最新一次函数应用教学设计(实用15篇)
文件格式:DOCX
时间:2023-12-05 11:05:02    小编:字海

最新一次函数应用教学设计(实用15篇)

小编:字海

博客是一个记录和分享个人观点和经验的平台,它能够帮助我们整理思路。如何写一篇完美的总结,需要我们对自己的表现有清晰的认知。以下是小编为大家收集的总结范文,仅供参考,大家一起来看看吧。

一次函数应用教学设计篇一

用二次函数的性质解决实际问题,特别是最大值、最小值问题.【难点】。

一、创设情境,导入新知师:二次函数有哪些性质?学生回忆.教师提示:结合函数的图象.生:y随x的变化增减的性质,有最大值或最小值.师:很好!我们今天就用二次函数和它的这些性质来解决教材21.1节开关提出的一个实际问题.二、共同探究,获取新知教师多媒体课件出示:。

)a.20元。

b.25元。

c.30元。

)a.20s。

b.2sc.(2+2)s。

;(2)销售额可以表示为。

;(3)所获利润可以表示为。

(4)当销售单价x是。

元时,可以获得最大利润,最大利润是。

二次函数历来是初三学生要重点掌握的数学知识,尤其是二次函数的最值问题及在生活中的应用,更是中考尤其是压轴题中常见的题型.二次函数在知识上的难度较大,且具有特殊地位,二次函数的应用中渗透了数学建模的思想,使学生感受实际生活中的相关量之间的二次函数关系,并且通过求利益最大化的实例让学生再一次感受到了数学的实用性.在求利润时,因为有些问题比较相似,为避免学生混淆,我强调了不同问题的区别.在求最值时,在实际问题的最值点可能不是函数在全体实数范围内的极值点求到的,所以要学生注意自变量的取值范围.

一次函数应用教学设计篇二

在学习了正比例函数的概念之后进行一次函数的概念学习,学生还是比较有信心学好的。

课例根据教材的安排,通过设计经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系;通过思考题来不断细化教材,达到层层铺垫、分层递进的目的。

1.理解一次函数和正比例函数的概念;通过类比的方法学习一次函数,体会数学研究方法多样性。

2.根据实际问题列出简单的一次函数的表达式.找出问题中的变量并用字母表示是探求函数关系的第一步。

3.本节课重点讲授了运用函数的关系式来表达实际问题,通过引导分析,感觉学生收获比较大。

另外,写出函数的关系式,学生比较困难,本节课也存在可以不断提高完善的地方。

一次函数应用教学设计篇三

《一次函数的应用》这节课的教学内容是湘教版版八年级数学上册第二章第三节的内容。本节课讨论了一次函数的某些应用,在这些实际应用中,备课时注意到与学生的实际生活相联系,切实发生在学生的身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。本节的主要内容是让学生逐步形成用函数的观点处理问题意识,体验数形结合的思想方法。

教学时,能够达到三维目标的要求,突出重点把握难点。能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例。用函数的观点处理实际问题的关键在于分析实际情境,建立函数模型,并进一步提出明确的数学问题,注意分析的过程,即将实际问题置于已有的知识背景之中,用数学知识重新理解(这是什么?可以看成什么?),让学生逐步学会用数学的眼光考察实际问题。同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想。

具体分析本节课,首先简单的用几分钟时间回顾一下一次函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、价格这样的实际问题,通过在速度一定的条件下路程与时间的关系,总价在单价一定的情形下,总价与数量的关系这几个例题,认识到一次函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,如在建立一次函数模型进行预测的问题时,问学生:“你知道今年奥运会的撑杆跳高的记录是多少?你能对它进行预测吗?”,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。

在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关一次函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用一次函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

这节课如果能利用多媒体课件幻灯片的方式展示出来,例题的展示将会更快点,整节课将会更加丰满。当然,在教学实施中我也考虑到了这一点,所以在讲解例题的时候将每个例题的要点以简短的板书形式展示出来,在一定程度上也节省了时间。

一次函数应用教学设计篇四

(一)教学知识点。

1、经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

(二)能力训练要求。

1、激发学生在已有知识的基础上,进一步探索新知识的欲望。

1、调动学生参与数学活动的积极性,体验数学活动充满着探索性和创造性。

2、培养学生在学习过程中良好的情感态度,主动参与、合作、交流的意识,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。

教学重点建立反比例函数的模型,进而解决实际问题。

教学难点经历探索的过程,培养学生学习数学的主动性和解决问题的能力。

二、教学过程分析。

第一环节复习回顾。

活动目的:以提问的方式引导学生复习反比例函数的图象与性质。

活动过程:反比例函数:当k0时,两支曲线分别在,在每一象限内,y的值随x的增大而。

当k。

活动目的:多媒体给出情境材料,引起学生的兴趣,体现数学的现实性。活动过程:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。你能解释他们这样做的道理吗?(见书p143)。

(3)如果要求压强不超过6000pa,木板面积至少要多大(4)在直角坐标系中,作出相应的函数图象。

(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。

活动过程:做一做。

2.如图,正比例函数y=k1x的图象与反比例函数k2y=x的图象相交于a,b两点,其中点a的坐标为(3,23).(1)分别写出这两个函数的表达式:

活动目的:用函数观点来处理实际问题的应用,加深对函数的认识。活动过程:练习。

(3)写出t与q之间的关系;。

活动目的:通过老师小结,带领学生回顾反思本节课对知识的研究探索过程,提炼数学思想,掌握数学知识。

活动过程:今天这节课学习了什么?你掌握了什么?

生:这节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题今天学习了反比例函数的应用,讲了四个类型:

第六环节作业布置。

课本146页习题5.41,2。

三、教学反思。

本节课采用引导、启发及问题讨论相结合的教学方式,引导学生从已有的知识和生活经验出发,师生共同探究解决新问题的途径和方法。这一过程中,充分发挥教师的主导作用,学生的主体作用,教材的主源作用,旧知识的迁移作用,学生之间的相互作用,从而师生得到共同发展。

一次函数应用教学设计篇五

这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到一次函数的性质。花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受一次函数性质是困难的。要想让学生真正理解和掌握一次函数的性质就必须放手让学生进行探究,让学生在探究中获得感性认识,同时只有放手让学生自我探究,潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。

在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。要实现此目的:首先,要设计适合学生探究的素材。教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。如果牵强的引出来,不一定是好事。其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。

最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火花的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,如本课例中的“走向”问题,“同向变化”等,这为函数性质的得出做了很好的铺垫。要彻底抛弃“唯书论”“唯师论”,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。在教学设计中,要预设多种意外和可能,这样探究真知的过程虽然会艰辛但展开顺利,这才是一个成功的组织者。

但是,本节课也难免有许多不足之处,我本人认为:我关注学生还是不够,尤其对学生的反馈不能作到有效的和准确的指导和引导;讲的还是有点多,老不敢放手让学生自己去经历独学、对学和小组学习的过程,给学生思考和活动的时间和机会还是较少有的学生看似听课,其实思维根本就没有参与进来,从而影响了课堂效益的最大化。

我会继续努力,不断改进,是自己的课堂更加精彩!

一次函数应用教学设计篇六

1.理解函数的概念,了解函数三要素.2.通过对函数抽象符号的理解与使用,使学生在符号表示方面的水平得以提升.3.通过函数定义由变量观点向映射观点得过渡,使学生能从发展与联系的角度看待数学学习.教学重点难点:重点是在映射的基础上理解函数的概念;难点是对函数抽象符号的理解与使用.教学用具:投影仪教学方法:自学研究与启发讨论式.教学过程:

一、复习与引入今天我们研究的内容是函数的概念.函数并不象前面学习的集合,映射一样我们一无所知,而是比较熟悉,所以我先找同学说说对函数的理解,如函数是什么?学过什么函数?(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)学生举出如等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生.提问1.是函数吗?(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是能够可做.)教师由此指出我们争论的焦点,其实就是函数定义的不完善的地方,这也正是我们今天研究函数定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化.二、新课现在请同学们打开书翻到第50页,从这开始阅读相关的内容,再回答我的问题.(约2-3分钟或开始提问)提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.学生的回答往往是把书上的定义念一遍,教师能够板书的形式写出定义,但还要引导形式发现定义的本质.(板书)2.2函数一、函数的概念1.定义:如果a,b都是非空的数集,那么a到b的映射就叫做a到b的函数,记作.其中原象集合a称为定义域,象集c称为值域.问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)引导学生发现,函数是特殊的映射,特殊在集合a,b必是非空的数集.2.本质:函数是非空数集到非空数集的映射.(板书)然后让学生试回答刚才关于是不是函数的问题,要求从映射的角度解释.

而(3)定义域是,值域是,法则是乘2减1,与完全相同.求解后要求学生明确判断两个函数是否相同应看定义域和对应法则完全一致,这时三要素的又一作用.(2)判断两个函数是否相同.(板书)下面我们研究一下如何表示函数,以前我们学习时虽然会表示函数,但没有相系统研究函数的表示法,其实表示法有很多,不过首先应从函数记号说起.4.对函数符号的理解(板书)首先让学生知道与的含义是一样的,它们都表示是的函数,其中是自变量,是函数值,连接的纽带是法则,所以这个符号本身也说明函数是三要素构成的整体.下面我们举例说明.例例33已知函数试求(板书)分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再实行计算.含义1:当自变量取3时,对应的函数值即;含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.计算之后,要求学生了解与的区别,是常量,而是变量,仅仅中一个特殊值.最后指出在刚才的题目中是用一个具体的解析式表示的,而以后研究的函数不一定能用一个解析式表示,此时我们需要用其他的方法表示,具体的方法下节课再进一步研究.三、小结1.函数的定义2.对函数三要素的理解3.对函数符号的理解四、作业(略)。

一次函数应用教学设计篇七

本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。

学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。

根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式,并理解确定正比例函数表达式的方法和条件。

设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题、并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。

通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。

通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。

根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。

以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家。

一次函数应用教学设计篇八

教学目标:

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

4、体会数学从实践中来又到实际中去的研究、应用过程;

5、培养学生的观察能力,及数学地发现问题,解决问题的能力.教学重点:

结合图象分析总结出反比例函数的性质;

教学用具:直尺。

教学方法:小组合作、探究式。

教学过程:

我们在小学学过反比例关系.例如:当路程s一定时,时间t与速度v成反比例。

即vt=;

当矩形面积s一定时,长a与宽b成反比例,即ab=。

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(s是常数)。

(s是常数)。

解:列表。

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习。

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)。

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小.同样可以推出的图象的性质.(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.函数的图象性质的讨论与次类似.4、小结:

一次函数应用教学设计篇九

1、本节课首先从最简单的正比例函数入手、从正比例函数的定义、函数关系式、引入次函数的概念。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

3、学生认知障碍点:根据问题信息写出一次函数的表达式。

1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

2、会根据已知信息写出一次函数的表达式。

一次函数应用教学设计篇十

过程与方法。

(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。

情感与态度。

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

教学重点。

教学难点。

数形结合和数学转化的思想意识。

教学准备。

教具:多媒体课件、三角板。

学具:铅笔、直尺、练习本、坐标纸。

教学过程。

第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。

内容:

1.方程x+y=5的解有多少个?是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。

内容:

1.解方程组。

2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。

第三环节典型例题(10分钟,学生独立解决)。

探究方程与函数的相互转化。

内容:例1用作图像的方法解方程组。

例2如图,直线与的交点坐标是。

第四环节反馈练习(10分钟,学生解决全班交流)。

内容:

1.已知一次函数与的图像的交点为,则。

2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。

(a)4(b)5(c)6(d)7。

3.求两条直线与和轴所围成的三角形面积。

4.如图,两条直线与的交点坐标可以看作哪个方程组的解?

第五环节课堂小结(5分钟,师生共同总结)。

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

2.方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;

(2)两条直线的交点坐标是对应的方程组的解;

(1)代入消元法;

(2)加减消元法;

(3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。

第六环节作业布置。

习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。

一次函数应用教学设计篇十一

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的。

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决。

1、教学目标。

知识与技能目标。

(1)初步理解二元一次方程和一次函数的关系;

(2)掌握二元一次方程组和对应的两条直线之间的关系;

(3)掌握二元一次方程组的图像解法。

过程与方法目标。

(2)通过做一做引入例1,进一步发展学生数形结合的意识和能力。

(3)情感与态度目标。

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

2、教学重点。

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系。

3、教学难点。

数形结合和数学转化的思想意识。

1、教法学法。

启发引导与自主探索相结合。

2、课前准备。

教具:多媒体课件、三角板。

学具:铅笔、直尺、练习本、坐标纸。

本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立方程与函数图像的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置。

第一环节:设置问题情境,启发引导。

内容:1.方程x+y=5的解有多少个?是这个方程的解吗?

2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y=相互转化,启发引导学生总结二元一次方程与一次函数的对应关系。

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识。

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系。顺其自然进入下一环节。

第二环节自主探索方程组的解与图像之间的关系。

内容:1.解方程组。

2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础。

效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力。

第三环节典型例题。

探究方程与函数的相互转化。

内容:例1用作图像的方法解方程组。

例2如图,直线与的交点坐标是。

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解。通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理。这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫。

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。

第四环节反馈练习。

内容:1.已知一次函数与的图像的交点为,则。

2、已知一次函数与的图像都经过点a(2,0),且与轴分别交于b,c两点,则的面积为()。

(a)4(b)5(c)6(d)7。

3、求两条直线与和轴所围成的三角形面积。

4、如图,两条直线与的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况。

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性。

第五环节课堂小结。

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1、二元一次方程和一次函数的图像的关系;

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

2、方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;

(2)两条直线的交点坐标是对应的方程组的解;

3、解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用。

第六环节作业布置。

习题7.7。

附:板书设计。

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解。因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题。

一次函数应用教学设计篇十二

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

情感与态度目标。

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

重点:二元一次方程的概念及二元一次方程的解的概念。

难点。

1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

创设情境导入新课。

1、一个数的3倍比这个数大6,这个数是多少?

师生互动探索新知。

1、发现新知。

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)。

2、巩固新知。

相同点:方程两边都是整式,含有未知数的项的次数都是一次。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

它山之石可以攻玉,以上就是为大家带来的3篇《一次函数与二元一次方程课教学设计》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。

一次函数应用教学设计篇十三

1、问题导入:

请同学们思考后回答:

(1)找出问题中的变量并用字母表示,列出函数关系式、

(2)这两个函数关系式有什么共同点?自变量的取值范围各有什么限制?

以上这些问题,请各小组讨论一下,派代表回答、引出课题(板书课题)教师最后总结一次函数的概念、(板书)。

1、做一做:

我们已经学习了用描点法画函数的图象,请同学运用描点法画出下列函数的图象(老师用多媒体打出题目)。根据学生的动手实践、观察与讨论,得出结论:一次函数的图象是一条直线、特别地,正比例函数的图象是经过原点的一条直线。

2、接下来教师提问:

(1)观察所画出的四个一次函数的图象,比较各对一次函数的图象有什么共同点,有什么不同点。

4、巩固训练:

(1)在同一平面直角坐标系中画出下列函数的图象。

将直线向上平移5个单位,得到直线_______________________、

(由学生到前板演)、

函数反映了客观世界中量的变化规律,那么一次函数又有什么性质呢?

1、请同学们来一起观察大屏幕上函数图象(教师用多媒体演示函数的图象),并回答:当一个点在直线上从左右移动时,它的位置如何变化?你能从中得到函数值的变化与自变量的变化规律吗?(教师运用现代化的教学手段来演示点的移动情况,进一步促进了学生对一次函数的变化规律理解)由学生讨论出结果:也就是说,函数值随自变量的增大而增大、(教师板书)。

一次函数应用教学设计篇十四

作为一位杰出的教职工,编写教学设计是必不可少的,教学设计是把教学原理转化为教学材料和教学活动的计划。那么优秀的教学设计是什么样的呢?以下是小编为大家收集的二元一次方程与一次函数教学设计,欢迎阅读与收藏。

2、能根据一次函数的图像求二元一次方程组的近似值。

1、用作图像法求二元一次方程组的近似值。

1、做图像时要标准、精确,近似值才接近。

先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

问题1、

(1)方程x+y=5的解有多少组?写出其中的几组解。

(3)在一次函数y=5—x的图像上任取一点,它们的坐标适合方程x+y=5吗?

(5)由以上的探究过程,你发现了什么?

问题2、

(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

合作探究:

(1)用做图像的方法解方程组。

(2)用解方程的方法求直线y=4—2x与直线y=2x—12交点。

一次函数应用教学设计篇十五

2、内容解析:教材的地位和作用:本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

1、教学目标的确定。

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

知识目标。

(1)能用两点法画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

能力目标。

(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

情感目标。

(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

2、教学重点、难点。

用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

恰当运用现代教育技术手段,采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

(一)、设疑,导入新课(2分钟)。

通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?一次函数的图象。(板书课题)。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
最新一次函数应用教学设计(实用15篇) 文件夹
复制