商的近似数的数学教案(大全11篇)
文件格式:DOCX
时间:2023-12-07 19:34:03    小编:梦幻泡

商的近似数的数学教案(大全11篇)

小编:梦幻泡

一个好的教案可以提高教学效果,使学生更好地掌握知识。教案的编写需要根据学生的实际情况进行个性化调整和差异化设计。探讨教案的编写和实施,共同提升教师的教学能力和专业素养。

商的近似数的数学教案篇一

学习目标:理解精确度和有效数字的意义;准确地按要求求一个数的近似数。

学习难点:由给出的近似数求其精确度及有效数字,按给定的精确或有效数一个数的近似数.

学习过程:

一、自主学习。

(1)初一(4)班有42名同学,数42是数;。

(2)每个三角形都有3个内角,数3是数;。

(3)我国的领土面积约为960万平方千米,数960万是数;。

(4)王强的体重是约49千克,数49是数.

二、合作探究。

1、王强的身高为165cm,数165是一个数,表示王强的身高大于或等于cm,而小于cm。

2、长江长约6300千米,是一个数,表示长江长大于或等于千米,而小于千米。

3、按四舍五入法对圆周率取近似值:

(精确到个位),(精确到0.1,或叫做精确到十分位),

(精确到0.01,或叫做精确到分位),

(精确到,或叫做精确到),

(精确到,或叫做精确到),………。

4、有效数字:从一个数起,到止,所有数字都是这个数的有效数字。

5、3.256精确到位,有个有效数字是;。

5.08精确到位,有个有效数字是;。

6.3080精确到位,有个有效数字是;。

0.0802精确到位,有个有效数字是;。

3.02万精确到位,有个有效数字是;。

1.68×105精确到位,有个有效数字是。

6、按括号内的要求,用四舍五入法对下列各数取近似数:

(1)0.0158(精确到0.001)(2)30435(保留3个有效数字)。

(3)1.804(保留2个有效数字)(4)1.804(保留3个有效数字)。

三、巩固提高。

1、完成课本练习。

2、用四舍五入法,按括号里的要求对下列各数取近似值:

(1)0.65148(精确到千分位);解:0.65148。

(2)1.5673(精确到0.01);。

(3)0.03097(保留三个有效数字);。

(4)75460(保留三个有效数字);。

(5)90990(保留二个有效数字);。

(6)64.8(精确到个位);。

(7)0.0692(保留2个有效数字);。

(8)399720(保留3个有效数字)。

2、下列由四舍五入得到的近似数各精确到哪一位?各有几位有效数字?

(1)32;解:精确到位,有个有效数字,是;。

(2)17.93;解:精确到位,有个有效数字,是;。

(3)0.084;解:精确到位,有个有效数字,是;。

(4)7.250;解:精确到位,有个有效数字,是;。

(5)1.35×104;解:精确到位,有个有效数字,是;。

(6)0.45万;解:精确到位,有个有效数字,是;。

(7)2.004;解:精确到位,有个有效数字,是;。

(8)3.1416.解:精确到位,有个有效数字,是。

五、总结反思文章来源。

商的近似数的数学教案篇二

1、经历生活数据收集的过程,理解近似数表示的必要性。

2、探索“四舍五入”求近似数的方法。

3、能根据实际情况,灵活运用不同精确值的近似数。

相关数据资料,学生课前搜集的数据。

会正确读、写多位数,并能比较数的大小。

一、小组交流收集的有关森林面积方面的数据。

交流收集的有关森林面积方面的数据,并说说这些数据的.实际意义。在此基础上引导学生对数据进行分类,在各种分类中重点讨论精确数与近似数这两类数的特点,并让学生再举例说一说日常生活中接触的近似数。

二、用四舍五入法取近似数。

出示说一说中的数据,使学生通过比较、分析,了解四舍五入法取近似数的方法。结合是试一试第2题的讨论,体会如何根据不同需要求近似数。

三、巩固与应用。

做试一试第1题:汇报时说说取近似值的方法。

试一试第2题:在实际生活中常常需要根据情况取不同精确程度的近似数。在本题中,可先让学生说一说三个近似值的精确程度,再出示下面的两个小问题,供学生讨论。在讨论时重点让学生理解取近似值是根据实际的需要来确定的。

讨论:重点可讨论括号内的数字有几种可能性,分析哪些是“五入的”,哪些是“四舍的”。

四、课堂作业新设计。

1、教材第12页底1题。

2、教材第12页第2题。

3、教材第12页第3题。

五、思维训练。

括号里能填几?

49()835≈50万49()835≈49万。

商的近似数的数学教案篇三

1、结合现实素材让学生认识近似数,并能结合实际进行估计。

2、通过教学活动培养学生的数感。

3、知识与生活实际结合,让学生体会到近似数在生活中的作用和意义。

初步理解近似数的意义。

一、游戏引入:猜数:教师或学生悄悄指定一个4位数,学生猜猜是什么数。猜的过程中提示学生所猜数是否与目标数接近,猜中为止。

二、探究新知。

1、教学例8。

(1)出示主题图和近似数“约是1500人”。

请猜猜育英小学的准确数是多少。

猜中之后提问:你如何想到这个数的?

(2)比较1500和1506两数。

指出:1506是一个准确数,1500是它的近似数,在不需要准确数据的情况下,选择一个近似数可方便记忆。

(3)一个数的近似数不唯一。

出示主题图2“新长镇有9992人”

9992的近似数有什么?

同学们说的数哪个最接近9992?

在不要求准确的情况下,你会选择哪个数来表示新长镇的人数?为什么?

小结:一般情况下选择最接近的整十、整百、整千数,方便记忆。

2、生活中的数学。

近似数的使用。

举例:二年级同学304人,可说大约300人。

购物总价钱2998元,可说大约3000元。

学生举例。

3、练习:p794、5、6。

三、课堂作业p808、9。

四、课后任务p807。

商的近似数的数学教案篇四

1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。

出示情境图,仔细观察画面,你知道了什么?你又能提出哪些数学问题?

学生合作交流。

[设计意图]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的情境图中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。

二、探究新知。

1.学生独立思考他们说的结果为什么不一样?这一问题。

谈话:观察两位同学说的结果,你能发现什么?

让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。

谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的近似数的方法,研究一下怎样求一个小数的近似数。

学生独立研究后,再在小组内交流。

谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的方法向大家介绍一下。

谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?

谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。

2.学生独立思考绿毛龟蛋的宽径约是多少?这一问题。

学生独立思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。

讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。

[设计意图]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。

三、巩固应用。

1.黄河的流域面积是75.14万平方千米。(保留一位小数)。

3.小华的体重保留整数是45千克,他的体重可能是多少千克?

[设计意图]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。

四、感悟收获。

谈话:今天大家学得愉快吗?你们最大的收获是什么?

(学生自由说说说本课的收获及体验)。

商的近似数的数学教案篇五

2、会按精确度要求取近似数。

3、给一个近似数,会说出它精确到哪一位,有几个有效数字。

解决问题:会求一个近似数。

情感态度:通过师生合作,联系实际,激发学生学好数学的热情。

重点和难点:精确度和有效数字的'概念。

二、教学流动安排。

活动1问题引入。

活动4有效数字的概念。

活动6巩固概念。

三、课前准备。

教具:电脑、课件。

四、教学过程设计。

活动1让学生用刻度尺量数学课本。

由学生的结果差异提出问题。

由学生思考,可以激发学生探究的热情。

活动2学习习近平似数概念。

活动3按四舍五入法对圆周率取近似数。

有3(精确到个位)。

3.1(精确到0.1,或叫做精确到十分位)。

3.14(精确到0.01,或叫做精确到百分位)。

3.142(精确到0.001,或叫做精确到千分位)。

3.1416(精确到0.0001,或叫做精确到万分位)。

师生共同活动。

活动4由活动3引入并讲解有效数字的概念。

活动5例6:按括号内的要求,用四舍五入法对下列各数取近似值(1)0.0158(精确到0.001)(2)30435(保留3个有效数字)。

(3)1.804(保留2个有效数字)(4)1.804(保留3个有效数字)。

通过练习对近似数和有效数字有初步认识,师生共同活动,巩固所学知识。

活动6巩固练习教科书p56练习。

课堂小结通过小结,进一步巩固所学知识,使学生所学知识系统化。

作业:p564(2)(4)56。

商的近似数的数学教案篇六

1、用四舍五入法取1.46348精确到百分位的值是()。

a1.46b1.460c1.5d1.50。

2、下列近似数精确到万位的是()。

a1500b3亿5千万c4×104d3.5×104。

3、如果由四舍五入得到的近似数是58,真值不可能是()。

a58.01b57.88c58.50d57.49。

4、下列说法正确的是()。

a近似数14,0与14的精确度相同;

b近似数20000与2万的精确度相同;

c近似数5×103与5000的精确度相同;

d近似数6万与6×104的精确度相同。

二填空题。

9、用四舍五入法把0.493057精确到百分位为---------;

10、近似数1.820精确到----------位;

11、近似数4.50万精确到---------位;

12、近似数3.04×105精确到-------位;

13、1325.667精确到百位的近似数约为--------------;

14、每人每小时呼出的二氧化碳约为38克,1公顷茂盛的.树林每天约可以吸收1吨的二氧化碳,若要吸收掉1万人一天呼出的二氧化碳约需要----------公顷的树林。(精确到0.1)。

16、两名同学的身高都大约是1.70米,则两人的身高最多差------厘米;

17、1.8206取近似数精确到千分位是--------------;

18,有效数字是对一个近似数从左往右数第一个不是0的数字算起,有几个数有效数字是几,那么数4.6982取三位有效数字约等于---------,近似数2,38×104有------个有效数字。

三、解答题。

(1)0.4605(精确到千分位);

(2)23250.84(精确到千位);

(3)5.49835(精确到百分位);

(4)1.80248(保留三个有效数字).

20、指出下列各数精确到哪一位。

(1)、0.3023(2)7.80。

(3)、13.46亿(4)6.43×107。

21、一个人在洗脸刷牙过程中一直开着水龙头,将浪费大约7杯水(每杯水约250ml)。

某市月100万人口,若在洗漱过程中都一直开着水龙头,那么一个月(按30天计算)将浪费约多少ml水,精确到亿位。

22、(1)计算:22=---------,202=-------------,

2002=-----------,20002=-------;

(2)不用计算器解决问题。

若2342=54756,分别求234002,2.342近似结果。保留两个有效数字。

答案:

20、万分位;百分位;百万位;十万位21、5.25×101。

商的近似数的数学教案篇七

在复习小数乘、除法时,学生遇到求近似数时,感到困难。我认为如果将有关求近似数的内容联系起来教学,让学生找到之间的联系和区别,把知识连起来,可以起到事半功倍的效果。

我在和学生一同复习时,先带领学生将学过的求近似数的知识列举出来:一、求积的近似数:二、求商的近似数。

1、回忆求积的近似数的方法,——先计算,再用四舍五入的方法保留。

2、回忆求商的近似数的方法,——先计算,再用四舍五入的方法保留,但要注意只需除到比要求保留的位数多一位就行了。

4、在求商的近似数时,学生最感到困难的是根据实际情况进行保留,提醒学生并不是任何时候都可以用四舍五入的方法保留,有时要用进一法有时用去尾法,我让学生举例说说什么时候进一什么时候去尾,帮助学生理解。

为了验证学生学情,指名五名学生到黑板上分别计算各自的式题,三名学生在老师的监督下艰难做对了,我向他们一一表示祝贺,以此鼓励他们,树立学习的信心。其中两位同学被困难挡住了去路,这时下课的铃声响起,我不得不让他们回到自己的座位上。为了给他们一点压力,当放学的铃声响起,我把它们叫到自己的办公室,指导他们完成练习四的第一题,这五道都是求商的近似数。孙艳花了近一个小时艰难的做完了,其中一道做错,在我的反复指导下终于做对了,我向他表示祝贺,并让他回家吃饭,同时叮嘱他上课要认真听讲,做题要动脑筋。晚上再次研究班上几位同学验算所用的草稿纸,发现错误的原因,有的题不是小数点点错了位置,就是商放错了位置:有的题除数扩大了,被除数却还是没有移动小数点;有的题确立的商和除数乘的积竟然不知道放在什么位置上,总之从孙丹妮所做的式题,可以清楚看到她根本没有掌握求近似值的知识,脑子里完全糊涂着,想孙丹妮这样的学生绝不仅仅是孙丹妮,还要继续强化训练学生求商的近似数,小数点的确立,以及商的位置是求近似数的重点和难点。

文档为doc格式。

商的近似数的数学教案篇八

我们生活中有时候需要很精准的数字,比如:

让学生体会生活中有时候只需要近似数,回顾四舍五入。

读书破万卷下笔如有神,以上就是为大家带来的6篇《五年级数学《积的近似数》教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

商的近似数的数学教案篇九

教师是教学的组织者和引导者,而不仅仅是解题的指导者。本节的教学我通过几个问题,几句话做适当的引导,而留给学生大量的时间让他们去观察,去思考,去交流,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生。在学习讨论的过程中,教师为学生创设自由选择的空间,引导学生敞开思维,多角度探索,实现高效率学习。

商的近似数的数学教案篇十

在复习小数乘、除法时,学生遇到求近似数时,感到困难。我认为如果将有关求近似数的内容联系起来教学,让学生找到之间的联系和区别,把知识连起来,可以起到事半功倍的效果。

我在和学生一同复习时,先带领学生将学过的求近似数的知识列举出来:一、求积的近似数:二、求商的近似数。

1、回忆求积的近似数的方法,——先计算,再用四舍五入的方法保留。

2、回忆求商的近似数的方法,——先计算,再用四舍五入的方法保留,但要注意只需除到比要求保留的位数多一位就行了。

4、在求商的近似数时,学生最感到困难的是根据实际情况进行保留,提醒学生并不是任何时候都可以用四舍五入的方法保留,有时要用进一法有时用去尾法,我让学生举例说说什么时候进一什么时候去尾,帮助学生理解。

为了验证学生学情,指名五名学生到黑板上分别计算各自的式题,三名学生在老师的监督下艰难做对了,我向他们一一表示祝贺,以此鼓励他们,树立学习的信心。其中两位同学被困难挡住了去路,这时下课的铃声响起,我不得不让他们回到自己的座位上。为了给他们一点压力,当放学的铃声响起,我把它们叫到自己的办公室,指导他们完成练习四的第一题,这五道都是求商的近似数。孙艳花了近一个小时艰难的做完了,其中一道做错,在我的反复指导下终于做对了,我向他表示祝贺,并让他回家吃饭,同时叮嘱他上课要认真听讲,做题要动脑筋。晚上再次研究班上几位同学验算所用的草稿纸,发现错误的原因,有的题不是小数点点错了位置,就是商放错了位置:有的题除数扩大了,被除数却还是没有移动小数点;有的题确立的商和除数乘的积竟然不知道放在什么位置上,总之从孙丹妮所做的式题,可以清楚看到她根本没有掌握求近似值的知识,脑子里完全糊涂着,想孙丹妮这样的学生绝不仅仅是孙丹妮,还要继续强化训练学生求商的近似数,小数点的确立,以及商的位置是求近似数的重点和难点。

商的近似数的数学教案篇十一

教材p32例6及练习八第1、2、3、8题。

1.知识与技能:能理解商的近似数的'意义。

2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

注重新旧知识的迁移,引导学生自主学习、总结。

多媒体。

复习旧知:(出示如下题目)。

1.用“四舍五入”法将下面的数改写成一位小数。

8.7693.45212.7118.64。

2.计算下面各题,得数保留两位小数。

2.43×4.6712.15×3.41。

订正答案,并通过问题:你是用什么方法求这些数的近似数?

(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)。

引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)。

1.出示教材第32页例6情境图。

阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

引导学生自主列算式,并试着计算:19.4÷12。

通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)。

然后再引导学生想一想:算到分和角时分别需要保留几位小数?

(算到分要保留两位小数,算到角就要保留一位小数。)。

师引导学生思考并讨论:除的时候应该怎么算?

小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书。

2.提问:说一说如何求商的近似数?

让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

3.引导学生比较求商的近似值和求积的近似值的异同点。

小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

同学们,这节课你学了什么知识?有哪些收获?

引导学生归纳。

1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

作业:教材第36~37页练习八第1、2、3、8题。

板书设计:

求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
商的近似数的数学教案(大全11篇) 文件夹
复制