圆柱的体积教学设计(优秀8篇)
文件格式:DOCX
时间:2023-12-02 03:55:26    小编:飞雪

圆柱的体积教学设计(优秀8篇)

小编:飞雪

抒情是一种表达个人情感和思想的文学形式,既可以通过文字表达,也可以通过声音、画面等方式表达出来。如何写一篇令人信服的演讲总结?以下是小编为大家整理的一些行业前沿信息,希望能给大家带来对未来的展望和思考。

圆柱的体积教学设计篇一

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)。

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)。

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)。

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh。

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈。

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)。

集体订正,说一说圆柱体的体积还可以怎样算?

5、拓展练习。

(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)。

谈谈这节课你有哪些收获。

教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积。

教学目标:

1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。

教学难点:圆柱体积计算公式的推导过程。

圆柱的体积教学设计篇二

生:就是求这个茶叶盒的容积。

师:如果茶叶盒的厚度不计呢?生:那只要求这个茶叶盒的体积就可以了。

师:怎样求这个圆柱形茶叶盒的体积呢?如果我们会求圆柱的体积这个问题是不是就迎刃而解了?这节课我们就来探索如何计算圆柱的体积。(板书课题)。

二、探索新知。

1、大胆猜测一下:如何计算圆柱的体积?

师:你能说一说你为什么这样想吗?

生:因为长方体和正方体的体积都用底面积乘高来计算。

师:为什么你会想到联系正方体和长方体的体积公式呢?

生:因为它们都是直柱体。

2、师:说得好,那么究竟圆柱的体积是不是用底面积乘高来计算呢?下面我们就来验证我们的猜想。请大家先独立思考验证方法,有了想法后在小组内交流。

3、学生小组活动。

4、全班反馈:你们的猜想得到验证了吗?你们是如何验证的?谁愿意上前面来为大家演示?师(出示圆柱体教具)。

生:将圆柱体先切成若干块,然后再重新拼成长方体。

师:怎样切,怎样拼?

生:沿底面直径切开,然后再拼起来。

生:(学生多人发表意见)…………。

生:沿圆柱的底面直径切开,使切面与底面垂直。这样切分成若干个底面是扇形的立体图形,再将这些切分下来的每一块重新拼在一起,就可以拼成一个近似长方体的立体图形。(学生在说的同时用教具将切、拼的过程演示给全班同学看)。

生:分的份数越多,拼成的形体越接近于长方体。

师:如果我们分成成百上千份,甚至更多,再拼起来,你想象一下它的形状会怎么样?

生:就是长方体。

师:这个圆柱体的体积和拼成的长方体的体积有什么关系?

生:相等。

师:(再用教具演示切、拼的过程,让学生注意观察)你还发现了什么?

生:圆柱的底面积等于拼成的长方体的底面积。

生:圆柱的高等于拼成的长方体的高。

(多媒体演示)将圆柱切拼成一个长方体,突出强调圆柱的底面积与长方体底面积的关系,圆柱的高与长方体高的关系以及圆柱体体积与长方体体积的关系。引导学生口叙圆柱转化成长方体,以及其底面积、高和体积的关系。

师:谁来完整地叙述一下刚才多媒体演示的过程?

生:将圆柱体切拼成一个长方体,这个长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积等于圆柱的体积。因为长方体的体积等于底面积乘高,所以圆柱的体积也等于底面积乘高。

(学生分组,相互口述以上转化及圆柱体积计算公式得出的过程)。

(学生分组口述以后,再请学生说一说圆柱体积计算公式的推导过程)。

教师板书:v=s底×h=s底h。

5、理解公式,解决开课问题。

手指v=s底×h=s底h,要想求出体积,必须知道哪两个量?

生:底面积和体积。

师:现在你能帮小英算出茶叶的体积了吧。

出示习题。

三、小结与质疑。

解决了上面两个小问题,你想说什么?

生:无论怎样,都要先求出底面积。师:对于圆柱体的体积计算,同学们还有什么问题吗?生:没有。

师:完全正确,那我们现在就来计算圆柱的体积。

四、巩固练习。

让学生先自己独立地做,一人板算,然后订正。

师:同学们的解答非常好,正确率非常高,希望在以下的练习中再接再厉。

(二)、判断,错的请改正过来。

1、一个圆柱体铁罐,底面直径是2米,高3米,求它的体积,列式为:3.14×2×3。

2、圆柱的底面周长扩大2倍,高不变,圆柱的体积扩大4倍。

3、圆柱的底面直径是4dm,正方体的棱长也是4dm,它们的高相等,则圆柱的体积大。

学生独立判断,反馈时手势判断,并说明理由和图和改正。

(三)、灵活应用。

学生独立做题,反馈:你怎么想到底面积如何求?

订正,针对学生板演的错误(如应先换算单位再算,而学生却忽略了)提示学生注意审题等。

生:根据体积公式推导出来的。

学生独立做题,反馈:这道题会用到哪个公式?体积怎么得来的?

生:用的是推导公式,高等于体积除以底面积,体积和圆柱形柱子的体积是一样的。

(四)、思考题。

一个圆柱形谷堆高1.2米,占地15平方米,每立方米稻谷约重600千克,

把这些稻谷装进粮仓里,正好占这个粮仓的3/5,若将粮仓装满,则能够。

存放稻谷约多少千克?

五、全课总结。

师:这节课我们学了什么内容?你有什么收获?

生:这节课我们学习了圆柱的体积,知道了圆柱的体积计算方法,…………。

师:同学们总结得很好。这节课就上到这。

圆柱的体积教学设计篇三

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

圆柱切割组合模具、小黑板。

一、创设情境,生成问题。

1、什么是体积?(物体所占空间的大小叫做物体的体积。)。

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题。

(启发学生思考。)。

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)。

(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)。

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书:v=sh。

5、算一算:已知一根柱子的底面半径为米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?

五:课后作业:

教材第9页,练一练第1、3、4、题。

圆柱的体积教学设计篇四

1、运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解其推导过程。

2、会用圆柱的体积计算公式计算圆柱形物体的体积或容积。

3、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。

4、借助远程教育的课件资源演示,培养学生抽象、概括的思维能力。

圆柱体体积计算公式的推导过程。

《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”即要求我们在教学中,要让学生通过自主的知识建构活动,学生的潜能得以开发,情感、态度、价值观得以培养,从而提高学生的数学素养。因此根据本节课内容的特点,这节课的教学将通过对圆柱体积知识的探究,重点培养学生探究数学知识的能力和方法。为了把“一切为了学生的发展”这一新的教学理念融入到了课堂教学之中。在课堂教学中将以学生的活动为主,让学生通过亲身体验、实际操作来找出数学知识之间的内在联系。在学生学习过程中,充分运用了远程教育资源中动画、声音、视频文件,并进行了有效地整合。本节课将使用以下策略:

1、利用迁移规律引入新课,借助远程资源为学生创设良好的学习情境。

2、以合作探究为主要的学习方式,充分发挥学生的自主性,体现学生的主体地位。

3、练习多样化,层次化。

4、引导学生把知识转化成相应的技能,从而提高灵活运用的能力,培养学生的综合素质。

一、回忆旧知,实现迁移。

1、学习圆的面积时,我们是怎样推导出圆的面积计算公式的?利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。

a.半径5厘米。

b.直径6分米。

二、指名说说自己想法。

教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)。

2、生讨论,交流。

三、验证。

教师演示:。

(2)将圆柱的`底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?

(3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。

四、探索圆柱与所拼成的近似长方体之间的关系。

1、学生动手进行实验。请每个小组拿出学具,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

2、学生利用学具独立操作(教师巡视、指导操作有困难的学生),思考并讨论。

3、通过刚才的实验你发现了什么?

4、学生汇报交流。

五、分析关系,总结公式引导学生发现并说出:

圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。总结公式。

长方体的体积=底面积×高。

v=sh。

六、拓展训练。

七、课堂总结。

长方体的体积=底面积×高。

v=sh。

[教学反思]。

1、这节课是通过观察、猜想、操作验证、巩固、应用这几个环节来完成的。学生在最佳的情景中通过实践、探索、发现,得到了“活”的知识,学到有价值的数学。

2、操作验证是本节课的关键,为体现活动教学中学生“主动探索”的特点,我从问题入手,组织学生围绕观察猜想后展开验证性的操作活动。学生以活动小组为单位,思维活跃,积极探索,学习能力、抽象概括能力和逻辑思维能力得到了提高。

3、充分利用媒体资源,化解难点,提高课堂效果;注重习题多样化、层次化,拓展学生思维。

圆柱的体积教学设计篇五

1、使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。

2、使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。

3、培养学生分析问题,解决问题及实践应用能力。

掌握有关圆柱的表面积和体积的计算,会综合运用。

运用所学的知识解决生活中的实际问题。

一、复习回顾。

1、下列图形的面积公式是什么?

长方形的面积=。

正方形的面积=。

平行四边形的面积=。

梯形的面积=。

2、长方体的表面积=。

如果圆柱的体积用v表示,底面积用s表示,高用h表示,则圆柱的体积公式用字母表示为。

如果圆柱的底面半径为r,高用h表示,则圆柱的体积公式为。

三、例题学习:

四、课堂练习。

1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米。

3)底面直径5分米,高6分米。

圆柱的体积教学设计篇六

冀教版《数学》六年级下册第29—31页。

1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

2.探索并掌握圆柱体积公式,能计算圆柱的体积。

3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

教学重点:探索并掌握圆柱体积公式,能计算圆柱的体积。

教学难点:探索并掌握圆柱体积公式。

教具准备:两个不易直观比较体积大小的圆柱桶,探索体积的课件。

执教者:张聪棉。

教学时数:一课时。

一、情境导入。

出示准备好的圆柱筒,同学们这两个物体,哪个大一些,

谁大就是指它的体积大,今天我们就学习--圆柱体的体积。

师:看到课题你能想到哪些有关的数学知识?或想知道什么数学知识?

体积的单位有立方米,立方分米,立方厘米。相邻的单位之间的进率是1000。

二、板书课题,出示学习目标。

(一)圆柱的体积公式是怎样推导出来的,

三、出示自学指导。

(二)观察拼出的近似长方体和圆柱,你发现它们有什么关系?

四、学生自学。

学生看书自学,教师巡视。

五、学生试做。

学生试做。

1.底面积是25平方厘米,高4分米。

2.底面半径2分米,高10分米。

3.底面直径和高都是20米。

判断对错。

1.一个圆柱形水桶,它的容积也就等于它的表面积。()。

2.一个长方体与一个圆柱,底面积相等,高相等,那么体积也相等。()。

3.底面积不相等的两个圆柱的体积一定不相等。()。

5.计算一根圆柱形钢材有多少立方分米,是钢材的表面积。()。

填空:

1.把圆柱的底面平均分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的(。

)。它的底面积等于圆柱的(),它的高就是圆柱的()。

2.圆柱体积的计算公式是(),用字母表示是()。

3.一个圆柱底面积是25cm2,高是4cm,体积是()cm3。

4.一个圆柱底面半径是2cm,高是10cm,体积是()cm3。

六、议一议。

(1)把圆柱体平均分成若干份,可以拼成一个()图形?这两个图形的()相等。

师:做完的同学看黑板上同学的做法,是否正确,如果有不同答案,可以上前面来改正。

评议黑板上的数学题。

小结:这节课你学会了哪些知识?

七、小测试。

今天同学们的收获一定不少,现在我们做个当堂测验,只写答案不抄题,看谁又快又对(见测验题)。

一、填空(每题10分)。

1.把圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的()。这个长方体的底面积等于圆柱的(),高等于圆柱的()。因为长方体的体积等于()乘(),所以圆柱的体积等于()乘()。

2.一个圆柱的底面积是80平方厘米,高是5厘米,体积是()平方厘米。

3.一个圆柱的体积是21平方厘米,底面积是7平方厘米,高是()厘米。

4.一个圆柱的底面积是25平方厘米,高是0.4分米,体积是()平方厘米。

二、判断(每题5分)。

1.把一个圆柱截成两个小圆柱,它的表面积和体积都增加了。()。

2.如果两个圆柱的体积相等,那么他们的高也相等。()。

3.一个圆柱的底面半径扩大2倍,高不变,它的体积扩大2倍。()。

1.底面积10平方厘米,高15厘米。

2.底面直径和高都是20厘米。

3.底面周长62.8厘米,高10厘米。

四、一根长50分米的长方体钢材,底面是一个边长10分米的正方形。如果把它锻造成底面面积是1000平方分米的圆柱形钢材,这根圆柱钢材的高是多少分米?(15分)。

本节的教学重难点是:

1.探索并掌握圆柱体积公式,能计算圆柱的体积。

2.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

教学方法:我利用课件演示和实物演示来解决。让学生学会转化的数学思想。

成功之处:1.利用迁移规律引入新课,为学生创设良好的学习情境;。

2.遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;。

3.正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果.

不足之处:1.个别学生还是对公式不会灵活应用。

2.练习题有些多,应选择一些有代表性的题,这样小测验就能有充足的时间了。

3.关注学生的有些少,尤其是应关注做错的学生,应知道为什么错,及时在课堂评价出结果会更好。

4.老师讲得多,应放手让学生自己观察自己处理自己总结,会更好。

圆柱的体积教学设计篇七

知识和技能:经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

过程与方法:让学生经历观察、猜想、证明等数学活动过程。探索并掌握圆柱体积公式,能计算圆柱的体积。

情感、态度和价值观:在探索圆柱体积的过程中,培养学生应用已有知识解决问题的能力,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和结论的确定性。

探索并掌握圆柱体积公式,能计算圆柱的体积。

圆柱体积公式的推导过程及简单应用。

两个不易直观比较体积大小的圆柱桶,探索体积的课件。

一课时。

一、情景导入。

1.出示“亮亮和爷爷过生日”的情境图。学生观察,说说发现了什么?想到了哪些问题?2.学生观察思考后回答。

生:亮亮和爷爷的生日蛋糕都是圆柱形的。

生:生日蛋糕大,就是蛋糕的体积大;生日蛋糕小,就是蛋糕的体积小。

3.出示两个圆柱体,学生观察、猜想。

(设计意图:创设情境导入激趣,通过观察让学生对圆柱体体积有了初步的认识,充分调动学生的求知欲,同时又为学生探索新知做好准备。)。

二、合作探究。

(一)引导回忆。

1.设疑:看到课题你能想到哪些有关数学知识?你还想知道什么数学知识?2.学生回忆后回答。

师:同学们知道的可真不少,对以前学过的知识掌握得很扎实,那么怎样才能知道一个物体的体积有多大呢?现在我们就共同研究圆柱体积的计算方法。

(设计意图:通过创设问题情境,可以引导学生运用已有的生活经验和就知识积极思考,形成任务驱动的探究氛围。

师:我们以前学过学过了长方体和正方体的体积,我们知道了物体所占空间的大小叫做物体的体积。那么怎样计算圆柱的体积呢?请同学们猜想一下。

生:我们是不是象学过的长方体和正方体体积一样用“底面积×高”呢?

师:同学猜想的很有道理。

教师用课件演示,学生观察思考。

生:相同点是都可以拼成一个近似的长方体。

生:不同点是等分的份数不同,等分的份数越多,拼成的图形就越接近一个近似的长方体。

4.小组同学讨论后汇报结果,同时板书。

生:(1)把圆柱拼成长方体后,形状变了,体积不变。

(2)拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。

师:(1)配合回答,演示课件,闪烁相应的部位,并板书相应的内容。

用字母表示v=sh。

师:让学生书空,再次让学生巩固圆柱体积公式的推导过程。(设计意图:再探究圆柱体积计算的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的稳定性。三、出示例题:一根圆柱形的木料,底面积是320平方厘米,高是米。这根木料的体积是多少立方厘米?1.学生读题试算。2.集体订正。

四、应用与拓展。

1.完成教材第34“试一试”。(1)学生仔细看图,明确题意。(2)学生自主完成后,全班交流。

五、课堂总结。

本节课你有什么收获?还有什么疑问?附:板书。

长方体的体积=底面积×高。

圆柱的体积教学设计篇八

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)。

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)。

(4)学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)。

4、确定方法,探究实验,验证体积公式。

(1)首先要求学生利用实验工具,自主商讨确定研究方法。

(2)学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的.体积。

(3)学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(5)学生汇报:实验的结果与猜想的结果基本相同。

(6)教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh。

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈。

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)。

集体订正,说一说圆柱体的体积还可以怎样算?

5、拓展练习。

(1)一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)。

谈谈这节课你有哪些收获。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制