圆小学教案专业
文件夹
教案中应该包括教学过程的详细描述,以及教学时的提问和引导方式。设计教案要从简单到难,逐步推进,以便学生能够逐步掌握知识。以下是小编为大家收集的教案范文,仅供参考,大家可以从中借鉴一些好的教学设计和教学方法。通过学习这些范文,我们可以更好地理解教案的编写原则和技巧,从而提高我们的教学水平。大家一起来看看吧,相信一定会对我们的教学工作有所帮助。
1.确定“转化”的策略。
预设:
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)。
请大家看屏幕(利用课件演示),老师先给大家一点提示。
通过学生人人参与,动手操作、观察、思考等教学活动,使学生认识圆,掌握圆的特征。
1、知道圆的各部分名称,知道同一圆内半径和直径的特征及二者的关系,能根据这种关系求圆的直径或半径。
2、学会用圆规画圆,了解其它画圆工具的使用方法。
3、使学生进一步积累认识图形的学习经验,培养学生的观察能力、动手操作能力、抽象概括能力和合作交流能力,增强空间观念,发展数学思维。
3、使学生进一步体验圆与生活的联系,从数学的角度感受圆的美,激发学生数学学习的热情和兴趣。
圆是一种常见的平面图形,在我们的日常生活中有着广泛的应用。它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。
教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。
这样不仅扩展了知识面,而且从空间观念上来说,也进入了新的领域。因此,通过对圆的认识,不仅能提高解决问题的能力,而且也为学习圆的周长、面积、圆柱和圆锥的学习打下良好的基础。
学习者分析。
六年级学生有着丰富的生活体验和知识积累,但空间观念比较薄弱,动手操作能力较低,学生学习水平差距较大,小组合作意识不强。以前学习的长方形、正方形等是直线平面图形,而圆则是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。
教学目标。
知识与技能:
(1)认识圆,知道圆的各部分名称。
(2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。
(3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。
过程与方法:
(1)经历动手操作的活动过程,培养学生作图能力。
(2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。
(3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。
情感、态度与价值观:
通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。
教学重点:圆的基本特征及半径与直径的相互关系。
解决措施:通过让学生折一折、画一画、量一量、猜一猜、比一比等活动让学生理解圆的基本特征及半径与直径的相互关系。
教学难点:如何让学生理解用圆规画圆的原理。
解决措施:通过展示学生用圆规画出来的圆,引导学生进行小组讨论:画得不好看和画得好看的圆里面的线段究竟分别有什么特征,然后师生共同验证,让学生充分理解利用圆规画圆的原理。
教学设计思路。
一、复习旧知,导入新课。
1、猜图形游戏。
2、对比椭圆和圆。
二、突出主题,探究新知。
(一)认识圆的各部分名称及特征。
1、认识圆的各部分名称及半径和直径的关系。
2、练习1、2。
(二)小组学习用圆规画圆。
1、介绍用圆规画圆并认识圆规。
2、根据要求学习用圆规画圆。
(1)解释画圆的原理。
(2)归纳画圆的步骤。
三、应用特征,解决问题。
(一)判断题。
(二)拓展延伸。
四、总结评价。
五、作业。
依据的理论。
新课程标准指出:“教师应激发学生的学习积极性,为学生搭建自主探索,合作交流的平台,给学生提供充分从事数学活动的机会,帮助他们真正理解和掌握基本的数学知识与技能、数学思想和方法这是广大教师共同追求的目标。”基于这样的认识,本节课的教学设计主要突出体现以下两个特点:
1、有机整合教学资源,体现教学设计的实效性。在组织教学过程中,主要通过自学,小组交流等学习方式,促进学生有效地学习圆的基本特征及用圆规画圆的方法。
2、能在不断的设问中,引起学生思维的碰撞,激发学生的学习兴趣。
1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直径呢?(放动画)。
2、以点a为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?
整堂课的设计,力图从学生的生活经验和已有的知识背景出发,采取观察操作,自主探索的学习方式,帮助他们在实践活动中真正理解和掌握基本知识和技能,体验成功的喜悦,增强学习数学的信心,让课堂真正焕发活力,让学生真正成为学习的主人。课堂最后,引用借鉴古代关于圆的记载,既加深了学生对圆的认识,又使学生我国古代文化的博大精深有所了解。
2、进一步理解轴对称图形的特征,体会圆的对称性。
3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。
重点。
理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。
难点。
在折纸的过程中体会圆的特征。
教学圆规。
电化教具。
一、创设情境:
二、探索活动:
1、引导学生开展折纸活动,找到圆心。
(1)自己动手找到圆心。
(2)汇报交流找圆心的过程,并说出这样做的想法。
2、通过折纸你发现了什么?理解圆的对称性。
(1)欣赏美丽的轴对称图形。
(2)再折纸,体会圆的轴对称性,画出圆的对称轴。
(3)圆有无数条对称轴。对称轴是直径所在的直线。
3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。
(1)边折纸边观察思考同一个圆里的半径有什么特点?
(2)边折纸边观察思考,同一圆里的直径与半径有什么关系?
(3)引导学生用字母表示一个圆的直径与半径的关系。
三、课堂练习。
1、让学生独立完成试一试做完后交流汇报。
2、完成练一练进一步巩固圆的半径与直径的关系。
3、完成填一填。
让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。
汇报交流,说答题根据。
4、完成书后第3题。
四、课堂小结。
引导学生小结本节内容。
学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。
欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。
多次折纸的过程中探索,发现,验证。操作中体会交流,体会圆的特征,发展空间观念。
个别学生做试一试的题目会有困难,注意个别指导。
板书设计。
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。
(二)在操作中丰富感受。
1.交流:圆规的构造。
2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。
4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。
(三)在交流中建构认识。
1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。
2.思考:半径有多少条、长度怎样,你是怎么发现的?
3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。
4.类比:先介绍直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
5.沟通:圆的内部特征与外部特征之间具有怎样的有机联系?
(四)在比较中深化认识。
2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?
(五)在练习中形成结构。
1.寻找:给定的圆中没有标出圆心,半径是多少厘米?
2.想像:半径不同,圆的大小会怎样?圆的大小与什么有关?
3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。
4.沟通:用圆规如何画出指定大小的圆?
(六)在拓展中深化体验。
1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。
2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。
1、那你们讨论出周长和直径的关系了吗?(3倍多一些)。
2、那是不是所有的圆的周长都是圆的直径的3倍多呢?(看课件)。
3、怎么样?看来我们同学们得到的结论是正确的。确实,每个圆的周长都是它直径的3倍多一些。(板书)。
4、那这3倍多一些说明什么?(圆的周长和直径之间确实有倍数关系)。
5、我们说这3倍多一些就是固定不变的数,我们把它叫做圆周率,用字母来表示。
6、老师这里有一个关于圆周率的资料,请大家仔细的看,认真的听。
通过刚才的资料你有什么收获?(取3.14、无限不循环小数)。
7、师:刘徽:也是研究出了圆周率的关系。
8、板书:圆周率用希腊字母来表示,一般保留两位小数(3.14)。
那现在谁知道怎么计算圆的周长?能得出什么样的公式?
字母公式:c=d。
知道半径怎么求周长?c=2r。
1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。
2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
对,这就是我们伊犁美丽的特克斯县的八卦城。它因八卦布局而闻名,是世界上最大、最完整的八卦城,同学们有机会一定要去看一看。
对,圆的周长,那么究竟什么是圆的周长,怎样求圆的周长?这节课我们就来研究这个问题。(板书课题)。
知识与技能:结合生活实际,通过观察、操作等活动认识圆,并认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。
过程与方法:结合生活实际,通过观察、操作、想象等活动,认识圆及圆的一些特征,发展学生的空间观念。
情感态度价值观:结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。
2、那现在请大家想一个问题,圆的周长到底和什么有关系?(半径、直径)。
有说半径,有说直径,能说说你的理由吗?(指名说一说)。
同学们都觉得和半径或直径有关系。
3、课件:请同学们认真的看大屏。
这是一个圆,闪动的是圆的直径。仔细看(展开)这条线段是谁?(周长)。
对,是这个直径是1分米的圆的周长。
再看(展开直径是0.8、0.6分米圆的周长)。
4、通过刚才这3幅图,你发现什么了?(直径越长,他的周长就越长)。
那看来确实直径可以决定圆的周长,是这样吗?
5、那现在请同学们继续我们刚才的测量,刚才我们只得到了圆的周长,对吗?现在就需要你再测量出手中这个圆的直径,那么你想找周长和直径之间的什么关系呢?(倍数)。
6、为什么找倍数关系?(因为正方形的周长是边长的4倍)。
你们同意吗?那咱们现在就按照同学所说的来继续刚才的活动,好吗?当你用周长除以直径时,一定要把结果除不尽的保留两位小数。
(这个小组非常好,有人测量,有人记录,有人计算,分工明确)。
填完之后,互相说一说你发现了什么。
7、展示一个小组的数据。
1.其他组也计算出来了是吧,我们不再往黑板上写了。
2.有没有算出来和黑板上不一样的?
3.是我们算错了吗?正方形的周长是边长的四倍,可以得到一个整数的结果。(结果有误差)。
1.欣赏图形。
(课件出示生活中的圆,同时用触控笔“抽”出圆形)。
师:圆和以前学过的图形有什么不同呢?(出示以前学过的图形)。
(出示一个椭圆和一个凹凸不平的圆)问:这是圆吗?为什么?
2.尝试画圆。
(2)(实物投影仪)老师示范画圆。
3.认识圆各部分的名称。
老师在白板上用圆规、直尺等工具演示画圆、圆心、半径、直径及用字母表示的方式。
4.探究圆的特征。
(1)画:在刚才自己画的较成功的一个圆中继续画3条半径、3条直径。
(2)画:a.以点a为圆心画两个大小不同的圆;b.在另外一个地方画两个半径都是2厘米的圆。
想:圆的位置与什么有关系?圆的大小与什么有关系?
5.首尾呼应。
1、请大家看,老师手里有一个圆,你知道圆的周长是指哪一部分吗?谁能给大家摸一摸(指名学生摸一摸)。
师:摸的时候我们要注意确定一个点,从哪里开始到哪里结束。
3、那你们想圆是由什么线围成的呢?(曲线)。
师:那我们可以说围成圆一周的曲线的长,就是圆的周长。
4、那谁有测量圆周长的方法?(绕线发,滚动法)。
5、小组合作。
请同学们拿出准备好的学具,现在请大家自己选择方法来测量这些圆的周长,好吗?
要求:
1)不管你用什么样的办法,只要你能得到圆的周长就可以,请一律用厘米做单位。
2)每个小组还有一个小表格,请同学们将测量好的结果填写在表格中的第一栏里,只需要完成第一栏就可以,不用写单位。
3)请同学们小组分工,合作完成(3分30秒)。
6、我想问问大家,你们是怎样得到圆的周长的?
谁愿意到前面来给大家讲一讲,拿着你手里的圆。
生1、用卷尺测量(直接用带刻度的卷尺,绕圆一周进行测量)。
生2、用绳子测量(通过测量绳子的长度,来得到圆的周长)。
生3、直尺滚动(在圆上做一个标记,再在直尺上滚动一周,可以得到圆的周长)。
7、小结:那刚才我们同学不论是用尺子去量,还是把圆放在尺子上滚动,你最后得到的都是什么长度?(周长)这是一条什么呢?(直线)最后得到的都是一条直线。但是我们一开始我们研究了圆的周长实际上是一条什么的长?(曲线)说明我们可以把一条曲线化成一条直的线段来测量圆的周长(板书:化曲为直)在数学里,我们把这种思想称为化曲为直。
8、那是不是所有的圆,都能用我们刚才的方法来测量周长,想一想。
(生;非常大的和非常小的都不可以)。
9、老师手中有一个绳,绳的一端有一个小球,当我挥动这个绳的时候,你想这个小球的运动轨迹会是一个什么图形?(圆)。
其实,我们大家都做过这个实验是不是?看好了!(转动小球)。
10、那我想问大家,刚才在空中旋转的这个圆,能通过刚才我们的方法来测量它的周长吗?(不能)。
1、使学生理解圆的面积的含义.经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式.
2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。
3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。
2、在平面上先确定两个不同的点a和b,再画一个圆,使这个圆同时经过点a和点b(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)。
训练学生的观察能力,发现问题的能力。
不直接说出圆,把思考的空间留给学生。
在画图中体会圆的特征。
思考共同之处时再一次体会圆的特征。
通过正反例的练习,加深对半径和直径的理解。
动手操作,理解画圆的关键是定圆心(位置)和半径(大小)。
巩固提高,满足不同学生要求。
1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。
圆的小学教案(专业20篇)
文件夹