数学教学设计万能 数学教学设计意图万能(十三篇)
文件格式:DOCX
时间:2023-03-11 00:00:00    小编:公考客栈店小二

数学教学设计万能 数学教学设计意图万能(十三篇)

小编:公考客栈店小二

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

数学教学设计万能 数学教学设计意图万能篇一

1.掌握连除、乘除混合运算的顺序。

2.会正确分析问题中的数量关系,会灵活运用不同的方法来解决生活中的问题,逐步提高解决问题的能力。

3.让学生充分感受数学与生活的密切联系,激发学生学习数学知识的热情。

4.通过观察分析、合作探究等活动,培养学生的探索意识和求异思维,增强学生对数学的应用意识和创新精神。

掌握连除、乘除混合运算的顺序,能正确计算除数是一位数的乘除、连除的两步计算题。

正确分析问题中的数量关系,理解每一步算式的意义。

一、情境创设,激发兴趣

师:同学们,今天方老师带大家去一个你们很乐意去的地方-学校阅览室。在那里可藏着很多的数学问题。走!咱们一起看看去。

[说明:由学生身边熟悉的事物引入新课,容易激发学生的好奇心和求知欲,同时又容易使学生产生亲切感,从而带着良好的学习状态进入新课的学习。

二、交流合作,解决问题

摆书

1.学生细看课件的信息,领会题意。

师:谁能来说一说发现的数学信息

生:阅览室有200本书, 2个4层的书架

(随着学生说的课件出示条件)

师:根据图中的信息能提出哪些数学问题呢?

生:2个书架有几层?

生:一个书架可以放几本书?

生:平均每个书架每层放多少本书?

2.合作探究。

师:看同学们提了这么多的问题,猜猜看老师今天最想请大家解决哪个问题?

学生的回答展示,今天重点要解决的问题:平均每个书架每层放多少本书?

3.学生自己独立思考并列式计算,再在小组内交流你是怎么想的,总结一下有几种方法

4、汇报,展示交流4种不同的解题方法。(根据学生的汇报板书在黑板上)

汇报的时候说一说你列的算式的意思,并说一说你是怎么算的。

(1)200÷2=100(本) (2)2×4=8(层)

100÷4=25(本) 200÷8=25(本)

(3)200÷2÷4 (4)200÷(2×4)

=100÷4 =200÷8

=25(本) =25(本)

5、汇报时提问:(1)200÷2求的是什么?结果再除以4是什么意思?

(2)2×4算出的是什么?200÷8表示什么意思?

(4)4×2是什么意思? 200÷(4×2)求的是什么?去掉括号可不可以?

师总结:第一个是按书架分先求一个书架有多少本书,第二个不按书架分,先求的总层数。然后按总层数分,虽然思路不一样但是都是平均分,我们都能解决同一个问题。

6、比较这几种算法有什么相同点和不同点。

你最喜欢用哪种方法?和同桌说说看。

师:你喜欢用哪种方法就用那种方法。

师:(1)、(2)列的是分步算式,(3)和(4)列的是综合算式。像这样有乘有除的算式叫乘除混合运算。

7、观察算式,发现运算顺序

师:像这种连除、乘除混合运算,在算的时候怎样判断先算什么后算什么呢?

请大家仔细观察(3)、(4)两个算式,比较一下,看看在计算顺序上你有什么发现?

可能情况:算式不同,得到的结果相同;(从左往右算,)

(3)式没有括号,先算200÷2,后算100÷4;(4)式先算括号里的,再算除法;

8、小结:像连除法和乘除混合运算这样的同级运算都是从左到右一步一步计算的,如果有括号的先算小括号里的,再算括号外的。(板书)

数学教学设计万能 数学教学设计意图万能篇二

1.会分析简单实际问题中的数量关系,会用方程解决实际问题。

2.经历解决实际问题的过程,体验数学与日常生活密切关系,提高收集信息,处理信息和建立模型的能力。

3.能够熟练解决相遇问题的应用题。

列方程解决相遇问题中求相遇时间的问题。

找出相遇问题的等量关系

引导学生用数形结合及方程的方法解决问题。

一、复习(提问学生,每人回答一题)

1.一辆面包车每小时走40千米,4小时能走多少千米?

40×4=240(千米)关系式:速度×时间=路程

答:4小时能行160千米。

2.一辆小轿车4小时行240千米,每小时能走多少千米?

240÷4=60(千米)关系式:路程÷时间=速度

答:每小时能行60千米。

3.小轿车每小时行60千米,走180千米要多少小时?

180÷60=3(小时)关系式:路程÷速度=时间

答:行180千米要3小时。

(师:这是我们以前学过的路程、时间与速度之间的关系。)

(师:从刚才的题目中了解到同学们掌握得真不错。今天我们研究较为复杂的行程问题,接着在黑板出示课题《相遇》)

二、模拟表演,探索新知

(一)模拟表演

1、课件播放相遇视频,同一张幻灯片出示模仿表演要求:①表演的同学要认真;②观看的同学边看边思考,从游戏中你发现了什么数学信息。

2、找两组同学,每组两人参加游戏

第一组走直线,第二组走曲线

(师:刚才模仿的同学真有表演天赋)

3、(师:游戏中,两个同学经历的过程就叫相遇。)

(二)探索新知

课件出示

从游戏中你发现了什么数学信息?

相遇四要素:两个运动物体、两地、同时、相向而行(出示板书)

师:像这样有两个物体同时从两地相向而行直到相遇,有关这样的问题叫“相遇问题”

生活中我们经常会遇到了类似相遇的问题

三、出示例题,合作探究

1、出示例题:张叔叔要给王阿姨送一份材料,他们约定两人同时坐车出发。遗址公园距天桥50千米。王阿姨的面包车每小时走40千米,张叔叔的小轿车每小时走60千米。

(1)估计两人在哪个地方相遇。

(2)出发后几时相遇?相遇地点离遗址公园的路程是多少千米?

2、全班读题,你发现了哪些数学信息?

生:张叔叔和王阿姨约定两人同时坐车出发。遗址公园和天桥的距离是50千米。

生:王阿姨乘坐面包车,面包车的速度是每时40千米。张叔叔乘坐小轿车,小轿车的速度是每时60千米。

师:再次强调相遇四要素:两个移动物体、两地、同时、相向而行

生:我发现,面包车行驶的慢,小轿车行使的快,所以小轿车行驶的路程比面包车行驶的路程要多,所以相遇的时候不是在中间,而是偏向遗址公园。

①教师演示线段图后,提问:你能用等式表示各部分路程之间的关系吗?

学生说:面包车所行路程+小轿车所行路程= 50千米

50千米-面包车所行路程=小轿车所行路程

50千米-小轿车所行路程=面包车所行路程

教师分析等量关系式

面包车所行路程+小轿车所行路程= 50千米

面包车的速度×相遇时间+小轿车的速度×相遇时间=50千米

40×相遇时间+60×相遇时间=50千米

②学生独立完成例题

解:设经过x时两车相遇,那么,面包车行驶40x千米,小轿车行驶60x千米。

面包车所行路程+小轿车所行路程= 50千米

40×相遇时间+60×相遇时间=50千米

60x+40x=50

100x=50问题:0.5小时,20千米是正确答案吗?

x=0.5

40 χ =40×0.5=20(千米)做完之后要检验

还可以这样解

(60+40)x=50 →(60+40)就是速度和,所以速度和×相遇时间=路程

x=0.5 (出板书:全班把这个关系式读一遍)

或这样解

50÷(40+60)

=50÷100

=0.5(小时)

40×0.5=20(千米)

5、刚才我们用方程解答了这道应用题,请同学们回忆一下步骤

①弄清题意,找等量关系;

②设未知数,列方程;

③解方程,并检验;

④写答案。

四、练习巩固,训练提升

1、巩固练习:志明和小花家相距530米,俩人约定见面后一起去书城(见面方式如图)。他俩几分钟后相遇?(两种方法)

解:设他俩χ分钟后相遇。

54x+52x=530

106x=530

x=5

或者530÷(54+52)

=530÷106

=5(分钟)

答:他俩5分钟后相遇。

2、训练提升1:挖一条长165米的隧道,由甲、乙两个工程队从两端同时施工。甲队每天向前挖6米,乙队每天向前挖5米,挖通这条隧道要用多少天?

用方程解:解:挖通这条隧道要用χ天。

6χ+5 χ=165

11 χ=165

χ=15

算术方法:165÷(6+5)

=165 ÷11

=15 (天)

答:挖通这条隧道要用15天。

3、训练提升2:在900米的环行跑道上,小丽和小刚同时从同一地点相背而行,小丽平均每分跑200米,小刚平均每分跑250米,经过几分他们会相遇?

解:设经过χ分他们会相遇。

(200+250)χ= 900

450χ= 900

χ= 2

答:经过2分他们会相遇。

4、拓展训练:两列汽车同时从同一地点向相反的方向开出,甲车平均每小时行44千米,乙车平均每小时行38千米,经过3小时两车相距多少千米?

五、课堂小结

这节课你学到了什么知识?

1、学习相遇知识

相遇四要素:两个运动物体、两地、同时、相向而行

2、关系式

速度和×相遇时间=路程

六、课后作业

作业:书上68页第2、3、4题

数学教学设计万能 数学教学设计意图万能篇三

北师大版义务教育课程标准实验教科书《数学》三年级下册第六单元《统计与可能性》第75页中的《体育中的数学》——《队列中的数学》。

结合实例,探索队列中蕴涵的数量关系,尝试数学与多学科的整合。

:培养学生的综合实践能力,发展数学思维。

:通过解决问题,让学生感受数学与现实生活的密切联系,培养学生的综合应用意识。

探索队列中蕴涵的数量关系。

培养学生的综合实践能力,发展数学思维

一、创设情境:

师:孩子们,王老师给你们带来了一段精彩的视频,咱们一起来看一看吧!(演示课件)

师:这段视频展示的是20xx年我国庆祝建国60周年时所举行的隆重的阅兵仪式。就在这些整齐的队列中蕴藏着许多的数学问题,今天这节课我们就一起来研究“队列中的数学”。——板书课题

二、探索发现:

1、动手设计

师:笑笑她们班正在准备参加学校举行的队列比赛,老师为了编排队形伤透了脑筋。她们班共有48名同学,聪明的孩子们,我们一起来做一回小小设计师,帮她们设计一个队形吧!

师:请听要求:1、用小圆代表同学;2、看谁画得又快又好。听清楚了吗?动手画一画吧。

师:孩子们,都画好了吗?我们邀请几位设计师来展示一下他的作品吧!(投影展示)

师:说说你设计的队形吧。

师:6×8和8×6排法相同吗?

(板书:每行人数行数)

2、完成表格

师:3(4)班的孩子可真踊跃,都想发表意见。这样吧,我们在四人小组内交流交流,看看你们这组能写出多少种不同的排列方法。课件出示活动要求:4人小组交流排法,组长记录完成表格。

3、汇报交流

师:王老师刚才收集了几个小组的表格,一起来看看吧!(投影展示)

师:能说说你更喜欢哪种?为什么?

师:是呀,我们在找寻排列方法时,要按照一定的顺序去找,这样就不会出现漏数了。

4、理解方队

师:刚才笑笑给我打电话了,说学校有一项加分要求,就是排成方队的话可以加2分。(课件出示)

师:你知道什么叫“方队”吗?(课件出示方队概念)

师:那48人能正好排成一个方队吗?笑笑她们也正发愁呢?那你有什么好办法呢?请先在4人小组内说一说吧!

(生分小组讨论)

师:谁想说一说自己的想法?

师:你们真棒!想出了这么多的方法,我们至少应该增加几人!或者至少减少几人呢!

(板书:至少增加1人至少减少12人)

师:那么,哪两个相同数相乘的积最接近48?对,那我们就排成7×7的方队。

三、课堂反馈:

1、师:孩子们,咱们班有多少人?那如果我们想要排成方队,你有什么好的建议吗?

师:增加的人从哪儿来?那我们就邀请听课的老师和我们一起组成方队吧!那减少的人呢?就去做小老师吧!

师:真是太感谢你们了!给我们班出了这么多的好主意,我代表我们班的同学谢谢你们!

2、(课件出示)师:笑笑在队列的变换时站在一个小方队的中间,她的前、后、左、右都各有2名同学,你知道这个方队一共有多少人吗?请你在本上画一画吧。(生动手)

师:谁来展示一下?能说说你是怎样想的吗?

四、课堂小结:

师:我们班上的孩子爱动脑,会思考,而且遵守上课纪律,为了奖励大家,老师还为大家准备了一段非常有趣的录像。(视频展示)

师:看了这个有创意的队列表演,大家感兴趣吗?如果你们对这回家们也试着设计一个有创意的队列吧。

板书:

队列中的数学

每行人数行数

68

86

……

至少增加1人至少减少12人

7×7=496×6=36

48+1=4948-12=36

数学教学设计万能 数学教学设计意图万能篇四

1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系。

2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。

3.感悟构建数学模型是解决实际问题的重要方法之一。

让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

教学准备:多媒体课件、答题卡。

首先让我们伴随着欢快的音乐来学做一节手操,好吗?

1.导入:刚才,在做手操的过程中,我发现同学们的小手特灵活,哎,你们知道吗?在咱们的小手中,还藏着数学知识呢?想了解一下吗?

请你们伸出右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?

2.其实,这样的数学问题,在我们的生活中,随处可见。你们看,这是同学们利用课余正在彩排节目呢?数一数,一共有几个小朋友,每2个小朋友之间牵着一根彩带,用了几根彩带,把一根彩带看成一个间隔,那6个小朋友之间是几个间隔?

过渡语:在画面上我们看到春天桃红柳绿,到处是一派生机勃勃的景象,你们知道吗?3月12日是什么日子,这一天全国上下到处都在植树,为保护环境献出自己的一份力量,瞧......

3.再次感知,找到规律。这里从头到尾栽了几棵树,数一数,它们之间又有几个间隔呢?你发现了什么?谁来说一说?同时板书。

那么8棵树、9棵树之间又有多少个间隔呢?

你能像这样用一个图表示出来吗?请你们选择一种动手画一画吧!

谁来汇报一下?

边板书边说:画了8棵树,他们之间有7个间隔数,9棵树之间有8个间隔。

(停顿)那你们想象一下,如果从头到尾有10棵树,他们之间又会有几个间隔呢?

那20棵树呢?

看来,告诉你们植树的棵数,让你们说出间隔数已经难不倒大家了,接下来,如果一排树之间有22个间隔,你知道有多少棵树吗?

那30棵呢?(2人说)

像这样的例子,还可以举出很多、很多......

仔细观察,你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的想法和伙伴们互相交流一下)。

反馈:谁来说说你的发现?评价:哦,这是你的发现......你还能用一个算式来概括。

边板书边说:同学们都发现了从头到尾栽一排树时,植树棵树比间隔数多1,(指表格),也可以写成两端要栽时,植树棵数-间隔数+1,间隔数=植树棵树-1。

小结:同学们不仅会观察,而且还能发现其中蕴含的规律,真不错,那就让我们一起进入今天的数学广角,运用这些规律来解决生活中的实际问题吧!

例1,同学们自由地小声地把题目读一读。

1.从题目你们知道了什么?(说一说)

2.题目中每隔5米栽一棵是什么意思?

3.题目中有什么地方要提醒大家的吗?(两端要栽)

4.一共需要多少棵树苗?你能自己想办法找到问题的答案吗?有困难的同学还可以借助线段图画一画。

5.交流。

6.反馈。

(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

(2)学生分别说想法。

(3)听了他们说的,你们想对他们说些什么?

刚才,这两位同学画线段图和找到了问题的答案,列算式的方法解决了这个问题。他们都是很善于动脑筋的。

1.基本练习:

师:近几年南昌市容有了巨大的变化,随着一个个休闲广场的建立,一条条街道的逐步亮化,南昌市已成为一座具有内涵与魅力的花园城市。最近,我了解到有关胜利路步行街有这样一些信息。

那同学们能根据题中信息解决这个问题吗?第二步为什么要加1?

师:刚才这道题同学们解答得很顺利。

师:现在把这道题做了一些改变,看看你们是不是还能很顺利的解答?

师问:第一步求到的是什么?

师:虽然邓老师对这道题做了一些改变,但是还是没有难倒同学们,那刚才在做这两题的时候,同学们有没有发现,这两题解题思路有什么不同呢?(同学们可以先思考再讨论)。

咱们班的同学们不仅会解答,而且还能比较它们的不同,的确这两道题都运用了今天我们发现的这些规律,第一题是根据总长找到间隔数,再利用间隔数求出路灯的盏数,而第二题是根据路灯的盏数找到间隔数,再利用间隔数求出总长,它们的关键都是要先找到间隔数,正因为它们问题不同,所以解题思路也不同,以后大家在解决这类问题时可要注意审题哟!

2.变式练习:

师:20xx年最受关注的两个人物,你们知道是谁?他们就是航天英雄聂海胜和费俊龙,神六号的成功发射,让人们欢心鼓舞,作为一名中国人也为之自豪。你们知道吗,宇航员叔叔他们是每2小时(师读题)。

听了这3位同学的想法,你们会支持谁?说说理由!

3.综合练习。

师:中国的体育界也有一位英雄,猜猜他是谁?此时此刻让我们一起重温一下那精彩的瞬间,再一次为他助威、呐喊!根据信息,学生讨论,借助计算器算出刘翔一共跑了多少米?

今天我们学习的是与间隔有关的数学问题,在数学上我们统称为植树问题,(板书)那植树问题只在植树当中才有吗?学生说一说,植树只是其中的一个典型,像......等现象中都含有植树问题。

今天我们学习的植树问题仅仅是两端都栽时的情况。在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形的植树问题。

围棋中的数学问题

教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。

教学目标:

1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

3.让学生感受数学在日常生活中的广泛应用。

教学重点:从封闭曲线(方阵)中探讨植树问题。

教学难点:用数学的方法解决实际生活中的简单问题。

情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。

教具准备:3×3格、4×4格、5×5格方格纸、围棋子若干粒、4×4格条形吹塑纸贴在地下。

课前准备:课桌围成“回”字形。

教学过程:

一、情境导入(课件出示)

猜谜:十九乘十九,黑白两对手,有眼看不见,无眼难活久。(打一棋类名称)

[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]

二、探索新知

1.教学每边摆放3粒棋子的方法。

(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?

(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)

(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。

(4)汇报交流(着重请学生说出方法。)

可能会出现以下方法:

3×2+2=82×4=8

3×3-1=83×4-4=8直接点数。

教师表扬学生的创新摆法,并奖励“智慧星”。(教师随学生回答,用课件出示摆放方法。)

2.教学每边摆放4粒棋子的方法。

(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?

(2)动手操作:请学生分小组按要求摆放棋子,写出算式。

(3)游戏:让一学生当“小老师”,其余学生当“围棋子”,请小老师邀请“围棋子”按上题要求站在老师设计的大棋盘上。

[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]

(4)汇报交流(着重请学生说出方法)

教师随学生回答,用课件出示摆放方法。

(5)你们最喜欢哪种方法?为什么?

3.教学每边摆放5粒棋子的方法。

(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?

(2)动手操作:请学生分小组按要求摆放棋子,写出算式。

(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)

(4)你们最喜欢哪种方法?和同桌说一说。

[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身“经历”的过程中实现知识能力乃至生命的同步发展。]

三、总结规律

(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)

每边放的个数

最外层总数

3

4

5

6

...

18

你发现了什么规律:_____________________________________

(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?

(2)总结规律::教师随着学生的回答板书:

间隔数×边数=最外层的总数

(3)学生根据规律,独立完成例3。

四、运用规律

1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

如果最外层每边能放300个,最外层一共可以摆放多少个棋子?

拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)

2.做第121页第三题。

[设计意图:充分相信学生,放手让学生分析问题、解决问题,以学生为主归纳问题;教师在关键之处疏通点拨,引导学生加深理解,做到以学生为主体。]

3.请你参加:

12名学生在操场上做游戏,大家围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?(在教室内围一围。)

4.请你思考:(课件出示同学开联欢会时的欢乐情景。)

“六一”儿童节即将来临,四<1>班同学准备开联欢会。大家围坐在一起,如果每边做14人,(如下图),这个班一共有多少个同学?每边都有8张课桌,一共要多少张课桌?

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
数学教学设计万能 数学教学设计意图万能(十三篇) 文件夹
复制