人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
圆上各点到定点的距离都等于定长
到定点的距离等于定长的点都在同个平面上
因此,圆心为o、半径为r的圆可以看成所有到定点o距离等于定长r的点的集合
2、弧、弦、圆心角
弧:圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆
弦:连接圆上任意两点的线段,叫做弦。经过圆心的弦,叫做直径
圆心角:顶点在圆心的角
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴
圆是中心对称图形,圆心o是它的对称中心
3、圆周角
顶点在圆上,并且两边都圆相交的角叫做圆周角。
4、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半
推论:
半圆(或直径)所对的圆周角是直角,90度的圆周角所对应的弦是直径。
推论:
圆的内接四边形对角之和为180度
注意:对内接四边形的判定,必须4个顶点都在圆上。
5、点和圆的位置关系
点p在圆内d点p在圆上d=r
点p在圆外d>r
6、不在同一直线上的三个点确定一个圆
注意:不在同一直线这一要点
经过三角形的三个顶点可以做一个圆,这个圆叫作三角形的外接圆
外接圆的圆心是三角形三条边垂直平分线的交点,叫作这个三角形的外心
特殊的:直角△的外心在斜边上的中点。
一般求△外心的题往往是直角△或者等腰△,等腰△请结合垂径定理和勾股定理
7、直线和圆的位置关系
直线l和圆o相交(有两个公共点)d直线l和圆o相切(有一个公共点)d=r直线为切线,点为切点
直线l和圆o相离(没有公共点)d>r
8、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
在灵活运用该定理的同时,切莫忘记第三大点中的判定方法!(往往在出现角平分线、等腰三角形的场所,我们需要用到此方法去判定相切)
9、切线的性质定理
圆的切线垂直于过切点的半径
这两个定理的运用:前者是不清楚直线与圆的关系,进行判断。后者是已知直线与圆相切,进行性质分析。
10、切线长定理
经过圆外一点作过圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。这个定理叫作切线长定理。
<
<
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式顶点坐标对称轴
y=ax^2(0,0)x=0
y=a(x-h)^2(h,0)x=h
y=a(x-h)^2+k(h,k)x=h
y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a)x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;