最新倍数和因数教案(通用12篇)
文件格式:DOCX
时间:2023-11-30 06:33:09    小编:笔砚

最新倍数和因数教案(通用12篇)

小编:笔砚

教案中应该包括教学过程的详细描述,以及教学时的提问和引导方式。编写教案要注重教学资源的选择和利用,丰富教学内容和教学手段。教案的设计需要不断积累经验,经过实践不断完善和优化。

倍数和因数教案篇一

教材第6页例3及练习二第3~8题及思考题。

1.通过学习,使学生能自主探究,找出求一个数的倍数的方法。

2.结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。

3.初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。

重点:掌握求一个数的倍数的方法。

难点:理解因数和倍数两者之间的关系。

1、探索找倍数的方法。(教学例3)。

出示例3:2的倍数有哪些?

师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!

师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。

师:大家都是用的什么方法呢?

生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。

生2:我也是用乘法,用2去乘1、乘2……。

师:哪些同学也是用乘法做的?

师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?

生3:我用的'是除法,用2÷2=1,4÷2=2,6÷2=3,……依次除下去。

师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?(不能)。

师:为什么?(因为2的倍数有无数个)。

师:怎么办?(用省略号)。

师:通过交流,你有什么发现?

引导学生初步体会2的倍数的个数是无限的。

追问:你能用集合图表示2的倍数吗?

学生填完后,教师组织学生进行核对。

(4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。

2、反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?

先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:

(1)一个数的最小因数是1,最大因数是它本身。

(2)一个数的最小倍数是它本身,没有最大倍数。

(3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

1、指导学生完成教材第7~8页练习二第3~8题及思考题。

学生独立完成全部练习后教师组织学生进行集体订正。

集体订正时,教师着重引导学生认识以下几点:

(1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。

(2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。

(3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。

2、利用求倍数的方法解决生活中的实际问题。

理解题意,分析解答。

教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5个地数,也正好数完,说明西瓜的个数是5的倍数,所以西瓜的个数同时是2和5的倍数。

交流汇报:2的倍数有2,4,6,8,10,12,14,16,18,20,…。

5的倍数有5,10,15,20,25,30,…。

2和5共同的倍数有10,20,…所以2和5共同的倍数最小的是10。

答:这些西瓜最少有10个。

1、师:通过本节课的学习,你有什么收获?(学生交流)。

2、让学生自学“你知道吗?”

2×1=22÷2=1。

2×2=44÷2=2。

2×3=66÷2=3。

2×4=88÷2=4。

2的倍数有2,4,6,……。

一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

倍数和因数教案篇二

7--16页的学习内容。

1.进一步学习求一个数的所有因数和倍数;掌握一般方法,学会用常见的几种形式表达。

2.经过多次的求解经历过程,在事实面前让学生进一步明确因数是可数的,自然得出因数的个数是有限的,其中最大的因数自己;而倍数是无法写完全,也就是说倍数的个数是无限的,其中最小的倍数也是自己。

掌握求一个数的因数和倍数的常用方法及常用的几种书写表达形式。

完整地求出一个数的因数和倍数。

实物投影。

口答:

根据下面算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数?

4×9=3625×40=100032×7=224。

解答题:

18的因数有哪些?10是哪些数的倍数?

典型例题:

1.教学:

(1)你还能找出18的因数码?并说出你的找法(要板书)。

(2)小比赛。看谁既快又能完整地把30和36所有因数找出来(基础练习)?

(3)分享冠军经验(介绍方法)。

(4)我们再来一次寻找32和48的所有因数的比赛(基础练习)?

(5)请你试着把18所有找出的因数表述出来。(如果学生能用常见的两种表达最好;如果不能需要教师的引导)。

第一种习惯书面表达形式。18的'因数有(有可能是乱的):

第二种集合图的书面表达形式。18的因数。

(6)通过眼看,自我感觉调整这些因数最好按序排列。

第一种习惯书面表达形式。18的因数有(按大小顺序):

第二种集合图的书面表达形式。18的因数。

(7)做基础练习第2题。

小结:

1.寻找的方法。

2.能否找全?

3.教学。

(1)让学生自己尝试找。

(2)有没有发什么问题?如何解决?

(3)如何表达?

(4)找出3和5的倍数。

小结:

1.寻找的方法。

2.能否找全?

基础练习:

1.用尽快的速度找出30、36、32和48的所有因数?

2.填空。30的因数有:36的因数有:

3.5的倍数有:3的倍数。

提高练习:

1.分别写出17的因数和倍数,再写出28。

拓展练习:数学小知识:了解完全数。

有的学生认为某个数的最小倍数是0倍,因此最小倍数是0。要向学生强调,小学阶段学倍数不涉及到0,因此,某个数的最小倍数应该是它的1倍。

倍数和因数教案篇三

(父子、母子、母女关系)我和你们的关系是?(师生关系)。

在数学中,数与数之间也存在着多种关系,这节课,我们一起研究两数之间的因数与倍数关系。

(二)探究新知-理解因数和倍数的意义。

教学例1:

1.观察算式的特点,进行分类。

(1)仔细观察算式的特点,你能把这些算式分类吗?

(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)。

第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。

2.明确因数和倍数的意义。

(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。

(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?

(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。

3.理解因数和倍数的依存关系。

(1)独立完成教材第5页“做一做”。

(2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?

4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

(1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?

课件出示:

乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。

(2)今天学的“倍数”与以前的“倍”又有什么不同呢?

“倍数”是相对于“因数”而言的,只适用于整数;而“倍”适用于小数、分数、整数。

(3)交流汇报。

(三)探究新知-找一个数的因数。

教学例2:

1.探究找18的因数的方法。

(1)18的因数有哪些?你是怎么找的?

(2)交流方法。

预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。

因为18÷1=18,所以1和18是18的因数。

因为18÷2=9,所以2和9是18的因数。

因为18÷3=6,所以3和6是18的.因数。

方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。

因为1×18=18,所以1和18是18的因数。

因为2×9=18,所以2和9是18的因数。

因为3×6=18,所以3和6是18的因数。

2.明确18的因数的表示方法。

(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?

(2)交流方法。

预设:列举法,18的因数有:1,2,3,6,9,18。

集合图的方法(如下图所示)。

3.练习找一个数的因数。

(1)你能找出30的因数有哪些吗?36的因数呢?

(2)怎样找才能不遗漏、不重复地找出一个数的所有因数?

(四)探究新知-找一个数的倍数。

教学例3:

1.探究找2的倍数的方法。

(1)2的倍数有哪些?你是怎么找的?

(2)想方法:利用乘法算式找2的倍数。

因为2×1=2,所以2是2的倍数。

因为2×2=4,所以4是2的倍数。

因为2×3=6,所以6是2的倍数。……。

(3)2的倍数能写完吗?你能继续找吗?写不完怎么办?

(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、集合图的方法)。

2.练习找一个数的倍数。

你能找出3的倍数有哪些吗?5的倍数呢?

(五)我的发现-因数与倍数的特征。

举例子,找规律,勾画知识点,读一读。

预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。

(六)智慧乐园。

1.在练习本上完成下列填空题。(独立完成后,师订正答案)。

一个数的最大因数是17,这个数是(),它的最小的因数是()。

一个数的最小倍数是17,这个数是(),它()最大的倍数,17的倍数的个数是().

一个数既是12的因数,又是12的倍数,这个数是()。

2.在练习本上完成下列判断题。(独立完成后,师订正答案)。

(1)在算式6×4=24中,6是因数,24是倍数。()。

(2)15的倍数一定大于15。()。

(3)1是除0以外所有自然数的因数。()。

(4)40以内6的倍数有12、18、24、30、36这5个。()。

(5)34的最小倍数是34;34的最小因数是17。()。

(6)1.2是3的倍数。()。

(七)全课总结,交流收获。

这节课我们学了哪些知识?你有什么收获?

(八)布置作业。

完成课时练第3、4页,提交家校本。

倍数和因数教案篇四

教学内容:

苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。

教学目标:

1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。

2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。

3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。

教学重点:

教学难点:

应用概念正确判断、推理。

教学过程:

一、揭示课题。

谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?

揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。

二、回顾与整理。

1.回顾讨论。

出示讨论题:

(1)你是怎样理解因数和倍数的?举例说明你的认识。

(2)2、5、3的倍数有什么特征?我们是怎样发现的?

(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。

(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?

让学生在小组里讨论,结合讨论适当记录自己的认识或例子。

2.交流整理。

围绕讨论题,引导学生展开交流,结合交流板书主要内容。

(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)。

(指名学生说一说,再集体说一说)。

你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)。

能说说找一个数的因数或倍数的方法吗?

说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。

(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?

自然数可以怎样分类,各可以分成哪几类?

你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)。

说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。

什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)。

(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?

说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。

结合交流内容,逐步板书成:

l

质数质因数。

合数分解质因数。

(互相依存)。

2、5、3的倍数的特征。

偶数。

奇数。

(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。

学生互相交流,教师巡视、倾听。

交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。

三、练习与应用。

1.做“练习与应用”第1题。

指名学生交流,说说每组里因数和倍数关系。

提问:3和7有没有因数和倍数关系?为什么没有?

2.做“练习与应用”第2题。

(1)让学生独立写出前四个数的所有因数,指名两人板演。

交流:你是怎样找它们的因数的?(检查板演题)。

(2)口答后三个数的因数。

引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)。

提问:一个数的因数有什么特点?

说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。

3.分别说出下面各数的倍数。

581217。

分别指名学生说出各数的倍数,教师板书。

提问:为什么要写省略号?一个数的倍数有什么特点?

说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。

4.做“练习与应用”第3题。

(1)让学生独立完成填数。

交流:题里各是怎样填的?(呈现结果)填数时怎样想的?

提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?

哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。

(2)这里哪些数是偶数?奇数呢?

你是怎样判断偶数和奇数的?

5.做“练习与应用”第4题。

要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。

交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?

(板书:180810)。

组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)。

6.做“练习与应用”第5题。

让学生把质数圈出来,在合数下面画线。

交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?

说明:质数只有2个因数,合数至少有3个因数。

7.做“练习与应用’’第6题。

交流、呈现结果。

提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。

所有的合数都是偶数吗?你能举例子说明吗?

指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。

8.下面的说法正确吗?

(1)大于0的自然数不是奇数就是偶数。

(2)大于0的自然数不是质数就是合数。

(3)奇数都是质数,偶数都是合数。

(4)自然数中最小的偶数是2,最小的合数是4。

(5)一个数本身既是它的因数,又是它的倍数。

9.做“练习与应用”第7题。

(1)让学生填空,指名板演。交流并确认结果。

提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?

说明:这里把合数写成这种质数相乘的形式,叫什么?

(2)把30、42分别分解质因数。

学生完成,交流板书,检查订正。

四、全课总结。

提问:这节课主要复习的哪些内容?你有哪些收获?

倍数和因数教案篇五

一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

1.通过学习使学生掌握找一个数的因数,倍数的方法;

2.学生能了解一个数的因数是有限的,倍数是无限的;

3.能熟练地找一个数的因数和倍数;

4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

说出下列各式中谁是谁的因数?谁是谁的倍数?20÷4=56×3=18。

在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数,你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

(一)找因数:

1.出示例1:18的因数有哪几个?

一个数的因数还不止一个,我们一起找找18的因数有哪些?

学生尝试完成后汇报。

(18的因数有:1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。

教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2.用这样的方法,请你再找一找36的因数有哪些?

举错例(1,2,3,4,6,6,9,12,18,36)。

教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。

仔细看看,36的因数中,最小的是几,最大的是几?

教师板书:一个数的最小因数是1,最大因数是它本身。

3.你还想找哪个数的因数?(18、42……)请你选择其中的一个在自练本上写一写,然后汇报。

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

教师:这样写可以吗?为什么?应该怎么改呢?

教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的`倍数,5的倍数。

教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。

1.完成课本第7页练习二第2~5题。

2.完成教材第8页练习二第6~8题。

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

一个数的因数的个数是有限的,最小的是1,最大的是它本身。一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

倍数和因数教案篇六

教科书第25页,练习四第5~8题。

1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。

2、通过练习,使学生建立合理的认识结构,形成解决问题的多样策略。

3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。

1、我们已经掌握了找两个数的公倍数和最小公倍数的方法,这节课我们继续巩固这方面的知识,并能够利用这些知识解决一些实际问题。

(板书课题:公倍数和最小公倍数练习)。

2、填空。

5的倍数有:()。

7的'倍数有:()。

5和7的公倍数有:()。

5和7的最小公倍数是:()。

3、完成练习四第5题。

(1)理解题意,独立找出每组数的最小公倍数。

(2)汇报结果,集体评讲。

(3)观察第一组中两个数的最小公倍数,看看有什么发现?

每题中的两个数有什么特征呢?(倍数关系)可以得出什么结论?

(4)第二组中两个数的最小公倍数有什么特征?(是这两个数的乘积)。

在有些情况下,两个数的最小公倍数是这两个数的乘积。

4、完成练习四第6题。

你能运用上一题的规律直接写出每题中两个数的最小公倍数吗?

交流,汇报。

说说你是怎么想的?

1、完成练习四第7题。

(1)理解题意,独立完成填表。

(2)你是怎样找到这两路车第二次同时发车的时间的?

你还有其他方法解决这个问题吗?(7和8的最小公倍数是56)。

2、完成练习四第8题。

(1)理解题意。

你能说说,他们下次相遇,是在几月几日吗?(8月24日)。

你是怎样知道的?

要知道他们下次相遇的日期,其实就是求什么?(6和8的最小公倍数)

通过练习,同学们又掌握了一些比较快的求两个数最小公倍数的方法,并能运用这些方法解决一些实际问题。

在小组中互相说说自己本节课的收获。

倍数和因数教案篇七

由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。

倍数和因数教案篇八

1.理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法。

2.在探究的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。

3.培养学生的探索意识以及热爱数学学习的情感。

1.理解因数和倍数的意义以及两者之间相互依存的关系。

2.掌握找一个数的因数和倍数的方法。

教学课件。

(一)创设情境,引入新课。

人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是?

(父子、母子、母女关系)我和你们的关系是?(师生关系)。

在数学中,数与数之间也存在着多种关系,这节课,我们一起研究两数之间的因数与倍数关系。

(二)探究新知-理解因数和倍数的意义。

教学例1:

1.观察算式的特点,进行分类。

(1)仔细观察算式的特点,你能把这些算式分类吗?

(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)。

第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。

2.明确因数和倍数的意义。

(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。

(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?

(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。

3.理解因数和倍数的依存关系。

(1)独立完成教材第5页“做一做”。

(2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?

4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

(1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?

课件出示:

乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。

(2)今天学的“倍数”与以前的“倍”又有什么不同呢?

“倍数”是相对于“因数”而言的,只适用于整数;而“倍”适用于小数、分数、整数。

(3)交流汇报。

(三)探究新知-找一个数的因数。

教学例2:

1.探究找18的因数的方法。

(1)18的因数有哪些?你是怎么找的?

(2)交流方法。

预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。

因为18÷1=18,所以1和18是18的因数。

因为18÷2=9,所以2和9是18的因数。

因为18÷3=6,所以3和6是18的因数。

方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。

因为1×18=18,所以1和18是18的因数。

因为2×9=18,所以2和9是18的因数。

因为3×6=18,所以3和6是18的因数。

2.明确18的因数的表示方法。

(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?

(2)交流方法。

预设:列举法,18的因数有:1,2,3,6,9,18。

集合图的方法(如下图所示)。

3.练习找一个数的因数。

(1)你能找出30的因数有哪些吗?36的因数呢?

(2)怎样找才能不遗漏、不重复地找出一个数的所有因数?

(四)探究新知-找一个数的倍数。

教学例3:

1.探究找2的倍数的方法。

(1)2的倍数有哪些?你是怎么找的?

(2)想方法:利用乘法算式找2的倍数。

因为2×1=2,所以2是2的倍数。

因为2×2=4,所以4是2的倍数。

因为2×3=6,所以6是2的倍数。……。

(3)2的倍数能写完吗?你能继续找吗?写不完怎么办?

(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、集合图的方法)。

2.练习找一个数的倍数。

你能找出3的倍数有哪些吗?5的倍数呢?

(五)我的发现-因数与倍数的特征。

举例子,找规律,勾画知识点,读一读。

预设:一个数的因数的个数是有限的`,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。

(六)智慧乐园。

1.在练习本上完成下列填空题。(独立完成后,师订正答案)。

一个数的最大因数是17,这个数是(),它的最小的因数是()。

一个数的最小倍数是17,这个数是(),它()最大的倍数,17的倍数的个数是().

一个数既是12的因数,又是12的倍数,这个数是()。

2.在练习本上完成下列判断题。(独立完成后,师订正答案)。

(1)在算式6×4=24中,6是因数,24是倍数。()。

(2)15的倍数一定大于15。()。

(3)1是除0以外所有自然数的因数。()。

(4)40以内6的倍数有12、18、24、30、36这5个。()。

(5)34的最小倍数是34;34的最小因数是17。()。

(6)1.2是3的倍数。()。

(七)全课总结,交流收获。

这节课我们学了哪些知识?你有什么收获?

(八)布置作业。

完成课时练第3、4页,提交家校本。

倍数和因数教案篇九

(非零自然数中)。

1×36=3636÷1=3636÷36=1。

2×18=3636÷2=1836÷18=2。

3×12=3636÷3=1236÷12=3。

4×9=3636÷4=936÷9=4。

6×6=3636÷6=6。

36的因数有:1、2、3、4、6、9、12、18、36.

倍数和因数教案篇十

1.理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法。

2.在探究的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。

3.培养学生的探索意识以及热爱数学学习的情感。

倍数和因数教案篇十一

4、培养学生的观察能力。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12。

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)。

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。

齐读p12的注意。

(一)找因数:

1、出示例1:18的因数有哪几个?

学生尝试完成:汇报。

(18的因数有:1,2,3,6,9,18)。

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36。

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)。

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。

仔细看看,36的因数中,最小的'是几,最大的是几?

看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如。

18的因数。

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……。

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12。

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……。

你是怎么找的?(用3分别乘以1,2,3,……倍)。

5的倍数有:5,10,15,20,……。

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。

2的倍数3的倍数5的倍数。

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

完成练习二1~4题。

倍数和因数教案篇十二

苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。

1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。

2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。

3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。

整理、应用因数和倍数的知识。

应用概念正确判断、推理。

一、揭示课题

谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?

揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。

二、回顾与整理

1.回顾讨论。

出示讨论题:

(1)你是怎样理解因数和倍数的?举例说明你的认识。

(2)2、5、3的倍数有什么特征?我们是怎样发现的?

(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。

(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?

让学生在小组里讨论,结合讨论适当记录自己的认识或例子。

2.交流整理。

围绕讨论题,引导学生展开交流,结合交流板书主要内容。

(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)

(指名学生说一说,再集体说一说)

你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)

能说说找一个数的因数或倍数的方法吗?

说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。

(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?

自然数可以怎样分类,各可以分成哪几类?

你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)

说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。

什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)

(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?

说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。

结合交流内容,逐步板书成:

l

质数质因数

合数分解质因数

因数公因数最大公因数

(互相依存)

倍数公倍数最小公倍数

2、5、3的倍数的特征

偶数

奇数

(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。

学生互相交流,教师巡视、倾听。

交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。

三、练习与应用

1.做“练习与应用”第1题。

指名学生交流,说说每组里因数和倍数关系。

提问:3和7有没有因数和倍数关系?为什么没有?

2.做“练习与应用”第2题。

(1)让学生独立写出前四个数的所有因数,指名两人板演。

交流:你是怎样找它们的因数的?(检查板演题)

(2)口答后三个数的因数。

引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)

提问:一个数的因数有什么特点?

说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。

3.分别说出下面各数的倍数。

581217

分别指名学生说出各数的倍数,教师板书。

提问:为什么要写省略号?一个数的倍数有什么特点?

说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。

4.做“练习与应用”第3题。

(1)让学生独立完成填数。

交流:题里各是怎样填的?(呈现结果)填数时怎样想的?

提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?

同时是2和5的倍数的数有什么特征?

哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。

(2)这里哪些数是偶数?奇数呢?

你是怎样判断偶数和奇数的?

5.做“练习与应用”第4题。

要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。

交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?

(板书:180810)

组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)

6.做“练习与应用”第5题。

让学生把质数圈出来,在合数下面画线。

交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?

说明:质数只有2个因数,合数至少有3个因数。

7.做“练习与应用’’第6题。

让学生选出质数和偶数。

交流、呈现结果。

提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。

所有的合数都是偶数吗?你能举例子说明吗?

指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。

8.下面的说法正确吗?

(1)大于0的自然数不是奇数就是偶数。

(2)大于0的自然数不是质数就是合数。

(3)奇数都是质数,偶数都是合数。

(4)自然数中最小的偶数是2,最小的合数是4。

(5)一个数本身既是它的因数,又是它的倍数。

9.做“练习与应用”第7题。

(1)让学生填空,指名板演。交流并确认结果。

提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?

说明:这里把合数写成这种质数相乘的形式,叫什么?

(2)把30、42分别分解质因数。

学生完成,交流板书,检查订正。

四、全课总结

提问:这节课主要复习的哪些内容?你有哪些收获?

猜你喜欢 网友关注 本周热点 精品推荐
精选文章
基于你的浏览为你整理资料合集
复制