最新统计与概率教案
文件夹
教案要注重培养学生的综合能力,提高他们的学习兴趣和学习动力。编写一个完整的教案需要考虑许多因素,例如教学目标的明确性、教学内容的科学性和合理性、教学方法的多样性和活泼性等。在写教案时,教师还应该注重教学过程的设计和组织,以及教学资源的合理运用。只有这样,才能让教学更加有针对性和有效性。因此,了解教案编写的基本原则和方法是非常重要的。如果你需要一些教案的灵感,不妨看看下面的范文,或许能够帮到你。
统计表。
使学生进一步认识统计的意义,进一步认识统计表,掌握整理数据、编制统计表的方法,学会进行简单统计。
让学生系统掌握统计的基础知识和基本技能。
多媒体课件。
1.揭示课题。
提问:在小学阶段,我们学过哪些统计知识?为什么要做统计工作?
2.引入课题。
在日常生活和生产实践中,经常需要对一些数据进行分析、比较,这样就需要进行统计。在进行统计时,又经常要用统计表、统计图,并且常常进行平均数的.计算。今天我们开始复习简单的统计,这节课先复习如何设计调查表,并进行调查统计。
收集数据,制作统计表。
学生可能回答:
(1)身高、体重。
(2)姓名、性别。
(3)兴趣爱好。
为了清楚记录你的情况,同学们设计了一个个人情况调查表。
课件展示:
为了帮助和分析全班的数据,同学们又设计了一种统计表。
六(2)班学生最喜欢的学科统计表。
组织学生完善调查表,怎样调查?怎样记录数据?调查中要注意什么问题?
组织学生议一议,相互交流。
指名学生汇报,再集体评议。
组织学生在全班范围内以小组形式展开调查,先由每个小组整理数据,再由每个小组向全班汇报。
填好统计表。
教材第96页例3。
通过本节课的学习,你有什么收获?
完成练习册中本课时的练习。
教科书第119~120页例2和第121页课堂活动,练习二十三的第5~7题。
教学目标。
1.通过复习使学生能进一步熟练地判断简单事件发生的可能性。
2.通过复习使学生能熟练地用分数表示事件发生的概率,并且会用概率的思维去观察、分析和解释生活中的现象。
3.通过复习使学生进一步感受、了解数学在生活中的实际应用,以提高学生学数学、用数学的意识。
教学过程。
一、导入。
教师:在老师的盒子里有5个球,从中摸出1个球,如果摸到的球是红色就可获得奖品。你希望里面的球是些什么颜色,为什么?如果你是老师你会装些什么颜色的球?为什么?刚才的活动涉及我们学过的什么知识?这节课我们一起来复习可能性。
板书课题:概率复习。
二、回顾整理有关可能性的知识。
(1)教师:有关可能性的知识你还记得哪些?请在小组内交流。
(2)请学生汇报,并请其他同学补充。
学生:事件发生的可能性是有大小的。
学生:有些事件的发生是确定的,有些则是不确定的。
学生:有些事件的发生是一定的,有些事件的发生是有可能的,还有些事件的发生是不可能的。
三、教学例2。
1.复习体会简单事件发生的三种可能性。
教师出示一副扑克,当众从中取走j,q,k和大小王。
教师:现在从中任抽一张,请你判断下面事件发生的可能性。
(1)抽到的牌上的数比11小。
学生:一定发生,因为剩下的所有扑克点数都比11小。
(2)抽到的牌是黑桃q。
学生:不可能发生,因为所有的q都被拿走了。
(3)抽到的牌是方块2。
学生:有可能发生,因为方块2还在老师手中。
2.复习体会事件发生的可能性有多少种。
教师:从老师手中的扑克中任意抽取一张,会有哪些可能的结果呢?
教师:按照花色分有黑桃、红桃、方块和梅花四种可能性。
教师:按照数字分有1到10共十种可能性。
3.用分数表示事件发生的概率。
教师:抽到各种牌的可能性究竟是多少呢?请大家独立完成第120页算一算的.5道题。
学生独立完成之后全班交流。
学生:抽到黑桃的可能性是14,因为一共只有四种花色的扑克;还可以这样理解,一共有40张扑克,其中有10张黑桃,所有抽到黑桃的可能性是14。
学生:抽到5的可能性是110,因为按照数字分只有1到10这10种可能,5占其中的一种,所以抽到5的可能性是110;也可以这样理解,40张扑克中有4张5,抽到5的可能性是110。
学生:抽到梅花a的可能性是140,因为在40张扑克中只有1张梅花a。
学生:抽到a和抽到梅花a的可能性不一样大,因为抽到a的可能性是110,抽到梅花a的可能性是140。
学生:在40张牌中任意抽1张抽到5的可能性是110,在10张黑桃中任意抽1张抽到5的可能性也是110。
四、完成课堂活动。
(2)集体交流。
学生:摸到奇数的可能性是12,摸到偶数的可能性是12,摸到质数的可能性是25,摸到合数的可能性是1120。
五、全课小结。
教师:通过这节课的复习有什么收获?有什么疑问?有什么要提醒大家需注意的地方?
六、课堂练习。
学生独立完成练习二十三的第5,6,7题。
(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
1、情感态度与价值观。
(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;。
(2)培养学生的辩证唯物主义观点,增强学生的科学意识.
2学情分析。
学生在初中已经接触到简单的概率问题,所以在教学中学生并不感到陌生,关键是引导学生对概率的定义、以及与频率的区别与联系这个重点,用概率知识解释现实生活中的问题这个难点的掌握和突破,以及如何有具体问题转化为抽象的概念。
可能性是学习数学四个领域中“统计与概率”中的一部分,“统计与概率”中的统计初步知识学生在之前的学习已经涉及,但概率知识对于学生而言还是一个全新的概念,它是学生以后学习有关知识的基础。本单元主要教学内容是事件发生的不确定性和可能性,并能知道事件发生的可能性是有大小的。教学关键是如何让学生把对“随机现象”的丰富的感性认识升华到理性认识。
五年级学生已经具备了一定的生活经验和统计知识,对现实生活中的确定现象和不确定现象已经有了初步的了解,并有一定的简单分析和判断能力,但学生只是初步的感知这种不确定事件,对具体的概念还没有深入地理解和运用。根据学生的年龄特点和生活经验,教师做出适当引导,学生就会进行正确的分析和判断的。所以教材选用学生熟悉的现实情境引入学习内容,设计了多种不同层次的、有趣的活动和游戏,激发了学生的学习兴趣,使其感受到数学就在自己的身边,体会数学学习与现实的联系,为学生自主探索、合作学习创造机会。
教学中,教师要利用这些情境让学生积极地参与到学习活动中,让学生在具体的操作活动中进行独立思考,使学生在大量观察、猜测、试验与交流的过程中,经历知识的形成过程,逐步丰富对不确定现象及可能性大小的体验。
知识技能:
使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的。能列出简单试验所有可能发生的结果,知道事件发生的可能性的大小。
数学思考:
培养学生简单的逻辑推理、逆向思维和与人交流思考过程的能力。
问题解决:
能由一些简单事件发生的可能性大小逆推比较事件多少。
情感态度:
通过本单元的学习使学生感受到生活中处处有数学,并能够运用可能性的知识解决生活中的问题,逐渐对统计与可能性知识产生兴趣,培养学生学习数学的兴趣。
教学重点:
会用“可能”“不可能”“一定”描述事件发生的可能性。能够列出简单试验中所有可能发生的结果,知道可能性是有大小的。
教学难点:
能根据可能性的大小判断物体数量的多少。
课时安排:3课时。
1.可能性………………………………2课时。
2.掷一掷………………………………1课时。
课时教案。
课题:第四单元:可能性(1)第课时总序第个教案。
课型:新授编写时间:年月日执行时间:年月日。
教学内容:
教材p44例1及教材练习十一第1、2、3、4题。
教学目标:
知识与技能:学生初步体验有些事件发生是确定的,有些则是不确定的。
过程与方法:学生通过亲身体验,在观察、交流、动手、思考、验证的过程中探索新知。
情感、态度与价值观:培养学生的表达能力和逻辑推理能力。
教学重点:
体验事件发生的等可能性。
教学难点:
会用“可能”、“不可能”正确地描述事件发生的可能性。
教学方法:
采用游戏教学法,将教学情境真实地搬到现实生活当中,让学生在游戏中,真实地参与中积累与学习知识。
教学准备:
师:多媒体、抽签卡纸、盒子、彩色球、铅笔。生:棋子。
一、情境引入。
1.导入:今天老师给大家带来一个小小的礼物,猜一猜是什么?
让学生猜一猜,学生猜可能是文具,可能是玩具,可能是书….。
2.师揭题:学生说的这些都是有可能发生的事情,在数学上都是些不确定性事件。这节课我们就来研究事件发生的可能性。(板书课题:可能性)。
3.出示谜语:小黑人儿细又长,穿着木头花衣裳。画画写字它,就是不会把歌唱。学生可能会说:铅笔。
师追问:确定吗?让学生肯定回答一定是铅笔或确定是铅笔。
4.出示奖品铅笔,并说明这是奖励表现秀的学生的,希望大家都能努力。
二、互动新授。
组织小组讨论,大部分同学会想到用抽签的方法来决定。
学生会想到:可能是唱歌,可能是跳舞,也可能是朗诵。这三种情况都有可能。
师小结:每位同学表演节目类型是一件不确定的事件,有三种可能的结果。
3.抽签指生抽一张。(以抽到跳舞为例)。
师引导:如果再找一名同学来抽签,可能会抽到什么?
生可能回答:可能是唱歌,也可能是朗诵。
引导学生质疑:有没有可能会抽到跳舞?
指生回答:不可能,因为剩的两张签里没有跳舞。
找生抽一张,验证学生的猜测是否正确。
(以学生抽到的是朗诵为例)。
4.引导:最后只剩一张了,你们能猜一猜这一张可能是什么吗?
生可能会回答:一定是朗诵,因为只剩下朗诵这张卡片了。
5.师小结:刚才在猜测会抽到什么节目时,第一次同学们用的词是“可能”,第二次同学们用的词是“不可能”,第三次用的是“一定”。一般事情的发生都有“可能”“不可能”“一定”三种情况,当然,不同情况下,它们有时也会发生变化。(板书:可能不可能一定)。
三、巩固拓展。
1.完成教材第45页“做一做”。
出示:两个盒子,一号盒子放的全部是红棋子,二号盒子放的有红棋子和绿棋子。
引导学生先说一说,哪个盒子里一定能摸出红棋子?哪个盒子里可能会摸出绿棋子?哪个盒子里不可能摸出绿棋子?等问题。
让学生在小组内组织摸一摸活动,并验证,再集体汇报。
2.完成教材第47页“练习十一”第1题。
让学生说一说,并说明理由。
3.完成教材第47页“练习十一”第2题。
先让学生自主连一连,教师发彩色球让学生验证摸一摸,再说一说为什么这么连。
4.说一说:教师引导学生用“一定”“可能”“不可能”等词语说说自己生活中一些事件发生的可能性。
四、课堂小结。
师:这节课你们学了什么知识?有什么收获?
引导归纳:
1.判断事件发生的可能性的几种情况:可能、不可能、一定。
2.能结合实际情况对一些事件进行判断。其中“不可能”和“一定”是能够在完全确定的情况下做出的判断,而“可能”是在不能确定的情况下做出的判断,它通常包含经常、偶尔两种情况。
作业:教材练习第47页第3、4题。
板书设计:
教科书第119~120页例2和第121页课堂活动,练习二十三的第5~7题。
1、通过复习使学生能进一步熟练地判断简单事件发生的可能性。
2、通过复习使学生能熟练地用分数表示事件发生的概率,并且会用概率的思维去观察、分析和解释生活中的现象。
3、通过复习使学生进一步感受、了解数学在生活中的实际应用,以提高学生学数学、用数学的意识。
教师:在老师的盒子里有5个球,从中摸出1个球,如果摸到的球是红色就可获得奖品。你希望里面的球是些什么颜色,为什么?如果你是老师你会装些什么颜色的球?为什么?刚才的活动涉及我们学过的什么知识?这节课我们一起来复习可能性。
板书课题:概率复习。
(1)教师:有关可能性的知识你还记得哪些?请在小组内交流。
(2)请学生汇报,并请其他同学补充。
学生:事件发生的可能性是有大小的。
学生:有些事件的发生是确定的,有些则是不确定的。
学生:有些事件的发生是一定的,有些事件的发生是有可能的,还有些事件的发生是不可能的。
1、复习体会简单事件发生的三种可能性。
教师出示一副扑克,当众从中取走j,q,k和大小王。
教师:现在从中任抽一张,请你判断下面事件发生的可能性。
(1)抽到的牌上的'数比11小。
学生:一定发生,因为剩下的所有扑克点数都比11小。
(2)抽到的牌是黑桃q。
学生:不可能发生,因为所有的q都被拿走了。
(3)抽到的牌是方块2。
学生:有可能发生,因为方块2还在老师手中。
2、复习体会事件发生的可能性有多少种。
教师:从老师手中的扑克中任意抽取一张,会有哪些可能的结果呢?
教师:按照花色分有黑桃、红桃、方块和梅花四种可能性。
教师:按照数字分有1到10共十种可能性。
3、用分数表示事件发生的概率。
教师:抽到各种牌的可能性究竟是多少呢?请大家独立完成第120页算一算的5道题。
学生独立完成之后全班交流。
学生:抽到黑桃的可能性是14,因为一共只有四种花色的扑克;还可以这样理解,一共有40张扑克,其中有10张黑桃,所有抽到黑桃的可能性是14。
学生:抽到5的可能性是110,因为按照数字分只有1到10这10种可能,5占其中的一种,所以抽到5的可能性是110;也可以这样理解,40张扑克中有4张5,抽到5的可能性是110。
学生:抽到梅花a的可能性是140,因为在40张扑克中只有1张梅花a。
学生:抽到a和抽到梅花a的可能性不一样大,因为抽到a的可能性是110,抽到梅花a的可能性是140。
学生:在40张牌中任意抽1张抽到5的可能性是110,在10张黑桃中任意抽1张抽到5的可能性也是110。
(2)集体交流。
学生:摸到奇数的可能性是12,摸到偶数的可能性是12,摸到质数的可能性是25,摸到合数的可能性是1120。
教师:通过这节课的复习有什么收获?有什么疑问?有什么要提醒大家需注意的地方?
学生独立完成练习二十三的第5,6,7题。
1.知识与技能目标:从具体的实例中知道扇形统计图的特点和作用,可以在生活中运用扇形统计图。
2.过程与方法目标:通过体验探索扇形统计图的特点和应用,发展学生推理能力,提升学生的抽象思维能力。
3.情感态度与价值观目标:在活动中体会数学的特点,了解数学的价值。
重点:从具体的实例中知道扇形统计图的特点和作用,可以在生活中运用扇形统计图。
难点:在活动中体会数学的特点,了解数学的价值。
(一)创设情境,激趣导入
通过案例呈现扇形统计图运用的情境,导入课题。
(二)探究体验,构建新知
1.学生动手实践:分析一个扇形统计图,说明从中可以获取什么信息。
2.引导抽象概括:设置小组讨论,探讨扇形统计图的特点和应用。
3.知识拓展延伸:通过进一步讨论不同扇形统计图的信息表现方式
(三)课末总结,梳理提升
1.学生自主总结,教师启发点拨重难点。
2.同学们今天有什么收获呢?
3.扇形统计图的特点是什么呢?
运用扇形统计图分析生活中的事件。
1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
重点:让学生系统掌握统计的基础知识和基本技能。
难点:能根据统计图提供的信息,做出正确的判断或简单预测。
一、创设情景,生成问题。
1、收集数据,制作统计表。
师:我们班要和希望小学六(2)班建立手拉手班级,你想向手拉手的同学介绍哪些情况?
学生可能回答:
(1)身高、体重。
(2)姓名、性别。
(3)兴趣爱好。
a调查表。
为了清楚记录你的情况,同学们设计了一个个人情况调查表。
(设计意图:通过上面的的'调查表,调动学生的好奇心和积极性,让学生感悟到数学源于生活用于生活,体现了数学的应用价值,从而激发了学生的探究欲望。)。
为了帮助和分析全班的数据,同学们又设计了一种统计表。
六(2)学生最喜欢的学科统计表。
学科语文数学语文音乐美术体育科学。
将数据填在统计表中,你认为用统计表记录数据有什么好处?你对统计表还知道哪些知识?与同学交流一下。
(1)你学过几种统计图?分别叫什么统计图?各有什么特征?
a、条形统计图(清楚表示各种数量多少)。
b、折线统计图(清楚表示数量的变化情况)。
c、扇形统计图(清楚表示各种数量的占有率)。
(设计意图:统计图在表述统计结果时具有直观、形象的特点,故统计活动中常用统计图来描述统计信息,展示统计结果。)。
二、探索交流,解决问题。
教材选择了两个事例,一是某旅游景点2008年“十一”长假期间的游客情况,用条形统计图和折线统计图表示出同一组数据的不同特征;二是某城市1999年——2007年的人口数量统计结果,要求用折线统计图表示出数据的基础上,对该城市的人口变化情况进行分析,并预测5年后该城市的人口数量。
本节课,在整个的教学过程中没有出现什么困难,学生的学习状态不错,教学效果也不错。在完成书上教学内容的基础上,我又增加了扇形统计图的教学,把三种统计图放在一起进行了比较,使学生能够更清楚地了解到三种统计图的特征,从而会有选择地应用。
1、积累收集,整理数据的活动经验。
2、了解收集数据的简单方法。
3、会进行简单的数据整理。
4、在调查活动中,增强自信心和创造力以及对数据调查活动的兴趣。
根据实例,读懂统计表和条形统计图,从统计图表中获取信息。
根据统计图表中的数据,作出简单的预测。
一、谈话引入。
学生围绕合理的饮食、适当的运动、充足的睡眠、讲究卫生与预防疾病等多方面展开交流、讨论。
二、正确计算睡眠时间。
1、讨论:你每天睡眠几小时?是怎样算出来的?
2、交流:
(1)以某某同学晚上9时睡觉,早上6时起床,午休1小时为例。
从晚上9时到12时是3时,从晚上12时到早上6时是6时。3+6+1=10(时)。
(2)以某某同学晚上8:30开始睡觉,
早上5:30起床,午休30分为例。
从晚上8:30到12:00是3十30分,从晚上12:00到早上5:30分是5时30分。3时30分+5时30分+30分=9时30分。
3、计算。
请学生按正确的`方法重新计算自己每天的睡眠时间,并写下来。
三、收集数据,整理数据。
1、数学“分段时间记录法”。
时间段的规定可以是这样的:11时以上,含11时;10。
1、积累收集,整理数据的活动经验。
2、了解收集数据的简单方法。
3、会进行简单的数据整理。
4、在调查活动中,增强自信心和创造力以及对数据调查活动的兴趣。
根据实例,读懂统计表和条形统计图,从统计图表中获取信息。
根据统计图表中的`数据,作出简单的预测。
一、谈话引入。
学生围绕合理的饮食、适当的运动、充足的睡眠、讲究卫生与预防疾病等多方面展开交流、讨论。
二、正确计算睡眠时间。
1、讨论:你每天睡眠几小时?是怎样算出来的?
2、交流:
(1)以某某同学晚上9时睡觉,早上6时起床,午休1小时为例。
从晚上9时到12时是3时,从晚上12时到早上6时是6时。3+6+1=10(时)。
(2)以某某同学晚上8:30开始睡觉,
早上5:30起床,午休30分为例。
从晚上8:30到12:00是3十30分,从晚上12:00到早上5:30分是5时30分。3时30分+5时30分+30分=9时30分。
3、计算。
请学生按正确的方法重新计算自己每天的睡眠时间,并写下来。
三、收集数据,整理数据。
数学“分段时间记录法”。
时间段的规定可以是这样的:11时以上,含11时;10。
基础:
(1)六位同学进行投篮比赛,投进球的个数分别为2,13,3,5,10,3.则这组数据的平均数是(),中位数是(),众数是()。
(2)路旁一池塘,平均水深1.50米.小明的身高是1.70米,不会游泳,他跳入池塘的结果是()。
a.一定有危险b.一定无危险c.可能有可能无d.以上答案都不对。
2.综合:
1.若一组数据91,96,98,99,x.的众数是96,则平均数是______中位数是_______.
2.数据3,4,5,5,6,7的众数、中位数、平均数分别是_____、_____、_____.
拓展提升:
个体户张某经营一家餐馆,餐馆所有工作人员某个月的工资如下:张某6000元,厨师甲900元,厨师乙800元,杂工640元,服务员甲700元,服务员乙640元,会计820元。
(1)计算工作人员的平均工资。
(2)计算出的的平均工资能否反映一般工作人员这个月收入的一般水平?
3.情感、态度、价值观:通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性和必然性的对立统一.
【教学重点】概率的意义.
【教学难点】通过观察数据图表,总结出在大量重复试验的情况下,随机事件的。
发生所呈现出的规律性.
【教学方法】教师启发引导与学生自主探索相结合.
【教学手段】投影和计算机辅助教学.
【教学流程】。
考察。
概括。
【教学过程】。
一、创设情境,体会随机事件发生的不确定性。
1.展示生活实例1:“麦蒂的35秒奇迹”
从同学们都很感兴趣的篮球比赛说起,介绍比赛最后。
时刻的情形.为什么在那个时刻,所有人都紧张的注视着麦。
蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的。
nba比赛中的下一个三分球投进了吗?
设计意图从学生感兴趣的生活实例引入,一方面是为了激发。
学生的听课热情,另一方面也是让学生体会学习随机事件及。
概率的原因和必要性.抓住生活实例中包含数学思维的部分进行提问,引导学生用数学的眼光观察、认识我们生活的世界,对生活中的现象和感性认识进行理性思考.
2.展示生活实例2:杜丽北京奥运夺金。
我们都曾非常关注北京奥运会,大家知道这名。
中国射击运动员的名字吗?为什么射击比赛中每一枪都。
如此扣人心弦呢?
设计意图奥运会是社会热点话题,可以增强学生的国家自豪感.
3.展示生活实例3:“石头、剪刀、布”
再看发生在我们身边的实例,甲、乙两个同学想看同一。
本好书,于是采用“石头、剪刀、布”的方式决定谁先看.那。
么能够预先确定甲和乙谁获胜吗?
设计意图回到学生身边.从生活体验中归纳共性,包含了综合、概括、比较等分析过程,是形成概念的有效途径.因此在这一阶段通过创设情境唤起学生的兴趣,使他们身处现实情境中,为后续的思维活动建立起感性认识基础.
二、归纳共性,形成随机事件的概念。
还能。
找到此类的事件吗?有没有不属于此类的事件呢?
通过以上思考,发现事件可以分为以下三类:
必然事件:在一定的条件下必然要发生的事件;。
不可能事件:在一定的条件下不可能发生的事件;。
随机事件:在一定的条件下可能发生也可能不发生的事件.
事件的表示:用大写字母a、b、c??表示。
三、深入情境,体会随机事件的规律性。
我们看到,随机事件在生活中是广泛存在的,时刻影响着我们的生活.正因为体育比赛中充满了随机事件,而让比赛更加刺激、精彩,让观众更加紧张投入;因为每天的校园生活充满了随机事件,而让我们走入校门的时候内心涌动着好奇与兴奋;因为人生道路上充满了随机事件,而让我们每个人的人生各有各的不同,各有各的精彩.我们生活在一个充满了随机事件的世界当中.
设计意图。
这一段教学首先表现了随机事件带给人们丰富多彩的生活,体现了教。
师对数学、对概率的喜爱和热情,传递给学生学习数学的积极态度.其次,这段教学既是对前面内容的总结,也引出了下面研究思考的方向,起到承上启下的作用,同时也就揭示了人们认识随机事件的过程,以及随机事件随机性和规律性之间的联系.第三,通过反问,使学生意识到,生活的不断体验已经使我们积累了一些对随机事件规律性的感性认识,那么接下来就是要挖掘出这些感性认识下面的理性依据,以这种方式激发学生对生活经验的反思和探究,同时帮助学生形成正确的世界观.
解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的.意义可知,一组数据中出现次数最多的数据是这组数据的众数.而在数据中70也出现了三次,所以这组数据是众数有两个.
答案:这组数据的众数是70和80.
好题2.某班53名学生右眼视力(裸视)的检查结果如下表所示:
则该班学生右眼视力的中位数是_______.
解析:本题表面上看视力数据已经排序,可以求视力的中位数,有的同学会误认为:因为11个数据按照大小的顺序排列有:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、1.0、1.2、1.5,则知排在第6个的数是0.6.但注意观察可以发现:题目中的视力数据实际是小组数据,小组的人数才是视力数据的真正个数.因此,不能直接求视力数据的中位数,而应先求出53名学生视力数据的中间数据,即第27名学生的视力就是本班学生右眼视力的中位数.
答案:(53+1)2=27,所以第27名学生的右眼视力为中位数,从表中人数栏数出第27名学生所对应的右眼视力为0.8,即该班学生右眼视力的中位数是0.8.
1、利用数学故事“一个数学家=10个师”激发学生学习兴趣,让学生感受到概率在身边真实有用,引起学生继续学习的欲望.
2、利用日常生活丰富的实例:例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?12:10在学校食堂用餐的人数有多少?你购买本期福利彩票是否能中奖?等等。这些问题的结果是不确定的、偶然的,很难给予准确无误的回答。
活动2【讲授】(二)、探究新知。
1、必然事件、不可能事件和随机事件。
探究1:考察下列事件,这些事件发生与否,各有什么特点呢?
(1)地球不停地转动;。
(2)木柴燃烧,产生能量;。
(3)在常温下,石头风化;。
(4)某人射击一次,中靶;。
(5)掷一枚硬币,出现正面;。
(6)在标准大气压下且温度低于0℃时,雪融化.
探究2:结合上述事件给出必然事件、不可能事件与随机事件的一般含义(学生给出、纠正,教师点拨、调控).
在条件s下,一定会发生的事件,叫做相对于条件s的必然事件;一定不会发生的事件,叫做相对于条件s的不可能事件;可能发生也可能不发生的事件,叫做相对于条件s的随机事件.
探究3:你能列举更多现实生活中的随机事件、必然事件、不可能事件的实例吗?
(充分让学生发表意见,让更多的学生有展示机会)。
2、事件a发生的频率与概率。
物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映――概率.
探究1:这样的游戏公平吗?(见课件),引导学生比较事件a和事件b发生的可能性的大小。
探究2:抛掷硬币实验观察它落地时哪一个面朝上.
(1)让学生分小组实验、统计,各小组汇报结果,不同组结果不致的原因分析等;。
(2)电脑模拟实验;。
(3)历史上五位数学家作过的抛掷硬币的大量重复实验结果.
频数与频率:在相同的条件s下重复n次试验,观察某一事件a是否出现,称n次试验中事件a出现的次数na为事件a出现的频数;称事件a出现的比例fn(a)=na/n为事件a出现的频率。
事件a发生的频率较稳定,在某个常数附近摆动.
概率:既然随机事件a在大量重复试验中发生的频率fn(a)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件a发生的可能性的大小,并把这个常数叫做事件a发生的概率,记作p(a).
通过大量重复试验得到事件a发生的频率的稳定值,即概率.
频率具有随机性,做同样次数的重复试验,事件a发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.
探究8:你能说出频率与概率的区别与联系吗?
(2)概率是一个确定的数,与每次试验无关。是用来度量事件发生可能性大小的量;。
(3)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。
3.知识应用:学生练习为主,老师点拨评价(见课件)。
活动3【活动】(三)、总结提高。
知识:1、随机事件,必定事件,不可能事件等概念;。
2、频率与概率的定义,它们之间的区别与联系.
方法:观察、实验,归纳出一般结论,解析生活中的现象.
活动4【练习】(四)、自我评价。
随堂练习(见课件)。
3.1.1随机事件的概率。
课时设计课堂实录。
3.1.1随机事件的概率。
教材p44例1及教材练习十一第1、2、3、4题。
知识与技能:学生初步体验有些事件发生是确定的,有些则是不确定的。
过程与方法:学生通过亲身体验,在观察、交流、动手、思考、验证的过程中探索新知。
情感、态度与价值观:培养学生的表达能力和逻辑推理能力。
体验事件发生的等可能性。
会用“可能”、“不可能”正确地描述事件发生的可能性。
采用游戏教学法,将教学情境真实地搬到现实生活当中,让学生在游戏中,真实地参与中积累与学习知识。
师:多媒体、抽签卡纸、盒子、彩色球、铅笔。生:棋子。
一、情境引入。
1、导入:今天老师给大家带来一个小小的礼物,猜一猜是什么?
让学生猜一猜,学生猜可能是文具,可能是玩具,可能是书…、
2、师揭题:学生说的这些都是有可能发生的事情,在数学上都是些不确定性事件。这节课我们就来研究事件发生的可能性。(板书课题:可能性)。
3、出示谜语:小黑人儿细又长,穿着木头花衣裳。画画写字它,就是不会把歌唱。学生可能会说:铅笔。
师追问:确定吗?让学生肯定回答一定是铅笔或确定是铅笔。
4、出示奖品铅笔,并说明这是奖励表现秀的学生的,希望大家都能努力。
二、互动新授。
组织小组讨论,大部分同学会想到用抽签的方法来决定。
学生会想到:可能是唱歌,可能是跳舞,也可能是朗诵。这三种情况都有可能。
师小结:每位同学表演节目类型是一件不确定的事件,有三种可能的结果。
3、抽签指生抽一张。(以抽到跳舞为例)。
师引导:如果再找一名同学来抽签,可能会抽到什么?
生可能回答:可能是唱歌,也可能是朗诵。
引导学生质疑:有没有可能会抽到跳舞?
指生回答:不可能,因为剩的`两张签里没有跳舞。
找生抽一张,验证学生的猜测是否正确。
(以学生抽到的是朗诵为例)。
4、引导:最后只剩一张了,你们能猜一猜这一张可能是什么吗?
生可能会回答:一定是朗诵,因为只剩下朗诵这张卡片了。
5、师小结:刚才在猜测会抽到什么节目时,第一次同学们用的词是“可能”,第二次同学们用的词是“不可能”,第三次用的是“一定”。一般事情的发生都有“可能”“不可能”“一定”三种情况,当然,不同情况下,它们有时也会发生变化。(板书:可能不可能一定)。
三、巩固拓展。
1、完成教材第45页“做一做”。
出示:两个盒子,一号盒子放的全部是红棋子,二号盒子放的有红棋子和绿棋子。
引导学生先说一说,哪个盒子里一定能摸出红棋子?哪个盒子里可能会摸出绿棋子?哪个盒子里不可能摸出绿棋子?等问题。
让学生在小组内组织摸一摸活动,并验证,再集体汇报。
2、完成教材第47页“练习十一”第1题。
让学生说一说,并说明理由。
3、完成教材第47页“练习十一”第2题。
先让学生自主连一连,教师发彩色球让学生验证摸一摸,再说一说为什么这么连。
4、说一说:教师引导学生用“一定”“可能”“不可能”等词语说说自己生活中一些事件发生的可能性。
四、课堂小结。
师:这节课你们学了什么知识?有什么收获?
引导归纳:
1、判断事件发生的可能性的几种情况:可能、不可能、一定。
2、能结合实际情况对一些事件进行判断。其中“不可能”和“一定”是能够在完全确定的情况下做出的判断,而“可能”是在不能确定的情况下做出的判断,它通常包含经常、偶尔两种情况。
作业:教材练习第47页第3、4题。
板书设计:
1.会综合应用学过的统计知识,能从统计图中准确提取统计信息,能正确解释统计结果。
2.能根据统计图提供的信息,做出正确的判断或简单预测。
重点:让学生系统掌握统计的基础知识和基本技能。
难点:能根据统计图提供的信息,做出正确的判断或简单预测。
一、创设情景,生成问题
1、收集数据,制作统计表
师:我们班要和希望小学六(2)班建立手拉手班级,你想向手拉手的同学介绍哪些情况?
学生可能回答:
(1)身高、体重
(2)姓名、性别
(3)兴趣爱好
a调查表
为了清楚记录你的情况,同学们设计了一个个人情况调查表。
(设计意图:通过上面的的调查表,调动学生的好奇心和积极性,让学生感悟到数学源于生活用于生活,体现了数学的应用价值,从而激发了学生的探究欲望。)
为了帮助和分析全班的数据,同学们又设计了一种统计表
六(2)学生最喜欢的学科统计表
学科语文数学语文音乐美术体育科学
将数据填在统计表中,你认为用统计表记录数据有什么好处?你对统计表还知道哪些知识?与同学交流一下。
2、统计图
(1)你学过几种统计图?分别叫什么统计图?各有什么特征?
a、条形统计图(清楚表示各种数量多少)
b、折线统计图(清楚表示数量的变化情况)
c、扇形统计图(清楚表示各种数量的占有率)
(设计意图:统计图在表述统计结果时具有直观、形象的特点,故统计活动中常用统计图来描述统计信息,展示统计结果。)
二、探索交流,解决问题。
一、填一填。
1.常用的统计图有统计图,统计图和统计图。
2.为了清楚地表示出数量的多少,常用统计图,为了表示出数量的增减变化情况,用统计图比较合适,而统计图却能清楚地表示出部分量与总体的关系。
3.常用的统计量有数、数和数。
4.在一组数据的大小差异比较悬殊的情况下,用数表示这组数据的.一般水平比较合适。
5.箱子里装有大小相同的4个白球,1个黄球,任意摸出1个,摸到黄球的可能性是。
二、看一看。
1.下图是某城市中学生以来在校时间情况。
(1)从图中你得到了哪些信息?
(2)你对该城市中学的做法有什么建议?
2.下面是淘淘一天的活动情况统计图。
(1)算出淘淘各种活动占用的时间。
(2)你对淘淘关于时间的安排有何看法?你能提出什么建议?
三、试一试。
调查本班10个同学期中数学考试成绩,并选择合适的统计图把得到的信息呈现出来。
以上就是冀教版六年级数学:《统计与概率》试题全文,希望能给大家带来帮助!
《全日制义务教育(-上网第一站35d1教育网)数学课程标准》(实验稿)中较大幅度地增加了“统计与概率”的内容。因为在信息社会,收集、整理、描述、展示和解释数据,根据情报作出决定和预测,已成为公民日益重要的技能。因此小学数学加入这部分内容是完全必要的,本文将探讨的问题是小学教师应明确哪些基本概念,使教学既具有科学性同时又符合学生的认知特点;如何使学生在形成和解决现实世界问题的过程中,发展统计意识、发展用统计的方法解释数据、表达及交流信息的能力,以及用多种方式来收集、整理和展示他们的思考的能力;统计与概率与小学其它部分的内容是如何联系的。
一、基本概念。
1.描述统计。
通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。
2.概率的统计定义。
人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的:左右。这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:
可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的`近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。
例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;
因为前30年出现晴天的频率为0.83,所以概率大约是0.83。
3.概率的古典定义。
[1][2][3][4]。
最新统计与概率教案(精选18篇)
文件夹