2024年必修一数学教案(大全11篇)
文件格式:DOCX
时间:2023-12-05 14:10:09    小编:纸韵

2024年必修一数学教案(大全11篇)

小编:纸韵

教案是教师为指导教学设计的一种规范化的工具,它包括教学目标、教学内容、教学方法、教学步骤以及评价方法等内容,是教师实施教学的重要参考依据。教案中的示例和练习要贴近学生的实际生活和学习环境,增强学习的实效性。探究式教学是一种有效的教学方法,在教案中可以运用的案例很多。

必修一数学教案篇一

教学目标。

3.让学生深刻理解向量在处理平面几何问题中的优越性.

教学重难点。

教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.

教学难点:如何将几何等实际问题化归为向量问题.

教学过程。

由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。

思考:

运用向量方法解决平面几何问题可以分哪几个步骤?

运用向量方法解决平面几何问题可以分哪几个步骤?

“三步曲”:

(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;。

(3)把运算结果“翻译”成几何关系.

必修一数学教案篇二

掌握三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

教学重难点。

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程。

一、练习讲解:《习案》作业十三的第3、4题。

(精确到0.001).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

三、小结:1、三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

四、作业《习案》作业十四及十五。

必修一数学教案篇三

人教版语文必修1-5册通假字(人教版高二必修)。

1今老矣,无能为也已矣。

2行李之往来,共其乏困供。

3夫晋,何厌之有餍。

4秦伯说,与郑人盟悦。

5失之所与,不知智。

6秦王必h见臣悦。

7今日往而不反者,竖子也返。

8燕王诚振怖大王之威震。

9秦王还柱而走环。

10群臣惊愕,卒起不意,尽失其度猝。

11距关,毋内诸侯,拒纳。

12张良出,要项伯邀。

13愿伯具言臣之不敢倍德也背。

14旦日不可不蚤自来谢项王早。

15令将军与臣有s隙。

16因击沛公于坐座。

17匪来贸丝,来即我谋非。

18于嗟鸠兮,无食桑葚吁。

19士之耽兮,犹可说也脱。

20淇则有岸,隰则有泮畔。

21凉婢囟改错措。

22饔粢赜髻奄郁悒。

23何方圜之能周兮圆。

24进不入以离尤兮罹。

25芳菲菲其弥章彰。

26箱帘六七十奁。

27蒲苇纫如丝韧。

28契阔谈宴。

29取诸怀抱,悟言一室之内晤。

30冯虚御风凭。

31长乐王回深父甫。

32所守或匪亲非。

33则无望民之多于邻国也毋。

34无失其时毋。

35颁白者不负戴于道路矣斑。

36涂有饿莩而不知发途。

37以为轮。

38虽有槁暴又。

39合从缔交,相与为一纵。

40师者,所以传道受业解惑也授。

41或师焉,或不焉否。

42一尊还酹江月樽。

43秦王以十五城请易寡人之璧,可予不否。

44拜送书于庭廷。

45召有司案图按。

46秦自公以来二十余君穆。

47唯大王与群臣孰计议之熟。

48畔主背亲叛。

49与旃毛并咽之毡。

50掘野鼠去草食而食之l。

51空自苦亡人之地无。

52信义安所见乎现。

53王必欲降武,请毕今日之o欢。

54因泣下衿,与武决去诀。

55乃瞻衡宇横。

56景翳翳以将入影。

57俨骖w于上路严。

58云销雨霁消。

59北冥有鱼溟。

60小知不及大知,小年不及大年智。

61汤之问棘也是已矣。

62此小大之辩也辨。

63德合一君,而征一国者耐。

64御六气之辩变。

65臣以险衅,夙遭闵凶悯。

66零丁孤苦,至于成立伶仃。

67常在床蓐,臣侍汤药褥。

68祖母今年九十有六又。

必修一数学教案篇四

1.阅读课本练习止。

2.回答问题:

(1)课本内容分成几个层次?每个层次的中心内容是什么?

(2)层次间的联系是什么?

(3)对数函数的定义是什么?

(4)对数函数与指数函数有什么关系?

3.完成练习。

4.小结。

二、方法指导。

1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

2.本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开,同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质。

一、提问题。

1.对数函数的自变量和函数分别在指数函数中是什么?

2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

3.是否所有的函数都有反函数?试举例说明。

二、变题目。

1.试求下列函数的反函数:

(1);(2);(3);(4)。

2.求下列函数的定义域:。

(1);(2);(3)。

3.已知则=;的定义域为。

1.对数函数的有关概念。

(1)把函数叫做对数函数,叫做对数函数的底数。

(2)以10为底数的对数函数为常用对数函数。

(3)以无理数为底数的对数函数为自然对数函数。

2.反函数的概念。

在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数。

3.与对数函数有关的定义域的求法:

4.举例说明如何求反函数。

一、课外作业:习题3-5a组1,2,3,b组1,

二、课外思考:

1.求定义域:

2.求使函数的函数值恒为负值的的取值范围。

必修一数学教案篇五

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,

位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的'关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

1.1正弦定理和余弦定理(约3课时)

1.2应用举例(约4课时)

1.3实习作业(约1课时)

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

必修一数学教案篇六

1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数确定的。

(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的`前几项。

2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。

3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。

(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。

(6)给出一些简单数列的通项公式,可以求其项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。

必修一数学教案篇七

1.古人见面常用的礼仪是拜礼和揖礼。前者主要以叩头跪拜为主,后者则以拱手示意为主。

2.座次:坐西向东为尊,其次是坐北朝南,再次是坐南朝北,最卑是坐东朝西。3.银河:又叫银汉、天汉、星汉、河汉、云汉、星河。

4.五岳:东岳泰山、西岳华山、南岳衡山、北岳恒山、中岳嵩山。

5.五湖:太湖、鄱阳湖、青草湖、丹阳湖、洞庭湖。

6.趋:从长者尊者前面走过,要小步快走,以示敬意,叫“趋”。

7.三吴:吴兴郡、吴郡、会稽郡。

8.三楚:西楚、东楚、南楚。

9.古人纪年:干支纪年和帝王纪年。干支纪年是十天干和十二地支依次两两相配而成得一种纪年方法。帝王纪年是按照帝王即位的年次或年号来纪年(明清两代)的方法。

10.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸。

11.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥。

12.古人纪月:序数纪月和特殊称谓纪月。每季用孟、仲、季区分。用朔(初一)、望(十五)、晦(月末)等名称标识日期。

夜半丙夜三更23-1鸡鸣丁夜四更1-3平日戊夜五更3-5。

14.名:古代婴儿出生几个月后,一般由父亲命名。

15.字:是20岁举行加冠仪式后才起的,标志着成人。字是对名的解释和补充,对名有表述、阐释作用,因此又叫“表字”。有的字与名相近相成,也有的相反相成。

16.号:是一种固定的别名,又叫“别号”。

17.谥号:古代帝王、诸侯、高官大臣、贵族及其他有地位的人死后,根据其生前的品德来定的,带有或褒或贬或同情的称号。

18.古人自称名,称人称字,这是基本的礼貌。

19.《周易》把礼仪分为五类:

吉礼:有关祭祀的,包括祭祀自然、神、祖先。凶礼:有关丧葬的,包括凭吊各种天灾人祸。

军礼:有关军事活动的。宾礼:有关外交活动的,包括朝、聘、会、盟等国事活动。

嘉礼:有关个人成长和交往以及王位承袭的,包括冠礼、婚礼、宴饮之礼、养老礼等。

侯晓旭。

必修一数学教案篇八

教学目标。

1、理解平面向量的坐标的概念;。

2、掌握平面向量的坐标运算;。

3、会根据向量的坐标,判断向量是否共线.

教学重难点。

教学重点:平面向量的坐标运算。

教学难点:向量的坐标表示的理解及运算的准确性.

教学过程。

平面向量基本定理:。

什么叫平面的一组基底?

平面的基底有多少组?

引入:。

1.平面内建立了直角坐标系,点a可以用什么来。

表示?

2.平面向量是否也有类似的表示呢?

必修一数学教案篇九

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型·。

·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。

一、练习讲解:《习案》作业十三的第3、4题。

(精确到0·001)·。

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

三、小结:1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型·。

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。

四、作业《习案》作业十四及十五。

必修一数学教案篇十

引用:本文《高中化学必修二教案(人教版)》来源于师库网,由师库网博客摘录整理,以下是的详细内容:开发利用金属矿物和海水...《基本营养物质》教案化学反应的速率和限度化学能与热能化学与资源综合利用、环...最简单的有机化合物dd...《生活中两种常见的'有机...来自石油和煤的两种基本...引用:师库网温馨提示本篇内容来源于师库网,旨在用于课件制作交流,非盈利性质,仅供参考,针对本文的问题如需了解更详细,可留言或者联系客服tags:教案、课件、师库网、教案网、课件网

必修一数学教案篇十一

1.掌握数轴的三要素,能正确画出数轴。

2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。

【过程与方法】经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系。

【情感态度与价值观】感受数形结合的.思想方法;

【教学重点】会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

【教学难点】利用数轴比较有理数的大小。

(一)创设情境,引入课题。

(1)(出示投影1)问题:三个温度计所表示的温度是多少?

学生回答.。

(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

(二)得出定义,揭示内涵。

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):

(1)画直线,取原点。

(2)标正方向。

(3)选取单位长度,标数(强调:负数从0向左写起)。

概念:规定了原点、正方向和单位长度的直线叫做数轴。

(三)强化概念,深入理解。

1、下列图形哪些是数轴,哪些不是,为什么?

学生回答,相互纠正,理解数轴三要素,巩固数轴概念。

2、学生自己在练习本上画一个数轴。教师在黑板上画。

(四)动手练习,归纳总结。

1、在数轴上的点表示有理数。

一个学生在黑板上完成,其他同学在自己所画数轴上完成。

明确“任何一个有理数都可以用数轴上的一个点来表示”

2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育。

3、通过数轴比较有理数的大小。观察类比温度计回答问题。

(1)在数轴上表示的两个数,(右)边的数总比(左)边的数大;

(2)正数都(大于)0,负数都(小于)0;正数(大于)一切负数。

例1、比较下列各数的大小:-1.5,0.6,-3,-2。

巩固所学知识。

(五)、归纳小结,强化思想。

师生总结本课内容。

1、数轴的概念,数轴的三要素。

2、数轴上两个不同的点所表示的两个有理数大小关系。

3、所有的有理数都可以用数轴上的点来表示。

师:你感到自己今天的表现怎样?

习题2.21、2、3。

选作第4题。

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
2024年必修一数学教案(大全11篇) 文件夹
复制