最新长方体和正方体体积教学设计
文件夹
总结是对工作、学习、生活等方面的一个及时概括。如何克服困难和挫折是每个人都需要面对和应对的挑战。以下是健身教练总结的保持健康的的方法和技巧,请大家按部就班。
教学目标:
2、能运用长、正方体的体积计算解决一些简单的实际问题。
3、培养学生归纳推理,抽象概括的能力。
教学重点和难点。
教学用具。
(一)复习准备。
1.提问:什么是体积?常用的体积单位有哪些?
2.请每位同学拿出4个1厘米3的正方体,摆成一个长方体。
教师:这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)。
教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。如果想知道我们这间教室的体积应该怎么办呢?(引导学生理解有的物体是不能切开的,能不能运用学过的知识来解决。)能不能通过测量、计算来求出教室的体积呢?今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)引导探索。
师:“要想求长方体的体积,你们猜想可能与什么有关呢?”
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。
进一步验证:同桌合作,用小正方体摆出自己喜欢的长方体,看看长方体的体积是否等于长、宽、高的乘积。
教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书:v=abh。
(2)练习:(学生口答。)出示老师的长方体教具,给出长、宽、高,求体积。
师:现在老师测量了教室的长是7、5米,宽是6米,高是3米,教室的体积是多少,你们知道吗?学生快速计算。
学生口答,老师板书:正方体体积=棱长×棱长×棱长。
用字母表示公式:用v表体积,a表示棱长,公式可写成:v=a·a·a或者v=a3。
(2)教学例2。
学生试做,指名板演。
做一做:出示老师的正方体的教具,求体积。(学生口答)。
(三)巩固反馈。
练习七5、6题。
(四)课堂总结。
文档为doc格式。
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。
教学及训练。
重点。
理解底面积。
仪器。
教具。
投影仪。
教学内容和过程。
教学札记。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的.体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:v=sh。
三、巩固练习。
1.做第20页的“练一练”。学生独立做后,学生讲评。
首先帮助学生理解:什么是横截面?再让学生做后学生讲评。
3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后练习。
做练习三的第11、12、13题。
教学目标:
知识与技能:
经历对长方体和正方体的知识系统化的整理,加深对长方体正方体的形体特征的认识,分清表面积和体积的概念,能熟练地掌握形体的表面积和体积(容积)的计算,解决一些实际问题。
解决问题:
初步学会用形体知识提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展学生应用意识、实践能力与创新精神。
情感与态度:
通过解决实际问题,让学生感受到数学与生活的密切相关,使学生形成积极参与数学教学活动,并积极与人合作获得成功的体验,树立学好数学的信心与勇气。
教学过程:
一、假设问题情境,激发学习兴趣。
开展生生之间、师生之间对话,教师要引导注意安全与游泳前的准备运动等等的相关的内容。
指名学生回答,也可让学生小组讨论交流后反馈,由学生各抒己见。教师要注意凡学生提出的问题都要给于一定的评价性的肯定,同时要注意正确思想的引导。
二、自主合作整理,构建知识网络。
让学生每四人一组小组动手合作列出知识纲要。
小组的成果开展反馈并给于展示(可借投影仪)。
三、综合应用知识,解决实际问题。
师述:现在在请你们为学校设计建游泳池的方案?
你们认为建游泳池要解决哪些问题呢?
学生讨论说一说。
出示教师的几个问题:
(1)游泳池的长宽高各是多少米?
(2)池占地多大?
(3)挖出多少的土?
(4)池内的四周和底部用什么铺,要铺多大的面积?
(5)要放入多少的水?
小组反馈合作的结果。
四、开展激励评价,体验成功喜悦。
师述:你们说一说哪种好呢?
第9课时实践活动粉刷围墙。
教学目标。
1、让学生经历粉刷围墙的实践活动,巩固有关表面积等方面的知识,加强数学知识在实际生活中的应用。
2、在引导学生准备测量、明确分工、解救问题的过程中,培养学生的合作意识,提高学生收集、整理、分析信息的能力。
3、在利用数学知识制定方案的过程中,体验数学知识与生活的紧密联系,并利用数学知识科学地知道生活,感受成功。
教学重点。
整理分析和比较信息,制定方案。
教学难点。
策略多样化后的优化策略。
教学过程。
一、情境再现,激趣导入。
师:(课件出示围墙的污点和裂缝)大家看到这些图片想说些什么?(生争相发言)老师听出来大家都根热爱我们的学校,看来粉刷围墙势在必行。这节课我们一定要拿出一份可行的方案,解决这个问题。(板书题目:粉刷围墙)。
二、集体规划,确定步骤。
1、确定研究步骤。
作为粉刷围墙工作的小工程师,你认为应分哪几步去完成这项工作呢?(生回答)。
2、根据学生回答,教师引导学生确定研究步骤。
(1)调查相关数据信息(包括粉刷面积、涂料费用、人工费用等)。
(2)选择信息综合计算,得出粉刷草案。
(3)整理研究结果,呈现出书面粉刷方案。
三、引导学生汇报课前调查情况。
师:课前各组已经分头去调查了相关的粉刷信息,请大家以组为单位汇报搜集到的信息,其他小组有不同意见可以互相补充。
1、分组汇报。
(1)调查粉刷面积的小组汇报调查结果,明确围墙的长、高,并汇报计算面积的准确过程。
(2)调查涂料价目的小组汇报外墙涂料价目调查情况。
(3)调查人工费用的小组汇报人工费用调查情况。
2、指导学生计算人工费用及涂料数量。
(1)学生独立计算人工费用及涂料数量。
(2)集体订正。
四、小组合作,制订粉刷方案。
涂料型号不同,价格也不同,到底该选择哪种涂料?一共要花多少钱?怎样做才能有实用有美观呢?请各小组同学合作,拿出你们认为最好的粉刷计划。
1、小组合作综合分析。
2、小组为单位进行汇报,体现策略多样化,展示学生的多种方案。
3、优化选择。
4、学生独立计算买已选涂料粉刷一共需要的费用。
5、书面整理并呈现粉刷围墙的方案。
6、对方案的润色和个性化设计。
五、课外延伸,完美计划。
六、全课总结,感受成功。
1、在操作中,感知出长方体的体积大小与它的长、宽、高等有关,长方体的体积。
2、能运用长、正方体的体积公式,计算长、正方体的体积。并能运用所学知识解决一些实际问题。
3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。
体积公式的运用及公式的推导过程。
体验公式的推导过程。
一、比较大小,复习引入。
1、比一比。出示书包、文具盒。问:谁大?谁小?
其实刚才我们在比他们的什么?体积指的是什么?
2、说出下列图形的体积是多大?你是怎么想的?(都是有棱长为1分米的正方体拼成的)。
小结:要知道一个物体的体积,只要知道这个物体含有多少个这样的体积单位。
3、出示橡皮。问:什么形状?它有体积吗?体积多大?请你估一估,猜猜它有多大?
4、揭示课题。
二、动手操作,感知认识。
还有不同的摆法吗?(学生边说,老师边演示四种不同的摆法)。
3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?
三、启发探究,自主建构。
1、出示长5分米、宽3分米、高2分米的长方体。
问:要摆成这样的长方体需要多少个棱长为1分米的正方体?体积是多少立方分米?你能利用手中的学具摆一摆吗?(开始活动,发现不够摆)。
问:不够,怎么办?你能在头脑中想象,把它补充完整吗?(又开始活动)。
2、汇报交流。并演示摆的过程。
3、出示长8分米、宽4分米、高3分米的长方体。你能摆这个吗?
4、听要求摆。
(1)自己摆一个长6分米、宽3分米、高2分米的长方体,并说说它的体积。
(2)想象一个9米、宽7米、高4米的长方体,并说说它的体积。
5、思考总结。体积与长、宽、高有怎样的关系呢?并快速验证黑板上的数据。
四、解决疑难,运用拓展。
1、解决橡皮的体积。要求它的体积,需要知道什么?师提供测量数据,让学生求体积。
2、自己求数学书的体积。
3、出示:亚光纸箱厂生产一种正方体纸板箱,棱长是8分米。体积是多少立方分米?
五、全课总结。
课题三:
教学要求在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。
教学重点理解底面积。
教学用具投影仪。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v=sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
教学目标。
知识与技能。
(1)在理解底面积的基础上,使学生掌握长方体和正方体体积统一计算公式。
(2)提高学生综合运用知识的能力,发展学生的空间观念。
过程与方法。
(2) 通过解决实际问题加深对所学知识的理解。
情感态度与价值观。
(1)体验合作探究的乐趣。
(2)感受数学与现实生活的密切联系,发展学生的思维。
教学重点 理解底面积的含义,统一公式的推导。
教学准备 课件。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由 确定的。
(2)长方体的体积= 。
(3)正方体的体积= 。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v = sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
旁批:
后记:
1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。
2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。
3、运用体积计算公式解决一些简单的实际问题。
4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。
2、教学重点/难点。
教学重点:引导学生探索长方体体积的计算方法。
教学难点:理解长方体体积公式的意义。
3、教学用具。
教学课件、一个长方体拼制模型。
4、标签。
一、启发谈话,激趣引入。
二、学习“体积”、“体积单位”的概念。
2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?
演示书上的实验,得出:土豆占的空间小,石块占的空间大。
4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。
5、学生汇报:
(1)常用的体积单位。
(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。
(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。
6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。
得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。
2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。
3、小组合作:学生四人一小组操作并做好实验记录。
思考:
(1)每排摆几个?每层摆了几排?摆了几层?
(2)一共摆了多少个小正方体?
(3)这个图形的体积是多少?
4、汇报实验结果。
每排个数。
每层排数。
层数。
小正方体个数。
让学生观察表格中填写的各数,你发现了什么?
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
6、学生汇报,交流,板书。
读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。
生:正方体是长、宽、高都相等的特殊的长方体。
2、师生共同归纳:正方体的体积=棱长×棱长×棱长。
用字母表示为:v=a×a×a=a3。
师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。
3、应用公式:
例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。
回顾一下,今天的学习大家有什么收获?
课后习题。
(1)。一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘。
米。()。
米)()。
(3)。棱长6厘米的正方体,表面积和体积一样。
大。()。
板书。
物体所占空间的大小,叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
v=abh。
v=a×a×a=a3。
义务教育课程标准实验教科书数学五年级下册第三单元《长方体和正方体的体积》,教材41页42页。
学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。
2.培养学生实际操作能力,同时发展他们的空间观念;
3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
探索长方体体积的计算方法。
挂图,若干个1立方厘米小正方块
1立方厘米的正方体16块
一、创设情境,揭示课题
1、实物引入
上节课,我们认识了体积和体积单位,谁来说说什么是体积,体积单位有哪些呢?
根据学生回答,其他学生也动手摆。
如果再拼上一个1立方厘米的正方体,它的体积又是多少呢?(学生操作)。
再拼上一个1立方厘米的正方体,这个长方体就含有5个1立方厘米的正方体,它的体积就是5立方厘米。
2、揭示课题,可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们就来学习怎样计算长方体和正方体的体积。(板书:长方体和正方体的体积)
二、猜想验证,探究新知
1、提出猜想
你能不能摆出一个长方体,并计算它的体积?出示表格。学生四人一小组,每组一张表格。
长宽 高正方体个数体积
长方体1
长方体2
长方体3
长方体4
请同学们一小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。
学生活动,师巡视。小组汇报?学生黑板前展示表格,并做详细汇报。 引导学生观察表格:观察表格中的数据,从中你能发现什么呢?通过观察比较,同学们有了一个大胆的猜想:长方体的体积等于它的长、宽、高的乘积。这个猜想是否正确呢?我们还要进一步研究。
(板书:)长方体的体积=长×宽×高。
2、验证猜想
用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。
1、长4厘米,宽1厘米,高1厘米。
2、长4厘米、宽3厘米、高1厘米。
3、长4厘米、宽3厘米、高2厘米
那究竟对不对呢?让我们再来摆一摆。学生小组讨论,动手操作,师巡视。组织交流,课件出示拼摆后的图形。
你是怎么摆的?体积是多少?和我们之前的猜想一样吗?
7×4×3=84立方厘米,所以它的体积就是84立方厘米。
3、概括公式
v=abh
长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。
学生汇报:
因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
出示正方体,出示公式。
强调写的时候,3要写在a的右上角,并且要写的小一些。
小训练:完成例2,在练习本上完成,集体订正。
三、巩固应用
计算下面长方体和正方体的体积。
1、长9厘米、宽6厘米、高5厘米
2、长0.5米、宽2.5米、高0.8米
3、棱长6分米
四、课堂小结
这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?
教学内容:教科书六年制五年级下册第99~102页。教学目标:
1.知识与技能目标:使学生掌握长方体体积公式的推导过程,理解长方体体积的计算公式;初步学会计算长方体的体积。
2.过程与方法目标:培养学生实际操作能力,同时发展他们的空间观念。
3.情感态度与价值观目标:在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
教学重点:在长方体、正方体体积计算公式的探究过程中,理解长方体含体积单位的.个数等于长、宽、高的乘积,进而推导出长方体(正方体)体积计算公式。教学难点:体积公式的推导。
教学准备:1立方厘米小正方块多媒体课件学具准备:1立方厘米的小正方体24个教学过程:
一、创设情境发现问题。
1、(课件出示)字典是我们学习的工具书,必须要常备身边的,聪聪遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)。
其实刚才我们在比较他们的什么?(比较它们的体积。)体积指的是什么?(体积是指物体所占空间的大小)。
反馈交流,得出:含有多少个体积单位,它的体积就是多少。
理念依据:通过练习,使学生感知:体积是由体积单位组成的,要求长方体的体积可以用切一切、数一数小方块的方法。这既是对上节课体积单位的复习,也是这节课的教学起点。
3、师:是不是我们都可以用切一切、数一数小方块的方法来求一个物体的。
体积呢?
4、学生讨论讨论后使学生明确:实际上,在很多情况下,往往不能用切割的方法来求长方体的体积。如:字典、洗衣机的体积、电脑主机的体积等。理念依据:从实际情况考虑,让学生体会到,要求一个物体的体积,必须有一个新的方法才能解决,激发学生的学习兴趣。)。
图(4)。
先利用多媒体将上环节使用的图(1)动态变成图(2)。
生:长方体的宽和高都不变。长变了,表面积变了,体积也变了。教师继续把图(2)动态变成图(3)。
生:长方体的长不变,高和宽都变了,表面积和体积也变了。教师也不做评论,再把图(3)变成图(4)。
生:长方体的长、宽、高都变了,表面积和体积也变了。
师:通过刚才的观察,你认为长方体的体积大小和什么有关?(长方体的体积和长、宽、高有关)。
7、再次猜想。
教师板书学生的猜想:长方体的体积=长×宽×高。
[设计意图]通过演示,使学生体会到长方体的体积和长、宽、高都有关系,进而大胆的提出猜想)。
三、动手实践、验证猜想课件出示小组合作要求1、提出小组合作要求。
请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,摆的时。
观察每个长方体的“总个数每排个数每层排数层。
数”分别与这个长方体的“体积、长、宽、高”有什么关系?然后把数字记录在表格里面。
2、小组合作学习。
全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论。(出示课件:
师:请各小组同学利用你手中的1立方厘米的小正方体,摆成3种长方体,并把有关数据填到表格中,好吗?生:好!
哪个小组愿意先汇报你们的研究过程和成果?
第一组:把12个正方体摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米。
第二组:把15个正方体摆成1排,每排5个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米。
第三组:把24个正方体摆成3排,每排4个,摆2层。这个长方体的长是6厘米,宽是4厘米,高是1厘米,体积是24立方厘米。
师:你观察得非常仔细,解说也非常到位!真是一位小老师!谢谢你!师:通过这几个小组的拼摆再加上刚才xxx的讲解,同学们有什么新的发现?(学生略感疑惑)。
师:我们一起来讨论一下,(结合课件中出示的表格边指边说)摆每个长方体的“总个数、每排个数、每层排数、层数”分别与这个长方体的“体积、长、宽、高”有什么关系吗?同学们可以先和身边的同学讨论一下,然后把你的想法和大家交流。
4、学生进行短暂的讨论后进行了交流。
生1:长方体的体积就是摆这个长方体的小正方体的个数。
生2:我想补充一下。从我们填的表格中就可以看出,每排摆几个,长方体的长就是多少,每层摆几排,它的宽就是多少,一共摆几层,高就是多少。
生4:只要知道长方体的长、宽、高就能知道一排摆几个,摆几排,摆几层,就知道体积了。
生5:如果是教室的体积你怎么摆?
生6:老师,我觉得根本就不用摆了!只要量出长、宽、高就行了。
师:(疑惑状)什么叫量出长、宽、高就行了?谁听明白了?能结合表中的数据说一说吗?生7:老师,我明白了!量出长宽高就相当于是知道了一排摆几个,摆几排,摆几层。所以,用长乘宽再乘高就是教室的体积。
师:原来是这样啊!(面向生6)xxx,你同意他的解释吗?大家同意吗?生:同意!
5、发现总结长方体体积公式。
(教师在学生回答时相机将表中“总个数、每排个数、每层排数、层数”下面显示出“体积、长、宽、高及相对应的单位。”)。
(1):刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。师问:每排的个数、每层的排数、层数与长、宽、高有什么关系。
汇报交流:长方体的体积就是摆这个长方体的小正方体的个数。每排摆几个,长方体的长就是多少。每层摆几排,它的宽就是多少。一共摆几层,高就是多少。(2)教师引导学生发现:小正方体的总个数=每排的个数×每层的排数×层数长方体的体积=长×宽×高学生动笔算一算每一组的长、宽、高相乘的积,算后汇报。
(3)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。
(4)同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。
(5)字母表示:长方体体积用v表示,长用a表示,宽用b表示,高用h表示,长方体的体积公式用字母表示是v=a×b×h=abh板书:v=a×b×h=abh学生齐读公式。
6、长方体的体积计算公式的应用----解决课前猜想(算字典的体积)7、迁移推导出正方体的体积计算公式再次尝试:一个长方体提问怎样求它的体积。
课件出示:图形变化成正方体提问你能求出它的体积吗?
学生小组讨论。
教师说明:a3读作a的立方或a的三次方,表示3个a相乘。
课题二:
教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学过程。
一、创设情境。
填空:1、 叫做物体的体积。2、常用的体积单位有: 、 、 。3、计量一个物体的体积,要看这个物体含有多少个 。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。
二、实践探索。
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)。
4 3 1。
含体积单位数:4×3×1=12(个)。
体积:4×3×1=12(立方厘米)。
(3)它含有多少个1 立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)。
通过上面的实验,你发现了什么?(可让学生分小组讨论)。
结论:长方体的体积=长×宽×高。
用字母表示:v=a×b×h=abh。
应用:出示例1,让学生独立解答。
2.小组学习--正方体体积的计算。
结论:正方体的体积=棱长×棱长×棱长。
用字母表示为:v=a3。
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践。
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结。
五、课后实践。
做练习七的第5、7题。
1.1知识与技能:
1.2过程与方法:
在公式的推导过程中培养学生的观察能力、空间想象能力、提出问题的意识及解决实际问题的能力。
1.3情感态度与价值观:
使学生体会数学来源于生活,且服务于生活,产生热爱数学的思想感情。
2.1教学重点:
2掌握长、正方体体积的计算方法,解决实际问题。
2.2教学难点:
1、下列长方体的长、宽、高各是多少:
长:8厘米长:6分米长:8厘米长:12米。
宽:4厘米宽:2.5分米宽:4厘米宽:10米。
高:5厘米高:10分米高:4厘米高:1.5米。
2、下列图形是用1立方厘米的正方体搭成的。它们的体积各是多少立方厘米?
(1)活动一:
师:郑老师在每个4人小组都放了12个1平方厘米的小正方体和一张学习单,下面我们将以四人小组的形式进行探究。首先请看活动要求(课件出示):
a、四人小组合作用12个小正方体摆形状不同的长方体;
b、每摆出一种请在学习单上做好记录,然后再摆下一种;
c、摆完后想想你发现了什么,在四人小组内交流;
d、每组选出一位代表进行汇报。
生小组合作动手操作反馈,学生汇报,生每汇报出一种情况,师在黑板上的表格中板书:
师:观察表格,你发现了什么?
引导学生得出:只要用每行的个数乘以行数,得到一层所含的体积单位数,再乘以层数,就能得到这个长方体所含的体积单位数。
板书:体积=每行个数×行数×层数。
师:刚才同学们用12个小正方体摆出的长方体体积都是12平方厘米的,郑老师刚才也摆了两个,不过体积比你们大多了,但是要看懂郑老师的长方体必须发挥一下你们的空间想象能力。(课件出示)。
你知道这两个长方体的体积吗?你是怎么知道的?(生说,师填表)。
(2)活动二:
师:四人小组合作,你们能摆出一个体积更大的长方体吗?
预设:长5厘米,宽5厘米,高4厘米。
师:你发现了什么?每排个数、排数、层数相当于长方体的什么?
生:长宽高,因为每一个小正方体的棱长是1厘米,所以,每行摆几个小正方体,长正好是几厘米;摆几行,宽正好是几厘米;摆几层,高也正好是几厘米。
2、下面的长方体,看它包含有多少个体积单位?并指出它的长、宽、高各是多少。
(2)观察上面个部分之间的关系,可以得出:
第一个:5=5×1×1。
第二个:15=5×3×1。
第三个:12=3×2×2。
通过上面的关系式,可以得出:长方体的体积=长×宽×高。
如果用字母v表示长方体的体积,用a、b、c分别表示长方体的长、宽、高,那么长方体的体积计算公式可以写成:v=a×b×c。
因为正方体的性质,所有的棱长都相等,所以,正方体的体积=棱长×棱长×棱长。
如果用字母v表示正方体的体积,用a表示正方体的棱长,那么正方体的体积计算公式可以写成:v=a·a·a。
a·a·a也可以写作a?,读作“a的立方”,表示3个a相乘。
1、计算下面图形的体积。
v=abh=7×3×3=63(cm?)。
v=a3=4×4×4=64(cm)。
8×4×5=160(cm3)6×2.5×10=15(dm3)8×4×4=128(cm3)1.5×10×12=180(m3)。
解:v=abh。
=2.9×1×14.7。
=42.63(m?)。
答:这块石碑的体积是42.63立方米。
4、判断正误并说明理由。
(1)0.23=0.2×0.2×0.2。(√)。
(2)5x3=10x。(×)。
(3)一个正方体棱长4分米,它的体积是:43=12(立方分米)。(×)。
(4)一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。(×)。
5、一个长方体的体积是48立方分米,长8分米、宽4分米,它的高是多少分米?
48÷8÷4=1.5(分米)。
答:它的高是1.5分米。
10×8×6=480(立方厘米)。
答:它的体积是480立方厘米。
(8×6)+(8×7+6×7)×2=244(平方分米)。
8×6×7=336(立方分米)。
答:制作这个鱼缸共需玻璃244平方分米。这个鱼缸的体积是336立方分米。
这节课我们学习了什么?
正方体的体积=棱长×棱长×棱长,v=a×a×a=a3。
v=a×b×h。
v=a×a×a=a3。
1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。
2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。
3、运用体积计算公式解决一些简单的实际问题。
4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。
2.教学重点/难点。
教学重点:引导学生探索长方体体积的计算方法。
教学难点:理解长方体体积公式的意义。
3.教学用具。
教学课件、一个长方体拼制模型。
4.标签。
一、启发谈话,激趣引入。
二、学习“体积”、“体积单位”的概念。
2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?
演示书上的实验,得出:土豆占的空间小,石块占的空间大。
4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。
5、学生汇报:
(1)常用的体积单位。
(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。
(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。
6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。
得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。
2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。
3、小组合作:学生四人一小组操作并做好实验记录。
思考:
(1)每排摆几个?每层摆了几排?摆了几层?
(2)一共摆了多少个小正方体?
(3)这个图形的体积是多少?
4、汇报实验结果。
每排个数。
每层排数。
层数。
小正方体个数。
让学生观察表格中填写的各数,你发现了什么?
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
6、学生汇报,交流,板书。
读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。
生:正方体是长、宽、高都相等的特殊的长方体。
师:根据这种关系,你能推导出正方体的体积公式吗?
2、师生共同归纳:正方体的体积=棱长×棱长×棱长。
用字母表示为:v=a×a×a=a3。
师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。
3、应用公式:
例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。
回顾一下,今天的学习大家有什么收获?
课后习题。
(1).一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘。
米。()。
米)()。
大。()。
板书。
物体所占空间的大小,叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
v=abh。
v=a×a×a=a3。
读书破万卷,下笔如有神。上面这5篇《长方体和正方体的体积》优秀教学设计就是为您整理的长方体和正方体的体积教学设计范文模板,希望可以给予您一定的参考价值。
教学目标。
知识与技能。
(1)在理解底面积的基础上,使学生掌握长方体和正方体体积统一计算公式。
(2)提高学生综合运用知识的能力,发展学生的空间观念。
过程与方法。
(2)通过解决实际问题加深对所学知识的理解。
情感态度与价值观。
(1)体验合作探究的乐趣。
(2)感受数学与现实生活的密切联系,发展学生的思维。
教学重点理解底面积的含义,统一公式的推导。
教学准备课件。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v=sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
旁批:
后记:
课题三:
教学要求 在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。
教学重点 理解底面积。
教学用具 投影仪。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由 确定的。
(2)长方体的体积= 。
(3)正方体的体积= 。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v = sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
教学内容。
教材第33~34页内容及例1。
教学目标。
知识与技能。
(1)理解长方体和正方体表面积的意义。
(2)理解并掌握长方体表面积的计算方法。
(3)发展学生的空间观念。
过程与方法。
(1)经历长方体表面积的计算方法的探究过程。
(2)通过合作探究培养学生的抽象概括能力、推理能力,发展学生的空间观念。
情感态度与价值观。
(1)培养数学与生活的联系,激发对数学学习的兴趣。
(2)体验合作探究的乐趣。
教学重点 长方体、正方体表面积的意义和长方体表面积的计算方法。
教学难点 确定长方体每一个面的长与宽。
教学准备 长方体和正方体表面积展开的教具、视频展示台。学生准备长方体和正方体纸盒各一个。
教学过程。
一、创设情境。
1、说出长方形面积的计算公式。
2、看图回答。
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空:
上、下两个面的长是 宽是 。
这个长方体 左、右两个面的长是 宽是 。
前、后两个面的长是 宽是 。
3、想一想。长方体和正方体都有几个面?
二、实践探索。
1.个别学习-------表面积的概念。
(1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、“左”、“右”、“前”、“后”标在6个面上。
(2)沿着长方体和正方体的棱剪开并展平。
(3)你知道长方体或者正方体6个面的总面积叫做它的什么吗?
学生试着说一说。
2.小组合作学习-------计算塑料片的面积。
(1)想:这个问题,实际上就是要我们求什么?
使学生明确:就是计算这个长方体的表面积。
(2)学生分组研究计算的方法。
(3)找几名代表说一说所在小组的意见。
解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)。
6×5×2+6×4×2+5×4×2。
=60+48+40。
=148(平方厘米)。
解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2)。
(6×5+6×4+5×4)×2。
=74×2。
=148(平方厘米)。
(4)比较上面两种解法有什么不同?它们之间有什么联系?
三、课堂实践。
做第26页的“做一做”,学生独立列式算出后集体订正。
四、课堂小结。
你发现长方体表面积的计算方法了吗?
结论:
=长×宽×2+长×高×2+宽×高×2。
长方体的表面积。
=(长×宽+长×高+宽×高)×2。
五、课堂练习。
做练习六的第1、2题,学生口答,学生讲评。
六、课后实践。
做练习六的第3、4题在作业本上。
旁批:
后记:
长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:
一、重视引导学生经历知识的探究过程。
究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。
二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。
三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。
四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。
可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。
文档为doc格式。
(三)培养和发展学生的空间观念。
(二)确定长方体每一个面的长和宽。
(一)复习准备。
1.口答填空。
(1)长方体有()个面,一般都是(),相对的面的()相等;
(2)正方体有()个面,它们都是(),正方形各面的()相等;
(3)这是一个(),它的长()厘米,宽()厘米,高()厘米,它的棱长之。
(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大方体的表面积。)。
(二)学习新课。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。
教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?学生讨论。(把六个面展开放在一个平面上。)。
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己展开铺在课桌上。
教师:请再说一说什么是长、正方体的表面积。(学生口答。)。
教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
2.长方体表面积的计算方法。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。
(图像要验证相对的面相等,展示每个面对应的长和宽。)。
教师:想一想,长方体的表面积如何计算?
最新长方体和正方体体积教学设计(模板17篇)
文件夹