个数除以分数教案专业
文件夹
教案编写需要不断总结和反思,根据实际情况进行适当调整和改进。在设计教案时,教师应合理安排教学时间,注意课堂教学的节奏和紧凑性。深化教学改革的教案范文,推动教学工作不断创新。
听了冯老师执教的《一个数除以小数》一课,收获颇多。总的认为这一课设计巧妙、思路清晰,流畅,重点突出,充分体现教师主导,学生主体作用。具体评议如下:
1.加强知识之间的联系,由旧引新。在课堂开始,采用复习的方法。出示三组算式,复习了一个数除以整数的计算,在最后一组算式中很自然的引出了今天所要学习的知识《一个数除以小数》。
2.充分发挥学生主动性,引导学生积极探索。教师通过让学生自己去观察每组算式中被除数、除数、商的变化,探索总结出了商不变原理。并在随后探索一个数除以小数出现被除数位数不够时,都是先由学生自己去观察思考总结,教师知识对学生的`表达做出规范。
3.教师点拨及时到位,做好总结。当学生板演出现问题时,教师耐心纠正他们的错误,让学生对错误有深刻的认识。课堂上教师注重知识的条理性,适时对学法进行总结。有商不变原理的总结,还有在进行一个数除以小数时,让学生注意:商的小数点要和被除数移动后的小数点对齐。这是在计算一个数除以小数时,特别要注意的地方。
4.题型设计多样,富有梯度性。题目有填空乐园、神医诊断、列竖式计算等,题目由易到难,符合学生的认知水平和接受能力。
建议:
1.在观察三组算式时,教师应给出每个算式的结果。那样更便于学生理解商不变的原理。
2.1.19/0.17当学生进行板演后,教师应在黑板上呈现正确的书写过程,因为这毕竟是学生第一次计算一个数除以小数,教师应给学生最标准的示范。
3.上的字和背景的颜色不太合适,学生看起来比较费劲。
将本文的word文档下载到电脑,方便收藏和打印。
1.使学生理解的算理,掌握的计算法则,使学生理解“已知一个数几分之几是多少,求这个数”的数量关系.
2.能够正确、熟练地计算,并能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的文字叙述题.
3.培养学生的计算能力及抽象、概括、分析、比较和综合的能力.
重点。
使学生理解并掌握的计算法则.
难点。
用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的文字叙述题.
过程。
一、复习引新。
(一)口算下面各题。
(二)口答分数除以整数的计算方法.
(三)一个数的5倍是30,求这个数.
二、讲授新课。
(一)例2。
例2.一辆汽车小时行驶18千米,1小时行驶多少千米?
提问:题中已知什么,求什么,怎样列式?
质疑:除数是整数的分数除法我们会计算了,除数是分数的除法怎样计算呢?这节课我们就继续来研究分数除法,(课题:).
小时行18千米?”.(演示课件:)。
观察:从图上看1小时里有几个小时?(5个小时)。
推想:要想求出5个小时行驶多少千米?就必须先求出什么呢?(小时行的路程)。
(小里有2个小时,2个小时行18千米,用18÷2就可以求出小时行驶的千米数)。
(二)例3。
例3.小刚小时走了千米,他1小时走多少千米?
1.分析:已知什么,求什么,怎样列式:.
2.比较:和刚才的那道题目哪儿不一样?
3.讨论:这道题如何解答,你从中悟出了什么道理?
4.汇报:求出小时走的,1小时里有10个小时,所以再乘10就求出1小时走的千米数.
5.推导过程:
(千米)。
(三)总结计算法则。
说明:不管是整数除以分数,还是分数除以整数及分数除以分数,都可以把它转化为分数乘法进行计算,为了叙述方便,我们把被除数称为甲数,除数称为那乙数.
甲数除以乙数(0除外),等于甲数乘乙数的倒数.
(四)反馈练习。
(五)例4。
方法(一)解:设这个数为.
方法(二)。
小结:已知一个数的几分之几是多少,求这个数,可以根据一个数乘分数的意义列方程解答,也可以根据分数除法的意义直接列出除法算式解答.
第12页 。
一、教学目标:
1、理解一个数除以小数的计算方法,会计算除数是小数的除法。
2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程。
二、教学重、难点。
重点:一个数除小数的计算方法。
难点:1、把除数转化为整数然后再除的方法。
2、确定商中小数点的位置。
预计教学时间:2节。
三、教学过程:
(一)基础训练。
【口算】。
2.8÷7=0.36÷12=5.05÷5=1.2÷4=。
2.6÷13=9.1÷7=10.2÷2=5.1÷3=。
(二)新知学习。
【典型例题】。
1、学习例5:
想:除数是小数怎么计算?
(1)小组讨论计算方法。
(2)独立完成。
(3)小结方法:可以把除数转化成整数。被除数和除数同时扩大相同的倍数,商不变。
2.学习例6,进一步体会小数除法的算理、算法。
(1)学生列出竖式,并说明意义。
(2)小组讨论算法。
(3)汇报:鼓励学生用自己的语言解释理由并进行交流。
【小结】怎样计算一个数除以小数?
(1)除数是小数的,可以把被除数与除数同时扩大相同倍数,把除数转化为整数再除。
(2)被除数位数不够,在末尾用“0”补足再除。
(三)巩固练习。
【基础练习】。
1.书p22做一做第一题。
2.书p22做一做第二题。
3.书p24第3题。
4.书p24第2题。
4、
【提高练习】。
5、书p24第4题。
6、书p24第5题。
7、书p25第6题。
8、书p25第8题。
能说一说其中的规律吗?
【拓展练习】。
9、书p25第7题。
10、书p25第9题。
(四)全课总结。
怎样计算小数除以整数?
(1)按整数除法的方法去除。
(2)商的小数点要和被除数的小数点对齐。
(3)整数部分不够除,商0,点上小数点。
(4)如果有余数,要添0再除。
(五)教学效果评价(小测题)。
1.计算下面各题。
26÷0.13=6.21÷0.03=210÷1.4=。
练习五的第3-10题。
使学生理解和掌握除数是小数的除法的计算法则,能够正确地计算除数是小数的除法。
小黑板出示复习用的口算题。
1、小黑板出示下面的口算题,指名口算。
3.2?0.8=40.81?0.09=92.4?1.2=2。
42?0.7=606.4?0.08=8036?0.06=600。
2.6?0.13=20xx?0.5=704.8?0.04=120。
84?0.7=1206.3?0.09=7072?0.6=120。
指名说一说口算“6.4?0.08”、“36?0.06”和“2.6?0.13”时,是怎样移动被除数的小数点的。
2、教师出示下在两道题,请两名学生板演,其他学生在练习本上做。
85.1?0.23=3704644?0.86=5400。
做完后,让两名学生对照自己做题的过程,说一说除数是小数的小数除法的计算法则。
1.练习五第3题。
让学生审题,找出每道题错在哪里?原因是什么,教师指名回答。
2.练习五第4题。
学生独立计算。
3.练习五第5题。
让学生把答案直接写在书上,做完后,集体订正。
4.练习五第6题。
先让学生观察左面一栏各题被除数和除数的小数点的移动情况。要求学生根据第1小题的计算结果,直接写出第2、3小题的得数。教师巡视时,注意学生是怎样根据除数和被除数同时缩小相同的倍数,而使商不变的。
教师让学生自己计算右面一栏的.3小题。做完后问:被除数和除数各有什么变化?商有什么变化?(被除数不变。除数是第2题比第1题缩小100倍,也就是除数的小数点向左移动两位;商扩大了100倍,也就是小数点向右移动了两位。第3题的除数比第1题的除数缩小1000倍,也就是小数点向左移动三位;商扩大了1000倍,也就是小数点向右移动三位。)。
5.练习五第7题。
让学生先审题,第4道小题的被除数和除数有什么特点?怎样根据这些特点来做题。做完后,教师让学生说一说:“是怎样根据被除数和除数的特点来计算的?”“哪道题的商比被除数大?”
6.练习5第8题中第1行的3道小题。
让学生独立计算。做完后,集体订正。
7.练习五第9题。
教师要求学生按照题意列式计算。做完后集体订正。
练习五第8题中第2、3行的6道小题和第10题。
学生试算,小组交流。(学生出现了几种列式计算方法,有的对,有的错了。)。
交流讨论:四人小组讨论:你认为这几种方法对吗?(在学生交流的基础上,师生归纳出:先把除数扩大成整数,再根据整数除法的`法则进行计算。)。
1.再次尝试:26.88÷0.96。
2.校对交流:除数是小数的除法,既可以把被除数和除数都转化成整数,也可以中把除数转化成整数,这两种方法都是正确的。
3.感受发现:先把除数扩大成整数,再根据整数除法的法则进行计算方便多了。
4.归纳小结。
1.判断:0.81÷0.9=81÷9。
6.6÷0.2=6÷2。
2.列式算一算:7.56÷1.2和3.216÷0.16。
3.实践运用。
学校要修建数学活动室,现有三家承包商参加招标,情况如下:在建造时间不超过6天的前提下,请你算一算,哪家承包商每平方米造价最便宜?(1)你会先考虑什么?再考虑什么?(2)四人小组讨论交流。(3)代表汇报。
承包商。
活动室设计面积(平方米)。
平均每天建造面积(平方米。
总造价(元)。
甲
14.4。
3.6。
374.4。
乙
15.6。
2.6。
413.4。
丙
19.6。
2.8。
446.88。
1.基本练习。
我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。
1、通过画线段图引导学生分析并归纳一个数除以分数的计算法则。
2、能运用法则,正确迅速地计算分数除法。
3、培养学生抽象思维能力。
4、让学生通过探索知识,从而获得知识,体验成功的乐趣,树立学习的自信心。
1、计算:5/6103/5315/162040/3926。
(说一说,你在计算中如何尽量避免错误的产生?在计算中要注意什么?)。
2、胜利路长1000米,东东走完全程用了20分钟,东东平均每分钟行多少米?
(独立解答并且说明解题依据)。
3、2/3小时有()个1/3小时,1小时有()个1/3小时。
师:已知什么?
生:已知小明和小红各自的时间和对应的路程。
师:问题求什么?
生:求谁走的快些。
师:求谁走得快些?就是比较什么?
生:就是比较谁的速度快。
师:你能根据题意列出算式吗?
生:22/35/65/12。
2、除数是分数的除法计算方法的探究:
引导学生画线段图分析:
师:2/3里有几个1/3?2/3小时走了2km,能不能求出1/3小时走多少千米?
师:2km2得到的1km,有什么具体的含义?是线段图上的哪一段?
生:略。
师:1小时里有几个1/3小时,能求1小时行多少千米了吗?
生:21/23=23/2=3km。
指导学生观察:22/3=21/23=23/2=3(提示:观察22/3=23/2这一步)。
师:这儿把除法转化成什么运算来计算?除以2/3=?
生:把除法转化为法来计算,除以2/3等于以3/2。
师:你能用自己的语言叙述整数除以分数的计算方法吗?
(有语言叙述、用字母表示等都行,只要是正确的都肯定学生的结论)。
师:请你观察上面和算式,怎样把除法转化成为乘法来进行计算?你能说出转化的要点吗?
生:1、被除数没有变化;2、除号变乘号;3、除数变成了它的倒数。
3、学生独立计算5/65/12订正并板书:
4、让学生根据分数除法的意义检验后作答。
1、31页做一做第1题和第2题的后两个小题。
(做完1题后,让学生把每个算式完整地读一遍,然后再完成第2题,第二题要求学生要写出计算过程。)。
2、练习八第2题的后4个小题。
(在学生完成此题时,教师指导好思维慢的学生先算出乘法算式的积,再找出两题之间的关系)。
1今天我们共同研究了什么知识?
2你能用一句完整的话来说一说今天的主要内容吗?
3你认为在完成课后作业时,应该从哪些方面尽量避免错误的产生?
知识技能目标:
1.在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则。
2.能利用计算法则,正确、迅速地进行分数除法的计算。
能力培养目标:
培养学生的语言表达能力和抽象概括能力。
教学重点。
1.总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
2.利用法则正确、迅速地进行计算,并能解决一些实际问题。
学情分析:这部分知识是个难点,学生容易受整数除法的影响,很难理解商变大的现象,应利用课件演示,帮助理解。
教法:演示法、讨论法。
教具准备:投影。
教学过程设计。
(一)复习检查。
投影出示:把下面的算式补充完整。
问:根据是什么?分数除以整数的法则是什么?
投影出分数除以整数的法则。
问:这两个法则有什么相同的地方?
师:今天这节课我们继续研究分数除法的法则。
文档为doc格式。
人教版《义务教育课程标准实验教科书·数学》五年级上册第21、22页的例5、例6及“做一做”,练习四的部分习题。
1.使学生理解除数是小数的除法的计算方法,并能够正确地计算。
2.培养学生的分析、转化及归纳的能力。
3.使学生体验到所学知识与现实生活之间的联系,并能应用所学知识解决生活中的简单问题,从中获得价值体验。
多媒体课件。
一、复习旧知,引入新课。
师:前几节课我们学习了除数是整数的小数除法,请同学们试着在练习本上做一做下面的题目。(出示20.4÷24,学生做完后集体订正)。
师:刚才同学们做得都很好,谁能给大家说一说怎样计算除数是整数的小数除法?(生发言)。
师:这节课,我们继续来研究小数除法。(板书课题:一个数除以小数)。
二、创设情境,自主探究。
(一)学习例5。
师:同学们,再过几天就是教师节了,为了庆祝教师节,美术小组的同学精心布置了学校的宣传栏。学校为他们买来一些荧光纸作装饰。(课件出示:学生装饰宣传栏的动画,接着出现对话:荧光纸0.85元一张,买荧光纸共用去7.65元。)。
师:从图上你能得到哪些数学信息?根据这些信息,你能提出什么数学问题?
师:怎样列式呢?
生:7.65÷0.85=(师板书算式)。
师:这个算式和我们刚才做的题目有什么不同?
生:刚才题中的除数是整数,而这道题的除数是小数。
1.初步探究计算方法。
师:请大家想一想,能不能用学过的知识解决呢?如果能,请算一算;如果不能,请试着把它转化为学过的知识来解决。请大家先独立思考,再把自己的想法和小组的同学交流一下。
师:谁愿意把自己的想法告诉大家?
生1:我想,可以把7.65元和0.85元都换成用“分”作单位,这样原式就转化成了765÷85,就可以计算出得数了。
生2:我觉得也可以利用商不变的性质,把被除数和除数同时扩大100倍,这时只要计算765÷85就可以了。
生3:我们刚学过除数是整数的小数除法,我想就把这道题看做7.65÷85来计算,根据商的变化规律,被除数不变,除数扩大了100倍,商就要缩小到它的,这样也可以算出7.65÷0.85的商。
2.交流,评议。
师:同学们通过动脑筋想到了不同的方法,你认为哪种方法比较好?
生1:因为第1种方法只适合能够进行单位换算的一些数量,而第3种方法换来换去的`有点麻烦。所以,我觉得第2种方法比较好。
生2:我也认为第2种方法比较方便,而且适合各种情况。
师:通过比较我们发现,可以利用商不变的性质,把7.65÷0.85转化成765÷85,也就是把“除数是小数的除法”转化成“除数是整数”的除法。
3.竖式的书写格式。
师:在转化时要注意“除数和被除数同时扩大相同的倍数”,这一转化过程如何在除法竖式中体现呢?(出示竖式)。
师:要想把除数转化成整数,要扩大到它的100倍,小数点可以向右移动两位。其实,只用划去除数中的零和小数点就可以了。(划去除数中的零和小数点)。
师:要想把被除数转化成整数,用同样的道理,只用划去被除数中的小数点就可以了。(划去被除数中的零和小数点)。
师:这时,原式就转化成了765÷85。
(完成如下图所示)。
师:请同学们自己也照这样试一试,并把竖式补充完整。
(学生完成7.65÷0.85并组织学生相互评价)。
(处理第22页“做一做”第1题)。
师:请大家先认真看清题意,可以同桌两人先互相说一说,然后再计算。
(生独立完成后,全班交流,集体订正。)。
(三)总结归纳小数除法的计算方法。
师:同学们,今天我们一起研究了除数是小数的除法的计算方法,请大家想一想,怎样计算除数是小数的除法呢?(小组讨论之后,汇报交流)。
1组:我们认为,在计算除数是小数的除法时,关键是要把“除数是小数的除法”转化成“除数是整数的除法”,然后再按除数是整数的除法进行计算。
2组:在转化时要利用商不变的性质,就是说,除数扩大多少倍,被除数也要扩大相同的倍数。
3组:转化时,也可以看除数有几位小数,就把小数点各右移几位,同时被除数的小数点也要同时向右移动几位。
师:在计算除数是小数的除法时,先要看清除数有几位小数;再把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数,然后再按照除数是整数的方法进行计算。
三、巩固练习。
(一)小组接力赛。
1.处理练习四第1题第一行。
(先独立完成,再同桌交流,然后用展台让部分学生的作业向全班展示,并评价。同时提醒答案不正确的要订正。)。
2.处理练习四第2题。
(课件出示鸵鸟和天鹅对话画面)。
师:根据这些信息,你能提出什么数学问题?
生:鸵鸟的体重是天鹅的多少倍?
师:谁能把信息和问题连起来说一说?
(课件出示:鸵鸟是世界上最大的鸟,重134.9千克,天鹅只有9.5千克,鸵鸟的体重是天鹅的多少倍?)。
师:这个问题大家有信心解答吗?
生(齐):有!
(生独立完成,交流订正。)。
四、全课总结。
师:通过今天的学习,你有哪些收获?
生1:我学会了怎样计算除数是小数的小数除法。
生2:我知道了在遇到新问题时,要善于动脑,把新知识转化成已学过的知识,就能解决问题了。
生3:我还认识到了学习数学是很有用的,它可以帮我们解决生活中的一些数学问题。“一个数除以小数”
2.初步培养学生类推和抽象概括能力.。
3.培养学生认真书写、认真计算的好习惯.。
教学重点。
理解一个数乘小数的意义,掌握一个数乘小数的计算方法.。
教学难点。
理解一个数乘以小数的意义和计算方法.。
教学过程()。
一、复习铺垫。
(一)说出下面各小数表示的意义是什么.。
0.30.720.4180.60.94。
今天我们就利用这个规律学习新知识.。
二、指导探索。
(一)理解意义。
1.出示例2。
花布每米13.5元,求买0.5米和0.82米各用多少元,该怎样列式?
在教学了“一个数乘分数”一课。反思自己的教学,有以下几点值得注意:。
一、学生的动手活动不具备实效性。
由于一个数乘分数的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以教材中利用图形使抽象的问题直观化。在上新课之前,自己也是心里在想着怎样才能更好地让学生理解一个数乘分数的'算法,希望通过折一折的方法能帮助学生来理解。在教学实践中,我也始终本着“让学生在亲身活动中感受数学”这一教学理念,让学生准备了长方形纸,照着书本,按步就班的安排了大量的“折一折,涂一涂”的操作活动,力求把抽象的、较复杂的一个数乘分数的计算方法用“折纸”这一直观动作进行反映。但课堂上学生“折”的表现让我大失所望,53名学生当中,只有十几名好学生能利用手中的长方形纸表示出“1/4的1/2,1/4的2/3”,其他学生好像钻到云雾里去了。根本不知道拿这张长方形的纸有什么作用。只有我利用自己手中的纸来演示,估计有的学生还是云里雾里。
二、教学中有点慌乱,影响了课堂的整体效果。
在课的开始,通过复习一个数乘整数为学习今天的知识作好准备,接下来就是出示例题理解一个数乘分数的意义及方法,还有就是巩固练习。虽然这些环节都在,可是自己明显地感觉在教学有些慌,学生的主动没有得到体现,都是教师牵着学生的鼻子走,老师怎样说学生怎样做,虽然学生最后能够计算一个数乘分数,但是自己认为学生只是知道方法,并没有真正理解这个算理。
教学内容:
教学目标:
1.使学生理解除数是小数的除法的计算方法,并能够正确地计算。
2.培养学生的分析、转化及归纳的能力。
3.使学生体验到所学知识与现实生活之间的联系,并能应用所学知识解决生活中的简单问题,从中获得价值体验。
教具、学具准备:多媒体课件。
教学过程:
一、复习旧知,引入新课。
师:前几节课我们学习了除数是整数的小数除法,请同学们试着在练习本上做一做下面的题目。(出示20.4÷24,学生做完后集体订正)。
师:刚才同学们做得都很好,谁能给大家说一说怎样计算除数是整数的小数除法?(生发言)。
师:这节课,我们继续来研究小数除法。(板书课题:一个数除以小数)。
二、创设情境,自主探究。
(一)学习例5。
师:同学们,再过几天就是教师节了,为了庆祝教师节,美术小组的同学精心布置了学校的宣传栏。学校为他们买来一些荧光纸作装饰。(课件出示:学生装饰宣传栏的动画,接着出现对话:荧光纸0.85元一张,买荧光纸共用去7.65元。)。
师:从图上你能得到哪些数学信息?根据这些信息,你能提出什么数学问题?
师:怎样列式呢?
生:7.65÷0.85=(师板书算式)。
师:这个算式和我们刚才做的题目有什么不同?
生:刚才题中的除数是整数,而这道题的除数是小数。
1.初步探究计算方法。
师:请大家想一想,能不能用学过的知识解决呢?如果能,请算一算;如果不能,请试着把它转化为学过的知识来解决。请大家先独立思考,再把自己的想法和小组的同学交流一下。
师:谁愿意把自己的想法告诉大家?
生1:我想,可以把7.65元和0.85元都换成用“分”作单位,这样原式就转化成了765÷85,就可以计算出得数了。
生2:我觉得也可以利用商不变的性质,把被除数和除数同时扩大100倍,这时只要计算765÷85就可以了。
生3:我们刚学过除数是整数的小数除法,我想就把这道题看做7.65÷85来计算,根据商的变化规律,被除数不变,除数扩大了100倍,商就要缩小到它的,这样也可以算出7.65÷0.85的'商。
2.交流,评议。
师:同学们通过动脑筋想到了不同的方法,你认为哪种方法比较好?
生1:因为第1种方法只适合能够进行单位换算的一些数量,而第3种方法换来换去的有点麻烦。所以,我觉得第2种方法比较好。
生2:我也认为第2种方法比较方便,而且适合各种情况。
师:通过比较我们发现,可以利用商不变的性质,把7.65÷0.85转化成765÷85,也就是把“除数是小数的除法”转化成“除数是整数”的除法。
3.竖式的书写格式。
师:在转化时要注意“除数和被除数同时扩大相同的倍数”,这一转化过程如何在除法竖式中体现呢?(出示竖式)。
师:要想把除数转化成整数,要扩大到它的100倍,小数点可以向右移动两位。其实,只用划去除数中的零和小数点就可以了。(划去除数中的零和小数点)。
师:要想把被除数转化成整数,用同样的道理,只用划去被除数中的小数点就可以了。(划去被除数中的零和小数点)。
师:这时,原式就转化成了765÷85。
师:请同学们自己也照这样试一试,并把竖式补充完整。
(学生完成7.65÷0.85并组织学生相互评价)。
(二)练习。
(处理第22页“做一做”第1题)。
师:请大家先认真看清题意,可以同桌两人先互相说一说,然后再计算。
(三)总结归纳小数除法的计算方法。
师:同学们,今天我们一起研究了除数是小数的除法的计算方法,请大家想一想,怎样计算除数是小数的除法呢?(小组讨论之后,汇报交流)。
1组:我们认为,在计算除数是小数的除法时,关键是要把“除数是小数的除法”转化成“除数是整数的除法”,然后再按除数是整数的除法进行计算。
2组:在转化时要利用商不变的性质,就是说,除数扩大多少倍,被除数也要扩大相同的倍数。
3组:转化时,也可以看除数有几位小数,就把小数点各右移几位,同时被除数的小数点也要同时向右移动几位。
师:在计算除数是小数的除法时,先要看清除数有几位小数;再把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数,然后再按照除数是整数的方法进行计算。
三、巩固练习。
(一)小组接力赛。
1.处理练习四第1题第一行。
(先独立完成,再同桌交流,然后用展台让部分学生的作业向全班展示,并评价。同时提醒答案不正确的要订正。)。
2.处理练习四第2题。
师:根据这些信息,你能提出什么数学问题?
生:鸵鸟的体重是天鹅的多少倍?
师:谁能把信息和问题连起来说一说?
(课件出示:鸵鸟是世界上最大的鸟,重134.9千克,天鹅只有9.5千克,鸵鸟的体重是天鹅的多少倍?)。
师:这个问题大家有信心解答吗?
生(齐):有!
(生独立完成,交流订正。)。
四、全课总结。
师:通过今天的学习,你有哪些收获?
生1:我学会了怎样计算除数是小数的小数除法。
生2:我知道了在遇到新问题时,要善于动脑,把新知识转化成已学过的知识,就能解决问题了。
生3:我还认识到了学习数学是很有用的,它可以帮我们解决生活中的一些数学问题。
《一个数除以小数》是小数四则运算的重要内容之一。教学的重点是让学生初步掌握除数是小数的除法转化为除数是整数除法的推导过程,能熟练地运用商不变的规律进行计算。
二是除数的小数位数和被除数的小数位数不同(例6)。在这两个例题中,都要先教学利用商不变的规律来使除数变为整数,再进行计算。
当除数的小数位数和被除数的小数位数相同时,只需利用商不变的规律把除数和被除数扩大相同的倍数,使除数转化为整数,然后进行计算;而当除数的小数位数和被除数的小数位数不相同时,则应以除数的小数位数为标准来确定被除数应该扩大多少倍(比如:除数是两位小数,那么被除数和除数只能扩大100倍,不管被除数有几位小数或者是整数)。对于这两种题型有一条规律,其依据都是商不变的规律。
教学目标:
(一)使学生初步理解和掌握“除数是小数的除法”的计算法则,并能利用商不变的规律将除数是小数的除法转化为除数是整数的除法的推导过程。
(二)通过运用商不变的规律,引导学生初步知道事物是相互联系、变化的,从而培养学生转化的数学思想方法。
(三)通过小组交流学习,培养学生主动参与学习,合作交流的能力。
教师要依据新课程的教学理念来安排教材,既要尊重教材,又不能拘泥于教材,要结合学生身边的生活事例来呈现教材内容,以利于学生自主探究,合作学习,培养他们应用数学的意识和能力。教学的要领是:重视基础,做好过渡,掌握规律。教师要精讲,让学生充分参与数学活动,以促进他们进行自主探究,独立思考的能力。
(一)加强基础训练。小数是在整数除法的基础上学习的,所以在教学本单元时,应认真适时地抓好几个基本训练。如:看竖式口算二、三位减法;做除数是整数的小数除法;熟记小数点移动的规律等等。要随着教学的进程采用不同形式进行训练,切实提高学生计算的。准确性和速度性。
(二)引导学生主动探索。在教学除数和被除数的小数位数不同的例题时,为了培养学生的探索,讨论的兴趣,教师应从整体出发,适当地增加题型的容量和密度,分多种情况让学生在实际演算中自主地探讨、归纳出规律性的计算方法。在学生的演算过程中,教师要善于引导,让学生理解当除数的小数和被除数的小数位数不同时,应以除数的小数位数为标准的道理。
(三)适时练习提高准确度。不管是在训练的方式上还是在训练的时间上,都要精心设计,以达到提高练习的针对性和实效性,其中以课堂练习最为重要。实践证明,抓好课堂练习,既是提高练习质量和效率的可靠保证,也是减少学生课业负担的有效措施。因此,教师在课堂中,一定要有充分的时间让学生练习,并及时反馈矫正。
(一)复习沟通。
1、什么是商不变的性质?
2、计算:108÷3656x28÷27。
(二)探究新知。
提问:怎样才能转化为我们前面所学的整数除法?
同桌讨论(引出根据商不变的规律,被除数和除数同时扩大100倍)。
2、例6:12.6÷0.28。
提问:这道题和上面例题的方法相同吗?如不同该怎样扩大被除数和除数呢?
同桌讨论:引出应以除数的小数位数为标准,这里被除数和除数应扩大100倍,才能转化为除数是整数的小数除法;同时教师要适时点拨:被除数的位数不够时用“0”补足;商的小数点要和被除数的小数点对齐。
3、分小组演算、讨论和提炼方法。
a组:6.4÷0.857、6÷4、246、8÷1、2。
b组:16.1÷0.460、093÷0、3190÷0.06。
课堂学生演算时,教师巡视,进行引导、点拨,使学生逐步领悟本节知识的要点所在。
(三)课堂练习:
(四)课堂小结:
1、今天我们学习了什么?
2、除数是小数的除法怎样进行计算?
(五)作业:(略)。
一个数除以分数教案(专业12篇)
文件夹