导专家建议考生,在复习时一定要抓住线性代数前后联系的这样一些关键点,把知识连贯起来,就会发现掌握起来是比较容易的。

考研辅导老师提醒考生,考研数学不同于大学数学,大家在看书时如果遇到课程中超前的知识点可以暂时记住,查一下教材上相应的知识点,做个标记,等在下面的章节中复习到或下次老师讲到此类知识点的时候,再回过头来看一看做标记的题目,加以巩固。

线性代数教学总结篇八

项目教学法具有科学合理性,是一种较为先进的实践性教学方式。在当代建构主义的引导下,主要注重项目开展的实践性,首先教师对学习项目进行合理分解,之后正确示范给学生。学生在老师的引导下,分小组根据问题的具体要求有针对性的收集数据资料,通过小组之间的探讨和研究,共同协作完成学习并解决困难,从而巩固学生对于知识的记忆。由此,学生在整个学习过程当中掌握了学习技巧,教师也有效提升了课堂教学成效。项目教学法在具体应用期间,学生要有独立的学习时间、自主完成学习活动,对于项目开展期间遇到的各种困难,老师只起到简单的辅导和指引作用。项目教学法能充分调动学生学习的积极主动性,提升学生求知欲,使其形成独立思考的能力和团结协作的意识,全面发挥想象力和创造力,有效强化学生的社会实践能力。

与传统教学模式基本特征相比,项目教学法具有以下特点:1.主要围绕课本开展教学内容和教学工作。学生在学习理论知识期间,不懂得保险营销学这一专业具体是什么内容和未来的就职方向,由此可见这种传统教学方法直接阻碍到学生素质的有效提高,虽然能熟背理论知识但却不会具体使用。而在项目教学法当中,老师将其与教学内容有效结合,有针对性的整合教学内容和教学方式,教学内容主要是通过实际工作任务而产生。教学内容的制定突破传统专业学习的限制,教师以教学项目为教育核心,依据工作期间的思维逻辑展开具体教学。教学内容的理论性,通过工作任务的制定与实践内容紧密结合。2.教学模式的核心是实操和理论相结合。传统教学模式主要为硬塞式教学方法,以书本知识为主。而项目教学法的应用可以改变这一局面,其主要以实践操作与知识理论相结合为教学核心。以往的课堂教学期间老师注重课堂理论知识的学习,但现在有所不同,课堂上主要进行实践项目的调查研究,将理论与实践充分结合。由此一来既能将理论知识现学现用,又能深化理论知识,为学生日后的实践和工作打下坚实基础。3.学生的被动学习地位转为主动学习地位。项目教学法的使用改变传统教学期间学生被动接受知识的学习模式。老师要考虑到每个学生的学习进度,为其创造条件,让学生能积极主动的投入到学习当中。开展项目教学法期间,学生能够意识到自己是课堂的主导,掌控从课题组建、课题选材到最终课题展示的整个教学环节,而教师在其中只是起到辅助作用,从而使得学生能够正确完成课程作业,达成预期教学目的。教师通过使用项目教学法,引导学生形成正确解题思路,在学生开展项目的初始阶段就给予指导,使其顺利完成实践活动。4.使得学生收获实践性理论知识。项目教学法为学生创设出轻松的学习环境,与此同时激发了学生的学习潜能,学习成果的收获不是死板的背诵理论知识,而是对学生的专业技能和实践能力进行强化,而且提升了学生的就业能力,即创新能力、解疑能力、社会适应能力等,并使学生在心中明确自己将来所要从事的职业。这种教学效果不只是老师的指引与教导,主要是在具体的实践性教学当中所形成。为进一步增强实践性,教师要带领学生模拟职业情境,通过讲解和示范实际工作任务给学生带来更佳的实际体验感。

1.正确定位项目目标项目教学法成功实施的关键在于是否能正确定位项目目标,其与大学生的学习兴趣、自主学习能力、小组成员协作能力有直接关系。首先,项目内容的选取要有针对性,以教学目标为考虑前提,与日常生活相结合制定具体内容。在周围企业当中,明确具体工作事项,将企业的实际营销内容与传统课堂教学相结合,通过对营销基础工具的分析,实行“一个项目对一个课程知识点”的办法展开教学;其次,教师要注意项目教学的完整性,项目设计工作、项目实施、项目完成的整个流程一定要合情合理,一套程序下来使得学生能够运用所学知识解决实践问题,即为最终的项目成果,学生会生出一种成就感;最后,教师要合理设计项目的难度,针对学生的个性和学习进度适当制定项目主题、内容、任务,并要按照实际情况完善自己的教学方案。通常情况下,教师要熟悉自己的项目内容,其也要有效激发学生的学习兴趣。这就对教师提出要求,教师要善于将知识点进行合理分解,为学生作出正确示范,在项目学习的整个过程当中还要能提炼出与此相关的子项目,拓展书本知识,从而激发学生的创新思维潜能。2.组织学生分组学习并探讨项目开展形式老师给学生传达项目任务后,学生要在组内对项目进行深入分析和探讨,并在老师的引导下合理制定详细的项目开展计划。项目计划主要分为三步:首先,将学生等分成学习小组,项目教学法当中经常用到分组教学方法,老师要按照班集体学生的学习进度和个性特点,让学生进行自由组合,之后教师可以做出相应调整,针对学生的学习情况均匀分配,让学生在组内选出学习组长,通常一组5至7个人就可以,使得学生在组内展开学习讨论期间能够强化团队合作精神;其次,学生要明确项目的思考方向和学习思路。小组集体明确项目的具体计划步骤,分工完成计划内容,最后展示自己的学习成果,如果遇到任何疑难要及时请教老师;最后就是项目的完成要按照规范进行操作,团队之间的工作要和谐融洽,小组成员要分工明确,注意自己的表述语言要流利,学习态度要认真,动作自然大方。组间收集的资料要全面并具有合理性,成员还要自如使用多种资料收集方式,使得组内的项目内容更加丰富。3.项目要合理实施开展项目活动的关键是项目的实施是否具有合理性。大学生是项目活动的主导者,老师只是单纯的引导者,是课堂教学期间学生群体的服务者。具体开展项目期间,学生主要进行独立学习或协作学习,教师要培养学生的创新意识,并敢于尝试。与此同时,学生要正视自己在课堂之上的角色,在课堂主导地位的角度对项目活动的开展进行思考,拓展学习思维,体会工作艰苦,从而激发求知欲、提升创新能力。在学生展开讨论期间,教师要及时对学生的学习思路进行正确引导,分层次对学生展开辅导工作,对于多数学生都不理解的问题可以集中进行讲授。将理论内容与实践充分结合,从而拓展学生的理论知识面,帮助学生答疑解惑,提升教学效率。4.合理点评项目最终结果对于最终项目结果的点评是项目教学法的一种深化。项目教学法的使用就要求教师要维持学习的正确有效性,对于项目问题的评价并不只有对错或好坏。合理的点评对学生的学习具有导向作用,主要针对学习过程进行点评,包括对学生的参与积极性、协作精神、合作能力、应用创新能力等进行,其次再对项目的最终结果进行点评。点评的方式有很多,可以是老师点评,也可以是学生在组内互相评价。与此同时,教师还要抓住学生之间的共性问题展开详细讲解,制定行之有效的教学方案,从而使得学生不断强化自己的学习能力,并能积极主动解决问题。

四、结束语。

本篇文章中,首先阐述项目教学法的基本应用原理,之后探讨其实用特点,并据此深入分析开展对策,旨在为我国高等院校的教育工作者提供教学指导,帮助其为社会更好更快培养出高素养人才。

【参考文献】。

[2]赵锋.基于创业导向的《市场营销学》项目化教学改革与实践[j].吉林广播电视大学学报,20xx.

[4]杨永超.市场营销课程的项目教学探究[j].市场论坛,20xx.

线性代数教学总结篇九

(一)沿用高师钢琴教学模式的弊端。

其中钢琴普修课为二人一节课,主修课则是一人一节课,同时普修声乐、管弦乐两年,使学生到达“一专多能”的培养要求,以适应中小学音乐教学的需要。高师音乐专业的课程设置固然对培养中小学音乐教师起到良好的作用,但这种课程设置周期较长,课程频率低,教学成本高,更重要的是中小学教师招考的报考条件不利于独立学院毕业生,使其在就业上面临很大的制约,难以与高师毕业生竞争,增加独立学院毕业生的就业压力。

(二)照搬音乐学院钢琴教学模式的弊端。

音乐学院是以培养高、深、尖的专业化音乐人才为目标的,其钢琴教学注重钢琴的演奏能力、表演能力,培养学生走专业化的发展道路。在钢琴课程设置上以“一对一”教学为主,同时开设多门与钢琴演奏相关课程,如钢琴艺术史、钢琴音乐欣赏、钢琴教学法等。这种课程模式对培养我国钢琴专业人才具有很大的推动作用。但另一方面,社会对钢琴专业人才的需求十分有限,毕业生就业面临巨大压力。由于独立学院的生源质量与音乐学院存在很大差距,相当部分的学生入学时钢琴程度都比较浅,即使个别学生毕业时能够演奏几首难度较高的独奏作品或是开独奏音乐会,其演奏能力与音乐学院学生相比还是相距甚远,难以胜任与钢琴演奏相关的工作,就业形势令人担忧。因此,独立学院的钢琴课程教学模式既不能生搬高师“一专多能”的培养模式,更不能效仿音乐学院的“精英化”培养模式,而是应该从学生的就业实际问题出发,按需所教,制定符合独立学院发展的钢琴教学模式。

二、福州大学至诚学院钢琴教学改革的设想。

福州大学至诚学院音乐系自创办以来,为社会输送200多名音乐专业毕业生,仅有20%左右的毕业生从事中小学音乐教学工作或是专业文艺团体工作。这一方面是由于福建省教育厅对中小学教师招考条件的设置不利于独立学院毕业生,另一方面是因为独立学院毕业生与高师、音乐学院毕业生在专业、综合能力等方面确实存在一定差距,难以与之竞争,因此导致独立学院毕业生就业率低下。与此同时,社会钢琴教学市场依旧火热,但合格、规范的钢琴教师队伍远远不能满足庞大的琴童队伍,对钢琴略知皮毛的毕业生都涌入到钢琴教学的大军之中,至诚学院音乐系毕业生很大一部分也投身其中,在各个艺术培训机构、琴行任职,从事钢琴教学工作。针对这一现象,笔者以为至诚学院的钢琴教学应做出相应的调整,从而帮助学生更好地适应就业需求。

(一)制定务实的钢琴教学目标。

至诚学院的钢琴教学应以职业需求为导向,跟市场接轨,接地气,以社会钢琴基础教学作为主要的培养目标,为社会输送合格、规范的钢琴基础教育人才,这在一定程度上能够推动社会钢琴教学市场规范化进程,从而为我国钢琴教育事业的推广和普及做出一份贡献。根据这一培养目标,在原有的钢琴演奏、钢琴伴奏、钢琴教学法等课程基础上,还应增设教育心理学,钢琴教材分析,钢琴教学实践,少儿钢琴教育,成人钢琴教育等相关选修课程,为培养合格、规范的社会钢琴教学人才奠定坚实的基础。

(二)综合多样的钢琴教学形式。

长期以来,高校钢琴教学是以传统的个别课和数码钢琴集体课两种教学形式为主。个别课,教师根据学生的个体差异进行针对性的讲解、辅导、示范,因人而异,因材施教,对症下药,及时解决学生存在的问题,较快地提高学生的演奏能力,是必不可少的钢琴教学形式。但对于没有钢琴基础或是钢琴基础薄弱的学生而言,个别课无法涉及更多的音乐基础知识,教学进度慢,“重复”教学多,学生兴趣不大,同时又造成教学资源的浪费。数码钢琴集体课运用多媒体手段进行综合教学,能够加快学习进度,提高学习效率,强调钢琴技能与乐理、视唱、和声、伴奏等音乐理论课程的有机结合。但由于集体授课难以照顾到学生的个性,教师无法全面了解学生的学习情况而进行针对性辅导,在学生达到一定钢琴程度后,能力分化日趋明显,这种“大锅饭”式的教学模式已不能满足进步较快学生的学习需求,因此只适用于钢琴初级教学。笔者以为,至诚学院钢琴教学可以在结合个别课和数码钢琴集体课两种教学模式的同时,根据教学时期、学生程度,分成集体课,小组课,个别课三种授课形式。集体课:安排在第一学年。根据新生的钢琴程度、摸底评测结果分为入门班,提高班两种不同程度的班级,10-20人为一班,每个班按照统一的教学进度授课。小组课:安排在第二学期-第四学期。通过第一学期的钢琴学习,学生钢琴程度分化逐渐明显,将钢琴程度相近的.学生编排在一组,4-6人为一组,进行小组授课。这样,在解决同一程度存在的共性问题的同时,又能避免重复性教学,更好地提高教学效率。个别课:安排在第三—第六学期。这时期学生的钢琴演奏能力都得到较大的提高,程度分化也更加突出,需要进行个别授课,以更好地因材施教,最大限度地发挥学生的主观能动性,帮助学生在有限时间内尽可能地提高钢琴演奏水平。三种钢琴教学形式综合应用,既可以最大程度地优化教学资源,又利于激发学生的学习积极性。可以根据第二、第三学期末成绩进行重组,即原来上小组课的学生通过努力可以“晋升”到个别课;原来上个别课的学生由于不够努力将编排到小组课,从而营造良好的学习气氛,培养学生的竞争意识。

(三)选择实用的钢琴课程教材。

以培养社会钢琴基础教育人才为主的教学目标,决定了在钢琴教材的选择上一定要注重实用性。在钢琴集体课教学中,李和平编著的《现代钢琴集体课教程》可以说是一套使用最广、实用性强的钢琴集体课教程。这套教材在训练钢琴弹奏技巧的同时,综合乐理、视唱、练耳、和声、即兴伴奏等教学内容,强调学生听觉、记忆、视谱、视奏、创造力等音乐素质训练和能力的全面培养。此外,薛庆编著的《数码钢琴集体课教程》、李美格主编的《全新数码钢琴集体课教程》、唐艺主编的《钢琴集体课教程》等教材都是优秀的钢琴集体课程教材,包含基础理论知识、基本训练、练习曲、乐曲、视奏与移调、歌曲配弹、合奏练习等,程度为从入门到车尔尼599中后部,适用于独立学院非钢琴演奏专业的钢琴初学者使用。在钢琴小组教学中,应注重提高学生钢琴技能的同时,强调钢琴学习的综合性,可以选用高等学校音乐学本科钢琴专业教材。如李和平主编的《钢琴》,韩林申主编的《钢琴基础教程》,黄瑂莹主编的《钢琴教程》,上海音乐学院钢琴基础课教研室编纂的《新编钢琴基础教程》等。这些钢琴教材都是由浅入深,分级教学,每个级别都包含相应程度的基本练习、练习曲、复调乐曲、大型乐曲、中小型乐曲、歌曲伴奏、四手联弹等内容,都是优秀的本科钢琴教材。但这些钢琴教材初、中级程度的,不同时期风格的作品较少,教师可以根据学生的程度选择具有代表性、实用性的中小学中外乐曲作为补充内容。在钢琴个别课教学中,教材的选用更为广泛、自由,但不要盲目追求难度高的曲目,应从学生实际能力出发,在适当提高曲目难度的同时,要充分考虑学生今后教学的实际需要。同时将钢琴教学法、钢琴弹奏理论、钢琴教材使用融入教学中,使学生掌握钢琴弹奏技能的同时学习钢琴弹奏理论和钢琴教学法,为学生之后的钢琴教学之路奠定良好的基础。

三、结语。

综上所述,独立学院钢琴课程教学应有别于高师、音乐学院的钢琴教学模式,要走一条符合独立学院特色的钢琴教学之路。作为独立学院的钢琴教师,我们应该以社会需求为导向,突出教学实用性,体现以人为本的教育精神,在教学实践过程中不断探索,不断研究,不断深化独立学院的钢琴教学改革,使之更好地适应社会发展需要。

线性代数教学总结篇十

高职数学是教育中的重点内容,在实际教学中,线性代数是教学的难点,由于线性代数的内容较为复杂零散,且对学生的逻辑连贯性要求极强,因此学生往往感觉学习起来非常吃力。线性代数与中学数学知识联系不大,且高等数学的教学任务紧迫,课时安排有限,在众多因素的限制下,线性代数的教学必须要进行全面的创新和改革,才能激发学生的学习兴趣,让学生将零散的知识有效贯穿,整体性掌握,提升数学学习成绩。基于此,本文对高职院校中线性代数的教学方法改革进行探究。

1.在教学中应用现代信息技术。

高等数学中的线性代数是教学的难点,且由于高职数学课时安排有限,因此在教学过程中,要在有限的教学时间内完成教学任务,那么应该在传统教学方式的基础上加以创新,通过现代信息技术的应用以及教学辅助工具的支持进行线性代数教学[1]。例如matlab软件的应用,能够有效解决数学教育中的难题。matlab是应用于工程计算中的高性能的编程软件,能够在复杂的计算中发挥有效功能,在现实中该软件常用于工程计算,但现今已经在数理统计、概率论以及线性代数等数学教育课程中应用,并且实践证明应用中能够取得较好的效果。

2.案例教学法的应用。

案例教学法是线性代数教学中的一种重要方式,在实际生活中,案例教学法通常应用于财务、会计、法律等专业的.教学中,但对于高职数学而言,线性代数的教学中案例教学法的应用也具有较大的优势[2]。在高职数学教学过程中,案例教学法的应用前提是适宜的案例导入,因此要求教师寻找专业知识与数学知识中的最佳交叉点,将专业性的应用案例转化为数学教学的一种方式,将专业知识融入数学知识中,并且通过一些工具的辅助对学生进行教学。通过贴近生活、与专业相契合的案例导入,能够增加课堂的趣味性,并且能让学生认知到线性代数在实际的专业和生活中能够应用。案例教学法的应用能够简化线性代数的复杂概念,以抽象性方式促进学生学习,提升学生的实际应用能力。

线性代数的教学难点在于概念、性质的复杂性和零散性,因此明确线性代数的重难点之后,采取有效的方式进行教学,能够促进教学质量的进一步提升。学好线性代数的前提在于基础性的学习,基础概念,知识掌握熟练就会使学生在练习中能够更灵活的应用这些知识,从而提升基本运算能力。因此要求教师在进行线性代数教学时,将应用作为教学的核心,以培养学生的应用能力为目标展开教学,让学生能够全面掌握线性代数的基础知识,培养学生的运用能力以及解决实际问题的能力。在教学中,不能过分注重线性代数的理论性,要注重线性代数和其它专业的关联性,并且注重生活实际中线性代数能够应用的领域,在课堂中讲授在实际岗位中能够应用的知识,让学生认知到线性代数的实用性和有效性,从而深入掌握理解基本概念,提升线性代数的基本计算能力。只有基础性知识的掌握较为熟练,并且在学生的脑海中形成基础知识理论框架,才能促进学生进行更深入的学习,帮助学生解决更为困难的数学难题,促进学生的进一步发展。

4.结束语。

综上所述,高职教学中对于教学内容的改革和更新是十分必要的,有助于推进学校教育质量的提升,促进学校的进一步发展,同时为社会培养出实用型、应用型的高级专门技术人才。在高职教学中,不仅要应用新式的教学手段,将线性代数的复杂过程简化分解,同时还要应用全新的教学方式,激发学生的学习兴趣,缓解学生的学习压力。在教学过程中,要注重线性代数与其它专业的关联性和实际应用性,强化应用性重要知识点的学习,提升学生的基础知识储备,提升学生的基础运算能力,如此才能让学生体验学习的乐趣,帮助学生学好线性代数。

参考文献:

[2]杨朝晖.以学生为主体提高教学质量———谈高职线性代数教与学的和谐发展[j].科教文汇(下旬刊),2008,10:102+104.

线性代数教学总结篇十一

2010年全国硕士研究生入学统一考试于1月9-10日进行,现在已经全部结束了。各位学生经过一年多的努力、拼搏,终于考完了所有的课程。对于考数学的考生来说,更希望了解今年数学试卷的总体特点;而对于很多准备参加2011年考试的学生也希望了解明年数学命题的趋势,现针对线性代数部分的试题进行以下分析。

线性代数一共是5道考题,两个选择题,一个填空题,两个解答题,两个解答题是22分,今年这两道大题主要是计算题,只有数学一21题第二问是证明a是正定矩阵的,而这个证明也是很简单的。因为同学害怕的是线性代数的证明题,今年两个都是计算题,所以从这个角度来说,线性代数的考题并不难。但是相对于09年的线性代数题目来说,今年的线性代数题目比09年的题目个别题目要略微难一些,因为09年的两道大题都是比较常规的计算,一个是具体的非齐次线性方程组的求解和证明线性无关,另一个是求二次型所对应矩阵的特征值,这两个题目都是比较常规的题目,今年的两个大题中,数一、数二、数三都考察了一个带参数线性方程组的求解,这道题涉及到了参数的问题以及非齐次线性方程组解的结构,比09年的具体的非齐次线性方程组的求解稍微灵活一些,对于第二道大题,数一考察的是已知二次型在正交变换x=qy下的标准形以及q的第三列,反求a的问题,这是一个抽象的问题,比09年具体的二次型要稍微有些难度,并且计算量有点大,所以说,从这个角度来说,今年的线性代数题的两道大题应当比09年的线性代数题要略微难一些。从今年出题的情况来看,考得很全面,六章,每一章都考到了,章章都有考的出题点,题目还是有一些灵活性的。

从大纲的角度来看,现在数一、数二、数三的考试大纲几乎完全一样,数一的同学多一个知识点,多一个向量空间,而今年正好在这儿考了一道小的题目,考察了向量空间的维数。线性代数今年这五道题来说,两道解答题,数二、数三完全一样,数一有一道和数二、数三的不一样,只是换了一个出题方法,考的出题点还是同样的。从这几年考试的特点来看,线性代数题考得很基本,而线性代数题本身比较灵活,一道题往往有多种解法,基于这样的情况,作为2011年的考生,如果要准备线性代数的复习的话,还是应该按照考研题的特点,重视基础,把概念搞清楚,把基本的东西搞清楚。像今年数一考的一道题,考的矩阵的秩,这道考题实际上涉及到的两个基本的知识点,一个是矩阵乘积的秩,即r(ab)=r(a),r(ab)=r(b);另一个是矩阵的秩的一个性质,即若a为m*n矩阵,则r(a)=m,r(a)=n,由这两个知识点我们就可以得到相应的结论,而08年数一的一道大题同样考的是矩阵秩的性质,这两道题用到了相同的知识点;同样的,今年数一、数二、数三都涉及到的一道题,已知a为四阶实对称矩阵,,且r(a)=3,求a相似于什么样的对角阵,这道题实际上就是求a的特征值,而02年数三就有一道基本上一模一样的.大题,所以说历年真题在考研复习中起到了一定的作用,在复习中要引起充分的重视。另外,线性代数的题目比较灵活,今年其他几道题也是一样的,出得很灵活。所以这就要求同学们在复习过程当中,在这方面一定要注意,注意知识点之间内部的联系。

以上我们从考试知识点方面对2010年考研数学试题线性代数部分考点进行了分析。从历年的数学考题来看,命题组的专家都是紧紧扣住三基本,“基本概念、基本理论、基本方法”,试卷中基础知识的考查占有相当大的比例,所以对准备2011年考试的考生来说,复习时首先应该注重基本概念、基本原理的理解,弄懂、弄通教材,打一个坚实的数学基础,书本上每一个概念、每一个原理都要理解到位,切不可开始就看复习资料而放弃课本的复习。在第一次的全面复习中,还要扎扎实实的把每个大纲要求的知识点都过一遍,查漏补缺;其次,注重公式的记忆,方法的掌握和应用。在研读教材时要重视习题,不要求每个概念都背下来,但一定要熟习它是如何反映在题目中的;最后,要注意综合。今年解答题主要是考察综合能力,我们这种综合能力不是简单的一个知识点、两个知识点,都是跨章节的,涉及多个知识点的综合题。不管是线性代数还是概率论与数理统计,还是微积分,一定要加强综合、加强训练。你只有一步一个脚印,方法得当,一定能取得好成绩。

将本文的word文档下载到电脑,方便收藏和打印。

线性代数教学总结篇十二

教育大计、教师为本,应对学前教育发展新形势,办学机制相对灵活的独立学院抓住机遇开办了学前教育专业,尤其是母体学校为高师院校的独立学院更是在学前教育专业招生规模上逐年递增,为快速发展的学前教育培养合格的师资做出了贡献。可基于独立学院应用型人才培养的总体目标,结合学前教育专业的特点,如何强化实践教学以提高学前教育专业学生的实践能力和就业竞争力,是独立学院学前教育专业办学亟需探讨的课题。笔者通过调查研究,指出了现有的独立学院学前教育专业实践教学存在的问题,构建了基于保教能力培养的实践教学体系。

1存在的问题。

一般而言,独立学院依据自身的办学特点和学前教育专业的实际确定的学前教育专业人才培养目标为:培养具备对幼儿实施保育和教育的技能,具有创新精神和实践能力的学前教育工作者。为有效达成培养目标,必须强化实践教学。可纵观现有的独立学院学前教育专业实践教学模式,发现存在如下几方面的问题:

1.1教育理念有偏差。

1.1.1顶层设计者管理理念偏差。随着高等教育改革的不断深入,独立学院办学体制改革也是紧锣密鼓,尤其是今年**中,已经有部分省份取消了三本录取,加之国家办学资金拨付的改革等等一系列因素的影响,独立学院和母体学校的管理者们从考虑办学成本出发,在人才培养方案的修订中,难以照顾独立学院办学特性和学前教育专业特点,大幅消减实践教学课时数,尤其是压缩集中性实践教学课时,导致学前教育专业办学无法凸显独立学院的特色。

1.1.2专业课程教师教学理念偏差。调查发现,绝大多数独立学院的学前教育专业课程教师一般都是二本、三本一同兼课,教学模式与理念难以调整,在独立学院学前教育专业课程教学中,突出“保教能力”培养的意识不强,从理论到理论的现象比较普遍,不注重启发式教学,教学效果不理想。

1.1.3学生学习理念偏差。独立学院学前教育专业学生由于缺乏教师的引导,对专业课程的学习和专业能力的发展,感觉一片茫然,无所适从,整个学习就是从课堂到课堂,自觉训练保教技能的意识不强,动力不足。

1.2课程体系不合理。现有的独立学院学前教育专业人才培养方案中的实践教学课程设置,缺乏一体化的设计理念,存在实践教学课时比例偏少和大一、大二无集中性实践教学安排的现象,不利于学生保教能力的培养。

1.3教学过程多泛化。学前教育专业实践教学目标不精细,集中性实践教学环节多头并进,没有重点就保教技能的某一方面进行规划和训练,学生收效甚微。

1.4监控管理重形式。由于独立学院管理人员的配备和机构设置等方面的原因,目前,独立学院对学前教育专业实践教学的监控管理一般是对教育实习这一集中性实践教学进行检查,采用集中检查与评估的方式,容易造成具体组织实施单位做材料、应付了事,没有落实到实践教学目标的达成上。而其它相关的实践教学活动,如学生自主开展的实践教学则成为监控的盲区,学生保教技能的训练效果不明显。

1.5“双师型”师资缺乏。学前教育专业实践教学效果的提升需要“双师型”指导教师的指导,可现实是:学前教育专业课程教师专业理论有优势,但专业技能明显不足;幼儿园教师专业技能较强,但理论又有欠缺。由此,导致实践教学指导不到位,学生难以发现自己的弱点和努力的方向[1]。

2实践性体系的构建。

为打造独立学院学前教育专业特色,提升本专业学生的就业竞争力,则应突出学生保教能力的培养。保教能力包括观察了解幼儿的能力、了解幼儿园教育动态和分析解决幼儿教育实践问题的能力、幼儿一日生活指导能力、环境创设能力、组织实施教育活动能力、幼儿教育评价能力等[2]。这些能力培养建立在科学合理的实践教学体系的基础上。

2.1目标体系坚持四年一贯系统设计的原则,每一学年的实践教学侧重点不同,突出保教能力的培养,强化实践教学中专业知识的运用和专业情意的养成,为全面实现专业培养目标奠定坚实的基础。第一学年:侧重增强学生对幼儿教育的感性认识,培养学生的教师基本功(“三字一话”和艺体才能的实训为主)。第二学年:侧重在幼儿教育实践中检验所学专业课程理论知识,强调理论与实践相结合,培养学生初步的保育能力。第三学年:侧重保育能力的提升和幼儿教育活动设计与指导、环境创设等教育能力的培养。第四学年:侧重保教能力、专业情意等幼儿教师综合素质的全面提升。

2.2内容体系实践教学内容体系是实现实践教学目标的载体。现有的独立学院学前教育专业实践教学主要包括:理论课程中的实践教学,表现为验证性实验教学;集中性实践教学,包括见习和实习、毕业论文等,而见习和实习的时间较短,学生进入幼儿教育实践一线后,表现出操作技能弱,基本忘却幼儿教育理论,简单复制一线教师的操作。因此,必须从整体上构建实践教学内容体系[3]。

2.2.1体验性实践。随理论课的开设而逐步实施,贯穿在理论课程的实践教学中,如学前心理学、幼儿游戏理论、学前卫生学、学前教育学等课程,一般安排有实践教学,课时应占总课时的10%左右,注重培养学生运用所学的幼儿教育理论知识观察了解幼儿及分析幼儿教育问题的能力。如在“学前教育学”课程教学中,采用讲新课前用ppt与大家一道“分享幼儿教育故事”的方式,促使学生收集幼儿教育案例,自觉做到理论与实践相结合,训练学生的教师基本功。

2.2.2自主性实践。随大学生活的`开始而实施,贯穿在四年的大学课外实践活动中,是一种经常性的实践活动。包括:寒暑假赴幼儿园调研的社会实践活动;自主联系的定期观摩活动;担任幼儿园的“园外辅导员”;自主开展的专业学习成果展和汇报演出活动;自主开展的幼儿园教师保教基本技能训练(三笔字、普通话、艺体技能训练等)。目的是充分发挥学生的学习积极主动性,增强对幼儿教育的感性认识和提升分析解决幼儿教育问题的能力。

2.2.3研究性实践。一般从大二开始,随院(系)的活动计划安排实施,包括:研究性学习与科技创新活动、学科专业竞赛活动、创新创业、育婴师和营养师等各种与幼儿教育相关的资格证考试等。目的是培养学生幼儿教育研究与评价能力。

2.2.4综合性实践。这部分体现在专业人才培养方案中的集中性实践教学环节,是培养学生保教能力的关键环节,因此,必须确保各环节的教学时间充足。包括:专业见习、实习、毕业论文等。其中专业见习安排在2~6学期,每学期见习为期一周,见习的重点不一,第一次见习以全方位了解幼儿教育为主,涵盖保育、教育和管理,着重增强学生对幼儿教育的感性认识;从第二次开始,开展重点见习,第841二次为幼儿园保育见习,第三次为幼儿园环境创设见习,第四次为幼儿游戏活动指导见习,第五次为五大领域活动设计与指导见习,培养学生保教知识运用和实践操作的能力。实习包括教育实习和顶岗实习,实习安排为期一个学期,是全面检验学生的学习效果和提升幼儿教师的专业能力的重要环节,其中顶岗实习与就业创业相结合,形成培养与就业的良性循环。

2.3监控体系实践教学效果如何,需要加大监控力度,充分利用评价机制,促进学前教育专业实践教学质量的提高。为此,建立三级监控体系:

2.3.2专业负责单位,一般是学前教育专业教研室具体组织实施实践教学,落实学院的规章制度,严把实践教学每一环节的质量,包括指导老师的指导环节,杜绝搞形式、走过场等,切实提高实践教学质量。

2.3.3指导教师具体实施实践教学,针对独立学院学前教育专业的特点,学生一入学就建立实践教学导师制,导师可以在专业课教师和实践基地幼儿园教师中遴选,一般一位导师指导5~8名学生,要求指导每一个学生整体设计好四年学习规划和保教能力培养计划,负责对学生的自主性实践和研究性实践进行指导和评价。

2.4保障体系。

2.4.1条件保障。为确保实践教学效果,必须建设好充足的学前教育专业实践教学基地,数量上和质量上都能满足实践教学,特别是集中性实践教学的需要;必须购置足够的仪器设备和实训设施,如舞蹈房、钢琴、画室、微格实训室等,以满足实验教学和艺体技能的训练。

2.4.2经费保障。独立学院为达成学前教育专业的培养目标,突出培养学生的保教能力,就必须保证实践教学的课时数,一般应该达到40%以上,为此,相应的就需要充足的实践教学经费做支撑。

2.4.3师资保障。有效指导学前教育专业的实践教学,需要一批有责任心、专业理论素养和实践能力较强的教师来指导。结合独立学院办学机制相对灵活的特点,选派学前教育专业实践教学指导教师,可以考虑两个方面:一是校内业务素质高的专业教师,一是幼儿园具有一定理论素养的一线教师。为此必须加大“园校合作”的力度,独立学院需建立专业老师深入幼儿园听课和开展理论讲座的制度,合作园也需把老师定期派往院校培训,接受理论教育,以期更好地完成学前教育专业实践教学指导任务。面对快速发展的幼儿教育事业,独立学院积极应对,开办学前教育专业培养合格的幼儿教育师资。如何把学前教育专业办出特色,提高学生就业竞争力,笔者认为:强化实践教学,构建科学合理的实践教学体系,突出“保教能力”培养,是十分重要和必要的。

参考文献:

[2]教育部.幼儿园教师专业标准[z].2012-09-18.。

线性代数教学总结篇十三

线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对20考研的同学们学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的.具体方法以及例题见《年全国硕士研究生入学统一考试数学120种常考题型精解》。

矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。

向量组的线性相关性是线性代数的重点,也是考研的重点。2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。

特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求a、有关实对称矩阵的问题。

由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

线性代数教学总结篇十四

旅游管理专业的教学特征。

旅游行业是经验性服务行业,从员工的发展来看,一般要经历服务操作层到基层管理层再到中高管理层最后到决策层。目前,高等院校的旅游管理专业一般以“培养应用型旅游管理的高级专门人才”作为专业定位,旅游管理专业的学生作为未来的经营管理人才,在旅游企业的职务升迁也多遵循这样一个逐步上升的过程。因此,在大学阶段加强理论教学的同时,突出应用性教学,可以帮助学生就业后缩短服务操作层的时问,从而加速进人管理层,这样既符合学校的培养目标和学生的自我定位,又能为旅游企业提供合适的人才。

理论研究尚未形成完整体系,教学科研水平有待提高。目前大多数独立学院旅游专业的教学计划、课程设置照搬普通高校,主导专业仍然是酒店管理、导游方向.而旅游电子商务、度假管理、会展策划、景区规划、宣传促销、理论研究等专业方向都未涉及,与地方旅游经济发展的多样化人才需求相悖,也没有体现独立院校的办学特色。

课程设置和现有教学方法不利于应用型人才的培养。独立学院旅游专业根据培养目标和岗位定位,一般要求毕业生具备多方面的实际应用能力。但目前仍然在课程设置上模仿普通高校,忽视两者在课时总数、培养目标上的差别。一些人文基础课程,往往因为课时限制被舍弃,导致学生专业知识面过窄。课堂教学以讲授为主,重理论,轻实践,学生不能主动参与,造成学生动手应用能力差,基础知识薄弱,很难适应现代旅游业快速发展的要求。

教学计划缺乏实践性内容,实践环节难以达到预期的目的。虽然独立学院的旅游教育强调学生动手能力的培养,教学计划中也明确规定实践与理论教学的课时比例,但力度不够。目前独立学院旅游实践性教学内容较单一,教学手段相对落后。大部分院校仅仅停留在餐饮摆台、客房做床等环节。有的院校实训过程中对学生要求不严,有的院校由于场地、器材的限制,实训课草草应付,效果很难保证。另外,目前许多独立学院的旅游专业在第三学年的第二学期安排毕业实习,由于学校实习目标不明确,企业不重视,往往把学生当成廉价劳动力,学生基本不能从事管理工作或轮岗,没有真正达到实习效果。而学生也在这一日寸期忙于求职,心浮于事,使实习流于形式。

线性代数教学总结篇十五

姓名:xxx学号:xxx通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用。

在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。但是线性代数教学却对线性代数的应用涉及太少,课本上涉及最多的应用只有算解线性方程组,但这只是线性代数很初级的应用。而线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为天书,足见这门课给同学们造成的困难。我认为,每门课程都是有章可循的,线性代数也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线性代数主要研究三种对象:矩阵、方程组和向量。这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质。如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易。

线性代数课程特点比较鲜明:概念多、运算法则多内容相互纵横交错正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大,线性代数的概念多比如代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,矩阵的秩,线性组合与线性表示,线性相关与线性无关等。

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
复制