比的基本性质教学设计(精选10篇)
文件格式:DOCX
时间:2023-11-26 20:34:18    小编:纸韵

比的基本性质教学设计(精选10篇)

小编:纸韵

时间管理是提高工作效率的关键,我们需要对自己的时间进行总结和规划。如何有效管理时间掌握科学学习方法可以提高学习效果和效率。

比的基本性质教学设计篇一

第十三课时:

教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。

教学目的:使学生理解,掌握化简比的方法。

教学过程:

一、复习。

1.除法中的商不变规律是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

1.教学。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是。

问:(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

利用,我们可以把比化成最简单的整数比。

出示例1:把下面各比化成最简单的整数比。

(1)。

问:(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据把前、后项同时除以它们最大公约数7)。

(2)。

导学生说出:要根据,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。

化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)。

问:(启发学生说出:可根据,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。

3.小结:

问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简的方法。

2.练习十四第5、7、8题。

3.练习十四第9题。

提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。

四、作业。

1.练习十四第6、10题。

2.一列火车15小时行驶1200千米。

(1)写出行驶的路程和时间的比,并化成最简单的整数比。

(2)求出这个比的比值,再说出这个比值的含义是什么?

比的基本性质教学设计篇二

教学目标:

1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

教学重点和难点:

教学准备:多媒体课件。

教学过程:

一、复习旧知。

1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。

3∶6=1∶2。

所以6∶10=9∶15生2:因为20∶5=4∶1。

28∶7=4∶1。

所以20∶5=28∶7.

(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

(1)观察这几组比例,它们有什么共同点?

在比例6:3=4:2中,组成比例的四个数“。

6、

3、

4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

(1)与同桌每人写出一个比例,交换验证。

(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”

(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

三、巩固练习。

1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。

追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

学生独立完成,教师巡视。

2、练习七第2题。

(1)下面四个数。

5、

说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

3.任意从1-10中,写出4个数,判断能否组成比例?

与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。

(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。

四、全课总结。

今天我们学习了什么内容?你有什么收获?

比的基本性质教学设计篇三

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

根据乘法等式写出正确的比例。

多媒体课件。

本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

一、旧知铺垫导入。

2、比和比例有什么区别?

【设计意图】。

注重从学生已有的知识出发,为新课做好铺垫。

二、自主探究。

过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

【设计意图】。

组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

三、反馈练习。

指出下面比例的外项和内项。(投影出示)。

先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

【设计意图】。

这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

【设计意图】。

这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

五、巩固练习。

1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

(学生独立完成后,用展示台展示)。

3、根据比例的基本性质,在()里填上适当的数。(投影出示)。

六、全课总结:

这节课你有什么收获。

【设计意图】。

关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

七、拓展练习:把下面的等式改写成比例。

3×40=8×15。

比的基本性质教学设计篇四

本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。

学情分析。

在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。

教学目标。

1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。

2.经历在实际情境中化简比,体会化简比的必要性。

3.学生通过观察.类比来建构比的基本性质和探索化简比的方法;在化简的过程中,加深对比与除法.分数之间关系的理解。

教学重点和难点。

重点:学生掌握比的基本性质,并正确地化简比。

教学过程。

一、情景激趣,提出问题。

1、出示例3的表格。

2、分析表格中的数学信息和数学问题,并解决这些数学问题。

3、分析、讨论表格中的数据,并尝试把表格中的比分类。

小结:我们可以把比值相等的比分为一类。

二、小组合作,探究新知。

2、讨论二:可以写出多少个比值是4/5的比呢?

三、尝试运用,解决问题。

先尝试独立完成“练一练”,再在小组内交流方法。

四、全课总结。

师:通过这节课的学习,你有什么收获?

比的基本性质是学生在已经掌握了商不变的性质和分数基本性质的基础上来学习的,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、比与除法的关系,推导出比的基本性质,所以这节课我充分调动的思维。

一)、我先组织学生复习了分数的基本性质和商不变的性质后,及时提出问题——比是不是也有什么性质呢?如果有的话,你认为它是怎么样呢?当有的学生根据分数与比的关系、比与除法的关系就自然而然的猜想出比的基本性质——比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。这叫做比的基本性质。在举例验证的过程中我引导学生在小组合作交流中分析、整理、推导验证的具体的语言的表达能力。

当讲完了比的基本性质后出了三道较有代表性的化简比的练习,让学生在做练习的过程中归纳和整理出化简比的方法。化简比的教学我采用尝试法,由学生尝试化简,遇到问题小组共同探讨,找到化简方法,通过板演,方法还真不少,除了常规方法,还可以求比值,有人干脆把后项直接化成1.。不管采用那一种方法,只需符合规律,都给予充分的肯定,尊重了学生的情感、态度价值观,使学生从中体会到成功的喜悦,提高自己的学习兴趣。

三)、不足之处:

1.在练习中引导学生比较求比值和化简比的区别,是本节课的难点,在小组讨论总结的基础上,做了课件展示。展示时速度有点快,应放慢一些,更好地突出难点的解决策略。通过对比,加深学生对两种不同要求,在结果表达上的不同,解题过程,解题方法上的区别。

2.由于时间关系学生的讨论时间不够充分。

比的基本性质教学设计篇五

1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

2、培养学生类比、推理和概括思维能力。

一、探究新知。

1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)。

(1)4人小组交流。

(2)全班交流。

(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

(二)化简比---完成练习题(后附)。

1、小组交流。

2、全班交流。

小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

二、巩固练习。

1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。

2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

3、拓展练习。

3:8=(3+6):(8+)。

(让学生分小组讨论方法)。

三、课堂总结。

这节课有哪些收获?师生共同总结。

()年()班姓名。

你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

方法一。

方法二。

方法三。

方法四。

我的发现:

聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

序号。

我的方法。

(写出过程)。

我的发现:

比的基本性质教学设计篇六

1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

多媒体课件。

一、复习旧知。

1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。

3∶6=1∶2。

所以6∶10=9∶15生2:因为20∶5=4∶1。

28∶7=4∶1。

所以20∶5=28∶7.

(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

(1)观察这几组比例,它们有什么共同点?

在比例6:3=4:2中,组成比例的四个数“。

6、

3、

4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

(1)与同桌每人写出一个比例,交换验证。

(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”

(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

三、巩固练习。

1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。

追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

学生独立完成,教师巡视。

2、练习七第2题。

(1)下面四个数。

5、

说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

3.任意从1-10中,写出4个数,判断能否组成比例?

与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。

(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。

四、全课总结。

今天我们学习了什么内容?你有什么收获?

比的基本性质教学设计篇七

教学目标:

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学难点:根据乘法等式写出正确的比例。

教学准备:多媒体课件。

整体设计说明:

本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

教学过程。

一、旧知铺垫导入。

2、比和比例有什么区别?

设计意图:注重从学生已有的知识出发,为新课做好铺垫。

二、自主探究。

过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

三、反馈练习。

指出下面比例的外项和内项。(投影出示)。

先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

五、巩固练习。

1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

(学生独立完成后,用展示台展示)。

3、根据比例的基本性质,在()里填上适当的数。(投影出示)。

六、全课总结:这节课你有什么收获。

设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

七、拓展练习:把下面的等式改写成比例。

3×40=8×15。

比的基本性质教学设计篇八

教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。

教学目的:使学生理解比的基本性质,掌握化简比的方法。

教学过程:

一、复习。

1.除法中的商不变规律是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

出示例1:把下面各比化成最简单的整数比。

(1)。

问:(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。

(2)。

导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。

化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)。

问:(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。

3.小结:

问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简的方法。

2.练习十四第5、7、8题。

3.练习十四第9题。

提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。

四、作业。

1.练习十四第6、10题。

2.一列火车15小时行驶1200千米。

(1)写出行驶的路程和时间的比,并化成最简单的整数比。

(2)求出这个比的比值,再说出这个比值的含义是什么?

比的基本性质教学设计篇九

教学目标:

1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

2、培养学生类比、推理和概括思维能力。

教学重点:

一、探究新知。

1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?————小研究(后附)。

(1)4人小组交流(2)全班交流。

(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

(二)化简比———完成练习题(后附)。

1、小组交流。

2、全班交流。

小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

二、巩固练习。

1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是。

2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

3、拓展练习。

3:8=(3+6):(8+)。

(让学生分小组讨论方法)。

三、课堂总结。

这节课有哪些收获?师生共同总结。

比的基本性质教学设计篇十

使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质,能够正确地运用比的基本性质,把比化成最简单的整数比;通过数学培养学生的抽象概括能力和迁移类推的能力。渗透转化的数学思想,并使学生认识到事物之间都是存在内在的联系的。

教学重点和难点。

教学过程。

一、师:在前面的学习中我们学习了比的意义,谁来说出什么是比?

师:比与我们学过的那些知识有联系?有什么联系?

师:看来大家对前面学过的知识掌握得比较好。

(导入新课)。

师:大家想一想这个猜想有没有研究的价值?

师:所有的猜想都需要一个验证的过程才能最终被我们接受,现在就请同学们利用以前学过的知识来验证这一猜想。请举例验证。

师:是吗?同学们想不想听一听这位同学的高见?

师:这位同学问的非常好,对呀,到底是为什么呢?谁来回答?

师:大家同意吗?

师:能举例说明吗?比如180:120化成最简整数比是什么?

师:怎么化简的?根据是什么?

教师根据学生的讲述板书:

180÷120=(180÷60):(120÷60)=3:2。

2.师:大家都会了吗?那老师考一考大家行吧?出示(1)48:40。

(2):出示教材中的一组分数和分数、小数和小数、分数和小数、分数和整数、整数和小数的对比练习,请大家独立化简,指名板演。

师:上面几位同学做得对吗?为什么这样做?能说一说理由吗?根据是什么?

师:看来大家对这部分知识掌握的的确非常好了。

四、这节课我们重点研究了什么?你有什么收获?运用比的基本性质应注意什么?

五、人教版小学数学六年级上册第47--48页练习.十一第1、3。

板书设计。

比的前项与后项同时乘或除以同一个数(0除外),比值不变。

180÷120=(180÷60):(120÷60)=3:2→最简整数比。

同时除以这两个数的最大公因数。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
比的基本性质教学设计(精选10篇) 文件夹
复制