最新数学有理数乘法教案
文件夹
教案的编写应该注重教学活动的设计和组织,提供具体的教学步骤和指导,使学生能够有针对性地进行学习。教案的步骤要清晰明确,内容要全面详细,确保教学过程的顺利进行。以下是一些获奖教师自带的教案,经过实践检验,具有很高的实用性。
(二)能力训练目标:
1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。
2、能运用乘法运算律简化计算。
(三)情感与价值观要求:
1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。
2、在讨论的过程中,使学生感受集体的力量,培养团队意识。
乘法运算律的运用。
乘法运算律的运用。
探究交流相结合。
创设问题情境,引入新课。
问题2:计算下列各题:
(1)(一7)×8;。
(2)8×(一7);
(5)[3×(一4)]×(一5);
(6)3×[(一4)×(一5)];
[师生]由学生自主探索,教师可参与到学生的讨论中。
像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)。
[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?
[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)。
[师](一5)×(3一7)和(一5)×3一5×7的结果相等吗?
(注意:(一5)×(3一7)中的3一7应看作3与(一7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)。
讲授新课:
用文字语言和字母把乘法交换律、结合律、分配律表达出来。
应得出:
1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3、一般地,一个数同两个数的'和相乘,等于这个数分别同这两个数相乘,再把积相加。
[师生]教师引导学生讨论、交流,从中体会学习的快乐。
3、用简便方法计算:
练习(教科书第42页)。
这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。
课后作业:课本习题1.4的第7题(3)、(6)。
用简便方法计算:
(1)6.868×(一5)十6.868×(一12)十6.868×(十17)。
(2)[(4×8)×25一8]×125。
3、经历利用已有知识解决新问题的探索过程。
教学难点:理解商的符号及其绝对值与被除数和除数的关系。
(一)、学前准备。
1、师生活动。
1)、小明从家里到学校,每分钟走50米,共走了20分钟。
问小明家离学校有1000米,列出的算式为50×20=1000.
2)放学时,小明仍然以每分钟50米的速度回家,应该走20分钟。
列出的算式为1000=20。
从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算。
(二)、合作交流、探究新知。
1、小组合作完成。
再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:
1)、除以一个不等于0的数,等于乘这个数的倒数。
2)、两数相除,同号得正,异号得负,并把绝对值相加减,0除以任何一个不等于0的数,都得0.
2、运用法则计算:
(1)(-15)(-3);(2)(-12)(一);(3)(-8)(一)。
3、师生共同完成p34例5.
(三)练习:p35。
通过这节课的学习,你的收获是:
1)、除以一个不等于0的数,等于乘这个数的倒数。
2)、两数相除,同号得正,异号得负,并把绝对值相加减,0除以任何一个不等于0的数,都得0.
五。作业布置。
1、计算。
(1)(+48)(+6);(2);
(3)4(-2);(4)0(-1000)。
2、计算。
(1)(-1155)[(-11)(+3)(-5)];(2)375。
1、p39第1、2、3、4题。
能运用有理数加法法则,正确进行有理数加法运算。
经历探索有理数加法法则的过程,感受数学学习的方法。
一、创设情境。
小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?
1、试一试。
你能把上面比赛的过程及结果用有理数的算式表示出来吗?
做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表。
你还能举出一些应用有理数加法的实际例子吗?
二、探究归纳。
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________。
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________。
请用数轴和算式分别表示以上过程及结果:
算式:________________________。
仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果。
4、观察、思考、讨论、交流并得出有理数加法法则。
(1)通过计算说明小虫是否回到起点p。
(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间。
1、高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km)。
+17,-9,+7,-15,-3,+11,-6,-8,+5,+16。
(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?
(2)养护过程中,最远外离出发点有多远?
(3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升?
5、本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
a·b=b·a;
(a·b)·c=a·(b·c);
(a+b)·c=a·c+b·c。
1、有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2、两数相乘时,确定符号的依据是“同号得正,异号得负”,绝对值相乘也就是小学学过的算术乘法。
3、基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4、几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。
5、小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6、如果因数是带分数,一般要将它化为假分数,以便于约分。
3、通过探究、练习,养成良好的学习习惯。
2、学习难点:运算顺序的确定与性质符号的处理。
(一)、学前准备。
1、计算。
1)(0.0318)(1.4)。
2)2+(8)×2。
(二)、探究新知。
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算乘除法,再算加减法。
3、结合问题1,阅读课本p36p37页内容(带计算器的同学跟着操作、练习)。
4、结合问题2,你先猜想,有理数的混合运算顺序应该是先算乘除法,再算加减法。
5、阅读p36,并动手做做。
1、计算。
1)、186(2)。
2)11+(22)3(11)。
3)(0.1)(100)。
1、有理数的混合运算顺序应该是先算乘除法,再算加减法。
2、计算器的使用。
p39第7题(4、5、7、8)、第8题。
3、通过对问题的探索,培养观察、分析和概括的能力。
(一)、学前准备。
结果怎么样,你能明白其中的数学道理吗?
(二)、探究新知。
1、观察:下列各式的积是正的还是负的?
234(-5),
23(-4)(-5),
2(3)(4)(-5),
(-2)(-3)(-4)(-5)。
思考:几个不是0的数相乘,积的'符号与负因数的个数之间有什么关系?
分组讨论交流,再用自己的语言表达所发现的规律:
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
2、利用所得到的规律,看看翻牌游戏中的数学道理。
(三)、新知应用。
1、例题3,(30页)例3,
例:7.8(-8.1)o(-19.6)。
师生小结:几个数相乘,如果其中又因数为0,积等于0。
2、练习。
通过这节课的学习,我的感受是:几个数相乘,如果其中又因数为0,积等于0。
1、如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积(___)。
a.一定为正b.一定为负c.为零d.可能为正,也可能为负。
2、若干个不等于0的有理数相乘,积的符号(____)。
a.由因数的个数决定b.由正因数的个数决定。
c.由负因数的个数决定d.由负因数和正因数个数的差为决定。
3、下列运算结果为负值的是(____)。
a.(-7)(-6)b.(-6)+(-4);c.0(-2)(-3)d.(-7)-(-15)。
4、下列运算错误的是()。
a.(-2)(-3)=6b.
c.(-5)(-2)(-4)=-40d.(-3)(-2)(-4)=-24。
1、知识与技能目标:经历有理数乘法法则探究的过程,学习两个有理数相乘的法则。
3、情感目标:通过小组合作,培养与他人合作的精神。
教学难点:如何观察给定的乘法算式,从哪几个角度概况算式的规律。
2、出几道小学里已经做过的两数相乘的题目,并计算。
(一)创设情境,引入新知。
问题:根据课前准备,小学我们计算的两个数相乘都是正数乘正数或者正数乘零,现在我们知道有理数包括正数、负数和零三类,根据这种分类,你能说出两个有理数相乘会出现哪几种情况?(根据学生回答板书各种类型)。
预设:学生可能会把正数乘负数、负数乘正数当作一种情况,教师可引导为两种。
(二)观察归纳,学习法则(设计说明:法则的得出分两部分)。
第一部分分类探究(说明:3组探究重点是探究1)。
探究1(师生共同活动)。
问题1、观察下面熟识的算式,你能发现什么规律?
3×3=9。
3×2=6。
3×1=3。
3×0=0。
预设:如果学生有困难,可以提示学生观察两个因数有什么变化规律,积有什么变化规律。
这样会得到规律:左边因数都是3,右边因数依次减1,而积依次减3。
问题2、根据这个规律,你能填写下面的结论吗?
3×(-1)=。
3×(-2)=。
3×(-3)=。
问题3这组数据的规律,对其他组类似规律的数据也成立吗?自己根据这个规律构造一组数试一试。
归纳可得:(板书)正数乘正数,结果为正,绝对值相乘;正数乘负数,结果为负,绝对值相乘。
阶段性学习方法小结:回想探究1的结论,我们是怎样一步步得到的?
(让学生充分发表见解,教师适当引导,得出主要环节:观察-猜想-归纳)。
(说明:设计意图有两个,一是初一学生学法意识的形成,二是为探究2,3的学习做好引导)。
探究2(小组讨论)。
根据刚才得到的规律,你能得出下面的结果吗?能据此总结出规律吗?
3×3=9。
2×3=6。
1×3=3。
0×3=0。
(-1)×3=。
(-2)×3=。
(-3)×3=。
(选一组代表上讲台分析,得出结论)。
归纳小结:(负数乘正数,结果为负,绝对值相乘)。
探究3(同桌交流)、
利用上面的规律填空,并说出其中的规律。
(-3)×3=。
(-3)×2=。
(-3)×1=。
(-3)×0=。
(-3)×(-1)=。
(-3)×(-2)=。
(-3)×(-3)=。
由学生总结得出:负数乘负数,结果为正,绝对值相乘。
第二部分归纳总结。
问题1:总结上面所有的情况,你能试着说出有理数乘法的法则吗?
两数相乘,同号得正,异号得负,再把绝对值相乘。任何数与0相乘,都得0。
问题2:你认为根据有理数乘法法则进行有理数乘法运算时,应按照怎样的步骤进行运算?可类比加法的运算方法。
(说明:向学生渗透分类讨论及类比思想,再次形成学法体系)。
(三)例题示范,学会应用。
说说这节课你有什么收获?你还有什么问题存在?
1、熟练有理数的乘法运算并能用乘法运算律简化运算。
2、让学生通过观察、思考、探究、讨论,主动地进行学习。
3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
教学重点:正确运用运算律,使运算简化。
教学难点:运用运算律,使运算简化。
一、学前准备。
1、下面两组练习,请同学们选择一组计算。并比较它们的结果:
请以小组为单位,相互检查,看计算对了吗?
二、探究新知。
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结。
乘法交换律:两个数相乘,交换因数的位置,积相等。
即:ab=ba。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即:(ab)c=a(bc)。
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
即:a(b+c)=ab+bc。
三、新知应用。
1、例题。
用两种方法计算(+-)12。
2、看谁算得快,算得准。
1)(-7)(-)2)915.
四、课堂小结。
怎么样,这节课有什么收获,还有那些问题没有解决?
乘法交换律:两个数相乘,交换因数的位置,积相等。
即:ab=ba。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即:(ab)c=a(bc)。
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
即:a(b+c)=ab+bc。
五、作业布置。
最新初一数学有理数的乘法教案范文(优质8篇)
文件夹