数学实数教案
文件夹
教案可以帮助教师把握教学重点和难点,提高教学的针对性。教案如何能够更好地引导学生进行思考和参与课堂互动?小编为大家整理了一些教案的编写要点和技巧,希望对大家的教学工作有所帮助。
一、学习与导学目标:
情感态度:通过师生、生生合作学习,促进交流,激发兴趣。
二、学程与导程活动:
a、准备活动:
1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。
2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的`距离相等,真可谓从原点背道而驰“唱反调”)。
提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?
归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。
b、学习概念:
1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。
一般地,a和-a互为相反数。“-a”可读成“a的相反数”。
2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)。
3、从上述意义上看,你看如何规定0的相反数更为合理?
商讨得:0的相反数仍是0,即0的相反数等于它本身。
c、应用举例:
1、两人一组,一人任说一个有理数,请同伴说出它的相反数。
2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。
3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。
4、化简下列各数p124练习,你愿意继续尝试化简下列各式吗?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)。
你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。
5、若a=-5,则-a=;若-x=7,则x=。
三、笔记与板书提纲:
课题应用举例中的2。
活动引例应用举例中的4(学生练习)。
概念。
四、练习与拓展选题:
1、教科书p18/3;。
2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。
掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的'过程和自觉检验方程的解是否正确的良好习惯。
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
一、复习提问。
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授。
例1:解方程(见课本)。
解一元一次方程有哪些步骤?
一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例:解方程(x+15)=-(x-7)。
三、巩固练习。
教科书第10页,练习1、2。
四、小结。
1.解一元一次方程有哪些步骤?
2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
五、作业。
教科书第13页习题6.2,2第2题。
1.知道有效数字的概念;。
2.会按要求进行近似数的运算。
教学过程。
一、创设情境,导入新课。
1.什么叫实数?实数怎么分类?
3.做一做。
二、合作交流,探究新知。
1交流上面问题的做法。
(1)估计同学们会有两种做法:
用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)。
(2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:
如果没有两种做法,也要想办法引出这两种做法。
两种做法的答案不同,哪一种答案正确呢?
这时两种做法的答案就一样了。
从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。
2、引入有效数字的概念。
先思考:0.010256精确到小数点后面第三位,等于多少呢?
0.0102560.0103。
近似数0.0103有三个有效数字1、0、3。
现在你能说说,什么叫近似数的有效数字吗?
从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。
考考你:1近似数0.03350有几个有效数字,分别是______________________.
2125万保留两个有效数字等于__________。
3有_______个有效数字。
3、怎样进行近似值的运算?
在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。
例1计算:27.65+0.02856+-3.414(保留三个有效数字)提醒:最后一位数字为0,不能省略。
(2)在进行近似数的乘法和除法运算中,参与运算的每一个数应多取一位有效数字。
例2在上面做一做问题中,如果分别以正方形abcd、efgh的边长作为宽与长,做一个长方形,那么这个长方形的'面积大约是多少平方厘米(保留三个有效数字)。
考考你:1.计算(精确到小数点后面第二位)(1),(2)。
2.计算(保留三个有效数字)(1)(2)。
三、应用迁移,巩固提高。
变式:上面问题中27倍改为:8倍,其他不变。
例4已知求a+b的值。
例5设a、b为实数,且求的值。
四、反思小结,拓展提高。
这节课,你认为最重要的是什么?
教学目标:了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。
教学重点:对概念的理解及对数据收集整理。
教学难点:总体概念的理解和随机抽样的合理性。
教学过程:
一、情景创设,引入新课。
二、新课。
1.抽样调查的意义。
在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。
抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。
2.总体、个体、样本、样本容量的意义。
总体:所要考察对象的全体。
个体:总体的每一个考察对象叫个体。
样本:抽取的部分个体叫做一个样本。
样本容量:样本中个体的数目。
3.抽样的注意事项。
下面是某同学抽取样本数量为100的调查节目统计表:
表中的数据信息也可以用条形统计图或扇形统计图来描述。
通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。
有序数对的概念及平面内确定点的方法
[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?
[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?
如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?
归纳8排6座、第3列,第2排共同点:用两个数表示位置。
约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。
介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。
可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。
引入课题有序数对
由上述问题直接引出概念
有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
请思考:我们为什么要学习有序数对,有序数对都有哪些用途?
[探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)
(1)请问(5,4)和(4,5)表示的是哪个同学的座位?
(2)游戏:教师说出一组数对相应的学生立即站起来。
(3)思考:(3,4)和(4,3)指的是不是同一位置?
[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)
小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)
解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)
知识点:有序数对
有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
注意点:(a,b)与(b,a)表示的是两个不同的位置。
主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。
小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。
自由设计 二选一
1、 在方格纸上设计一个用有序数对描述的图形。
2、设计一个游戏,如解密游戏、迷宫游戏等。
七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率.
教学目的:
理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。
重点、难点。
1、重点:弄清应用题题意列出方程。
2、难点:弄清应用题题意列出方程。
教学过程。
一、复习。
1、什么叫一元一次方程?
2、解一元一次方程的理论根据是什么?
二、新授。
分析:等量关系;a盘现有盐=b盘现有盐。
检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。
1.题目中有哪些已知量?
(1)参加搬砖的初一同学和其他年级同学共65名。
(2)初一同学每人搬6块,其他年级同学每人搬8块。
(3)初一和其他年级同学一共搬了1400块。
2.求什么?初一同学有多少人参加搬砖?
3.等量关系是什么?
初一同学搬砖的块数十其他年级同学的搬砖数=1400。
三、巩固练习。
教科书第12页练习1、2、3。
四、小结。
列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。
五、作业。
2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;。
3.通过具体的例子感受一些常用的相等关系式.
【对话探索设计】。
〖探索1〗。
(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.
解:设前年购买计算机x台,那么,。
设计(1)是让学生感受列代数式是列方程的基础.
去年购买的计算机的数量是________;。
今年购买的计算机的数量是________;。
根据关系:三年共购买计算机140台(关系式:前年购买量+去年购买量+今年购买量=140台),列得方程:。
____________________________.
合并得________________.
系数化为1得______________.
答:______________________.
归纳:总量等于各部分量的和是一个基本的相等关系.
〖探索2〗。
(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本.
(2)把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本.
解:设这个班级有x名学生,。
根据第一关系,这批书共_________________本;。
根据第二关系,这批书共_________________本;。
这批书的总数是个定值,表示它的两个不同的式子应该相等.
熟悉这些关系有助于列方程.
根据这一相等关系列得方程:。
________________________.
想一想,怎样解这个方程?
归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系.
〖练习〗。
1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨.
解:设第二块地(漫灌)用水x吨,。
第一块地(喷灌)用水________吨.
根据关系:两块地共用水300吨,可列方程:。
__________________________________.
解得___________.
答:___________________________.
〖作业〗。
p79.练习,p84.1,6。
〖补充作业〗。
1.按要求列出方程:。
(1)x的1.2倍等于36;(2)y的四分之一比y的2倍大24.
2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量.
根据去年的产量是950吨列方程:__________________.
解得___________.答_________________________.
1.通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。
2.能用适当的图形和语言表示自己的思考结果。
本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。
引导活动讨论
引导:意在教师讲解七巧板的历史,七巧板制作的方法。
活动:人人参与制作七巧板,拼摆七巧板的图案。
讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。
启发式教学
先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。
利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。
(1) 你的拼图用了什么形状的板?你想表现什么?
(2) 在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。
(3) 在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。
通过学生的展示,教师作适时的评价,树立榜样,培养学生之间的竞争意识。
介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的同学四人小组制作完成)。
由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。
通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。
利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。
(一)知识回顾 (三)例题解析 (五)课堂小结
(二)观察发现 (四)课堂练习 练习设计
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点。
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间速度=路程/时间。
画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的.复杂程度一般也不同,因此在设未知数时要有所选择。
教科书第17页练习1、2。
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
教科书习题6.3.2,第1至5题。
【教学目标】。
1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】。
一、本讲主要学习内容。
1、负数的意义及表示2、零的位置和地位。
3、有理数的分类4、数轴概念及三要素。
5、数轴上数与点的对应关系6、数轴上数的比较大小。
其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。
下面概述一下这六点的主要内容。
1、负数的意义及表示。
把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,-等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位。
零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
3、有理数的分类。
正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。
正整数。
整数零正有理数。
有理数负整数或有理数零。
分数正分数负有理数。
负分数。
1.重点:
(1)了解多边形及其有关概念,理解正多边形及其有关概念.
(2)区别凸多边形和凹多边形.
2.难点:
多边形定义的准确理解.
一、新课讲授
投影:图形见课本p84图7.3一l.
你能从投影里找出几个由一些线段围成的图形吗?
上面三图中让同学边看、边议.
在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?
(1)它们在同一平面内.
(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.
这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?
提问:三角形的定义.
你能仿照三角形的定义给多边形定义吗?
1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.
如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)
2.多边形的边、顶点、内角和外角.
3.多边形的对角线
连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.
让学生画出五边形的所有对角线.
4.凸多边形与凹多边形
看投影:图形见课本p85.7.3―6.
5.正多边形
由正方形的特征出发,得出正多边形的概念.
各个角都相等,各条边都相等的多边形叫做正多边形.
二、课堂练习
课本p86练习1.2.
三、课堂小结
引导学生总结本节课的相关概念.
四、课后作业
课本p90第1题.
备用题:
一、判断题.
1.由四条线段首尾顺次相接组成的图形叫四边形.()
2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()
3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()
4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()
二、填空题.
1.连接多边形的线段,叫做多边形的对角线.
2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.
3.各个角,各条边的多边形,叫正多边形.
三、解答题.
1.画出图(1)中的六边形abcdef的所有对角线.
难点:正确理解有理数与数轴上点的对应关系.
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
立足教材,注重基础。
近年来中考数学有许多新题型,但所占分值比例较大的仍然是传统的基本问题,多数试题源于教材。试题的构成是在教材中的例题、习题的基础上通过类比,加工改造,加强条件或减弱条件,延伸或扩展而成的。因此,复习要立足于教材,在备战中考的过程中,首先应以教材为蓝本,重视“双基”训练,要让学生掌握典型例题、习题的解决套路,能够做到举一反三,触类旁通。注意知识体系构建,让各种概念、公理、定理、公式、常用结论及解题方法和技巧等,都能在学生的头脑中清晰地再现,扎扎实实地从教材做起,夯实基础,充分认识基础知识在解题中的指导作用。
创设情境,提升能力。
几年来,全国不少地方的试题都不再局限于对知识本身的考查,而是重在创设一个新颖的情境,考查学生在具体情境中灵活应用知识去解决问题的'能力。这就要求教师在课堂上,要善于创设问题情境,要注意引导学生深层次地参与学习过程,重视培养学生运用所学的知识和技能分析问题和解决问题的能力,使他们在观察、实验的活动中,通过比较、分析、归纳、类比、抽象等思维过程,完成知识的猜想和证明,加深对知识的理解,并学到创新解决问题的策略和方法。
贴近生活,学会运用。
数学知识来源于实际生活,继而为生产、生活服务。在教学中,要注意发掘学生身边与数学相关的事情,如银行商标图案、骑自行车反映出来的函数图象、测量电视塔的高度、投寄平信应付的邮费、购买商品如何省钱等,以增强学生用数学的意识。同时还要注意它们与教材中有关内容的类比。要培养学生运用所学数学知识解决实际生活中遇到的数学问题的意识和能力,引导学生做生活的有心人,做到学以致用,学用相长。
传授方法,加强理解。
考查数学思想方法是考查学生能力的必由之路。在中考复习中,应有意识有目的地适时渗透数学思想和方法,培养学生有效地利用数学思想方法解决相关问题的能力。要注意让学生针对具体题目作总结,以体会其中的数学思想和数学方法。近年中考数学试题,很多试题都是以图象、图表为背景呈现在学生面前的,这方面的试题有利于培养学生的自学能力、创新思维和实践能力。这类题目一般是通过阅读材料,观察图象,整理信息,抽象出数学问题,并用数学语言抽象成数学模型,进而得到解决的。正确解决这类题目的前提是正确理解题意。因此,在中考复习中,我们还要重视学生阅读理解能力的培养。
感恩节到了,首先我要感谢生我养我的爸爸妈妈,再要感谢教我培养我的老师。
今后我要用实际行动来感谢你对我的培养,古人说得好:一日为师,终生为父,滴水之恩,当勇泉相报。成绩只能代表过去,我要努力学习,使自己的棋艺不继提高,虚心向棋友学习,总结经验,改掉自己的不足之处,学习别人高超的棋艺及别人的优点,将来获得更好的成绩来回报我的恩师。决不会让恩师失望。
初一级语文周记范文五:阳光暖暖的周末。
阳光洒满大地,路边的小草、小花争着享受暖暖的阳光。一阵微风吹过,梧桐花展开了所有的花瓣,整棵梧桐树变得像一位仙人,在微微地向我招手。我和爸爸走在路上。
草丛中衬着一棵柳树,那枝条排的非常整齐,似长三千尺的“行云瀑布”。路旁的小河边,我看到了一位正在钓鱼的爷爷。只见爷爷先熟练地抛出鱼竿,耐心的等待着……突然,爷爷的鱼竿动啦一下,立刻又熟练地收出鱼竿,钓了一条大鱼。爷爷笑眯眯地向他的同伴展示着。
“额”?脚下怎么粘粘的?我低头一看,粘糊糊的。“呀”!黏住了。一滴油滴在了我的裤子上。啊!原来是树滴的油呀。我第一次知道树会出“汗”。
乐高机器人中心到了,一位阿姨出来迎接我们。我是来上体验课的。一进屋,映入眼帘的是许许多多的拼装玩具,有飞机、有机器人、还有我最喜欢的制作。
从乐高出来后,我和爸爸来到南湖公园,目的是亲眼目睹一下这个时候的盛开的杜鹃花。杜鹃花的花瓣如纸一样薄,花瓣上还闪烁着晶莹的点儿。花中的花蕊像蜡烛一样,闻一闻它的香气,准会让人迷上。没想到,这平凡的花儿在阳光下是那么耀眼。
不知不觉,夕阳已经染红了那杜鹃花的枝叶,我和爸爸不得不恋恋不舍地回家了。
在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4.淡化二次根式的概念。
文档为doc格式。
用因式分解法解一元二次方程.
难点。
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.
一、复习引入。
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.
二、探索新知。
(学生活动)请同学们口答下面各题.
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.
因此,上面两个方程都可以写成:
(1)x(2x+1)=0(2)3x(x+2)=0。
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)。
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1解方程:
思考:使用因式分解法解一元二次方程的条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积.)。
练习:下面一元二次方程解法中,正确的是()。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,两边同除以x,得x=1。
三、巩固练习。
教材第14页练习1,2.
四、课堂小结。
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置。
教材第17页习题6,8,10,11。
课件简介:。
新课导入。
这两把折扇中,哪一把形成的角度大?与折扇的大小有关系吗?
教学目标。
知识与能力。
1.理解两个角的和、差、倍、分的`意义;。
2.掌握角平分线的概念;。
3.会比较角的大小,会用量角器画一个角等于已知角.
过程与方法。
1.通过让亲自动手演示比较角的大小,画一个角等于已知角等,培养训练动手操作能力.
2.通过角的和、差、倍、分的意义,角平分线的意义,进一步训练几何语言的表达能力及几何识图能力,培养其空间观念.
情感态度与价值观。
通过具体实物演示对角的大小进行比较这一由感性认识上升到理性认识的过程,培养严谨的科学态度,进行辩证唯物主义思想教育.
2.掌握列方程解决实际问题的一般步骤;。
3.通过列方程解决实际问题的过程,体会建模思想.
教学重点建立模型解决实际问题的一般方法.
教学难点建立模型解决实际问题的一般方法.
学情分析1、在前面已学过一元一次方程的解法,能够简单的运用一元一次方程解决实际问题。
2、培养学生分析、解决问题的能力及逻辑思维能力。
学法指导自学互帮导学法。
教学过程。
教学内容教师活动学生活动效果预测(可能出现的问题)补救措施修改意见。
问题1:之前我们通过列方程解应用问题的过程中,大致包含哪些步骤?
1.审:审题,分析题目中的数量关系;。
2.设:设适当的未知数,并表示未知量;。
3.列:根据题目中的数量关系列方程;。
4.解:解这个方程;。
5.答:检验并答话.
二、应用与探究。
问题2:应用回顾的步骤解决以下问题.
三、课堂练习。
四、小结与归纳。
问题4:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?
五、课后作业。
教科书第106页习题3.4第2、3、7题;1、教师利用复习提问的方式导入,帮助学生掌握列方程解应用题的步骤。
2、教师展示例题,并巡视学生独立完成情况,引导学生分析问题并解决问题。
3、教师展示练习题,引导学生分析问题并解决问题,并巡视。
4、教师通过提问,让学生进行归纳小结。1、学生回忆并独立回答。
2、学生先观看课件,先独立思考,再合作交流解决问题。
3、学生先观看课件并解决问题。
4、学生自主归纳本节课所学内容。
不能解决问题。
教师展示解答过程。
1.进一步熟练掌握有理数加法的法则。
2.掌握有理数加法的运算律,并能运用加法运算律简化运算。
启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。
1.培养学生的分类与归纳能力。
2.强化学生的数形结合思想。
3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。
加法运算律的灵活运用,解决实际问题。
能运用加法运算律简化运算,加法在实际中的应用。
采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。
1.复习有理数的加法法则:
(1)同号两数相加,取相同的`符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
2.口算:7+(-5)(-5)+(-4)(-10)+0(-8)+8。
(一)情境引入,提出问题:
鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。
1.叙述有理数的加法法则.
2.小学学过的加法的运算律是不是也可以扩充到有理数范围?
3.计算下列各组数的值,并观察寻找规律。
(1)(-7)+(-5)(-5)+(-7)。
(2)[8+(-5)]+(-4)8+[(-5)+(-4)]。
(3)[(-7)+(-10)]+(-11);(-7)+[(-10)+(-11)]。
结论:在有理数运算中,加法交换律、结合律仍然成立。
(二)活动探究,猜想结论:
交换律——两个有理数相加,交换加数的位置,和不变.
用代数式表示:a+b=b+a。
运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.
在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示:(a+b)+c=a+(b+c)。
这里a、b、c表示任意三个有理数.
(三)验证结论:
例1计算16+(-25)+24+(-32)。
(引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)。
解:16+(-25)+24+(-32)。
=[16+24]+[(-25)+(-32)](加法结合律)。
=40+(-57)(同号相加法则)。
=-17(异号相加法则)。
例2计算:31+(-28)+28+69。
(引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)。
解:31+(-28)+28+69。
=31+69+[(-28)+28]。
=100+0。
=100。
3.若两个有理数的和为负数,那么这两个有理数()。
a.一定都是负数b.一正一负,且负数的绝对值大。
c.一个为零,另一个为负数d.至少有一个是负数。
4.两个有理数的和()。
a.一定大于其中的一个加数。
b.一定小于其中的一个加数。
c.和的大小由两个加数的符号而定。
d.和的大小由两个加数的符号与绝对值而定。
5.如果a,b是有理数,那么下列各式中成立的是()。
a.如果a0,b0,那么a+b0。
b.如果a0,b0,那么a+b0。
c.如果a0,b0,那么a+b0。
d.如果a0,b0,且|a||b|,那么a+b0。
7.张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比()。
a.增产20kgb.减产20kgc.增长120kgd.持平。
【教学目标】。
1、能运用公式解决比较简单的实际问题,并对简单公式的导出方法有一个初步的认识;
2、会解简单的方程及会利用简易方程解实际问题;
3、初步了解抽象概括的思维方法及特殊与一般的辩证关系。
【知识讲解】。
下面讲述这几点的主要内容:
1、公式。
用字母表示数的一类重要应用就是公式,在小学,我们已经学过许多公式。
如:(1)s=vt(路程公式),(速度公式),(时间公式)。
(2)梯形面积公式:
(3)圆的面积公式:
(4)s圆环=。
2、方程中的.有关概念。
(1)含有未知数的等式叫方程。
(2)使方程左右两边相等的未知数的值,叫方程的解。
(3)求方程的解的过程叫解方程。
3、解方程的依据。
(1)方程两边都加上(或减去)同一个适当的数。
(2)方程两边都乘以(或除以)同一个适当的数。
例1、图示是一个扇环,外圆半径是r,内圆半径是r,扇环的圆心角为n,写出扇环的面积公式,并计算当r=8cm,r=4cm,n=60°时的扇环面积(取3.14,结果取一位小数)。
分析:扇环面积可以看作是环形面积的一部分,因为环形的圆心角是360°,所以圆心角是n的扇环面积是环形面积的。
解:当r=8cmr=4cmn=60°时,
答:扇环的面积约是25.1cm2。
说明:(1)公式计算时单位要一致,计算过程中一般不写单位,最后结果才写出单位,并用括号将单位括起来。
(2)上面所用的求扇环面积的方法体现了数学上的转化思想。一般在计算比较复杂的图形的面积时,都有采用此法,即将复杂的图形转化为几个简单图形的面积的和或差。
例2、一根钢管它的截面是一个圆环,圆环的外圆半径是r=10cm,内圆半径r=8cm,钢管长l=100cm。
3、使学生初步理解数形结合的思想方法。
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。
难点:正确理解有理数与数轴上点的对应关系。
一、从学生原有认知结构提出问题。
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。
二、讲授新课。
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示—5℃。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):
四、小结。
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的`方法。
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。
1.了解算术平方根的概念,会用根号表示数的算术平方根;。
2.会用平方运算求某些非负数的算术平方根;。
3.能运用算术平方根解决一些简单的实际问题.
会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题.
区别平方根与算术平方根。
掌握本章基本概念与运算,能用本章知识解决实际问题.
通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中.
领悟分类讨论思想,学会类比学习的方法.
本章知识梳理及掌握基本知识点.
应用本章知识解决实际与综合问题.
一、知识框图,整体把握。
1.通过构建框图,帮助学生回忆本节所有基本概念和基本方法.
2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等.
二、释疑解惑,加深理解。
1.利用平方根的概念解题。
在利用平方根的概念解题时,主要涉及平方根的`性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数.
例1已知某数的平方根是a+3及2a-12,求这个数.
分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0.解:根据题意可得,a+3+2a-12=0.
解得a=3.
∴a+3=6,2a-12=-6.
∴这个数是36.
负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例.
2.比较实数的大小。
除常用的法则比较实数大小外,有时要根据题目特点选择特别方法.
2.通过结合生活实际的活动,在学习新知的同时培养学生的数学兴趣。
教学过程:
一、导入新课。
出示图,生活中含有角的物体。
师:“你看到了什么?谁能说一说?”
师:“如果请你们再从数学的角度去观察这些物体,你又能发现什么?”
师:“是吗?让我们来看一看。”
师:“果然如此!你观察得真仔细。”
“生活中存在着许许多多的角。通过以往的学习,你已经知道了哪些关角的知识?同桌互相说一说。”
贴上课题“角”,学生交流后回答:略。
师:“仅仅知道这些,你们就满足了吗?”
“那你们还想知道哪些有关角的知识呢?“。
师:“看到同学们这么虚心好学,老师真的是非常高兴。好吧,那今天我们就继续学习有关角的知识。”
二、新课教学。
师:“请大家拿出四张卡片,用水彩笔和尺出画四个不同大小的角。每张卡片画一个。比一比谁画的又好又快!”
学生在卡片上画角。
师:“请组长将大家画的角收集起来,平铺在桌面上。比一比哪一组动作最快!”
师:“下面我们要给这些角分分类。在分类之前,老师要说几点要求:1.每人先要认真的观察这些角。2.为了提高我们小组合作学习的效度,分类前组长一定要带领大家展开充分的讨论,确定分法后再分。3.分好后,每组选一名发言人,准备向大家汇报分类的情况。”
小组合作学习,给角分类。教师巡视,做好记录。
师:“哪一组愿意汇报?”
小组汇报,汇报时请其用三角尺验证。贴出直角。
师:“你们认为他们分的怎么样?”
师:“你能给比直角小的角起一个名字吗?”
学生起名。
师:“在数学上,我们把比直角小的角叫做锐角。”
贴上“锐角”。(钝角同上。)。
师:“对于这些,你们还有什么想问的问题吗?”
学生提问。
师:“通过对角的'分类,我们知道了角可以分成直角、锐角和钝角等几种。”
贴上“的分类”。
三、巩固练习。
师:“请组长将这些角分还给大家。同学们可以在角的旁边写上角的名称。”
学生写角的名称。
师:“写好的人互相说一说你刚才都画了哪些角。”
学生互说,教师指名说。
师:“如果老师给你一些角,你能分辨出是哪种角吗?请大家拿出练习纸,按要求填空。”
请一名学生在实物投影上写。集体订正。
师:“让我们回到生活中的物体。”
点击,回到生活中的物体。
师:“你能用刚才所学的知识,说一说这些角都是什么角吗?”
师:“生活中还有哪些地方有这些角?”
师:“第五个任务需要大家合作完成,大家把三角尺凑在一起试着拼一拼。”
学生合作拼。
师:“能拼成什么角?你愿意上来拼一拼吗?”
学生在黑板上用学具拼。
师:“这个角是由几个什么角拼成的?还有其他的拼法吗?”
四、小结。
师:“通过今天的学习,你又知道哪些有关角的知识?”
初一年级的学生,从思想还是行为上都已经开始走向成熟且有所叛逆的阶段,抓好这个年龄的工作,就必须要有很好的耐心和很正确的班主任工作计划。新的学期,我还将担任初一(5)班班主任,全班41人。我的班主任工作力求从小事入手,从细小处要成绩,从细微处教做人,我的初一班主任工作计划有以下几项:
一、在班级管理中,充分发挥班级干部的作用,用制度说话,为创造良好的学习环境而努力。
1、实行奖罚制度,加强纪律约束。
对迟到、上课纪律不好的学生,因其不能保证正常的上课秩序,实行义务打扫教室卫生,同时对月全勤,学期全勤同学予以奖励。
2、保证提供一个安静舒适的学习环境。
由班长到值周班干到普通学生,及时反馈班级纪律情况,保证自习课的正常进行。
3、保证提供一个清洁整齐的生活环境。
由值周班干,带领本组值日生,责任到人进行每天的值日工作,对不负责的值日生,罚重新值日。
二、学习生活中,保持昂扬向上的心态。
1、密切关注学生思想动向。
人有智力高潮低潮时,情绪也同样,所以要密切关注学生思想,对出现消极悲观的思想学生及时做工作,始终保持乐观进取的心态,对班级整体出现思想波动现象,要及时进行心理疏导,做好心理调整工作。
2、确立目标。
了解学生的阶段学习情况,同时让学生确立下次的目标,通过实现目标,完成目标情况与未完成情况比较,找差距、找原因,以取得进步。
三、注重养成教育,尽力帮助解决学生实际困难。
1、做到生活有节奏,有规律。
督促学生做好计划,合理安排学习时间,处理好闲暇时间,并且形成生活规律,跟上节奏,不要过快,也不要过慢,在一张一弛中调整状态,以最佳的身心投入学习生活。
2、加强家庭与学校的沟通,了解学生生活实际。
了解学生生活实际,学习环境好坏,有无生活困难,适时帮他们解除后顾之忧,全心投入学习生活当中。
初一数学实数教案(优质24篇)
文件夹