最新教学设计解决问题的策略(优质10篇)
文件格式:DOCX
时间:2023-12-07 19:35:09    小编:笔尘

最新教学设计解决问题的策略(优质10篇)

小编:笔尘

总结是对过去一段时间的经验和收获的总结,有助于我们总结经验,查漏补缺。总结的过程中,我们要保持客观和中立的态度,不受个人情感和偏见的影响。以下是一些非常具有参考价值的范文,相信会给大家带来一些新的思考和启示。

教学设计解决问题的策略篇一

1、使学生经历用"一一列举"的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。

2、沟通"一一列举"和"列表"两种策略的联系,通过列表,帮助学生养成有序列举的习惯。3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。

同学们,以前我们曾学过哪些解决问题的策略?好的策略可以帮助我们顺利地解决问题,今天这堂课,我们要学习一种新的策略,这种策略和以前学习的策略还有很大的关系呢!

1、导语:我们来看看第一个问题。

出示:园艺工人用6根1米长的栅栏围成一个长方形花圃,他是怎样围的?

(1)师:你可以算一算,或者画一画。写好后和你的同桌说说你是怎样想的?

(2)学生汇报板书:长(m)2,宽(m)1。

师:说说你是怎样想的?和他想得一样的同学请举手。

小结:看来这个花圃只有一种围法。

2、导语:我们再来看看另一个花圃:

(1)师:长和宽都有哪些情况?请你思考之后写在作业纸上。

(2)学生汇报板书:长(m)43,宽(m)12。

师:你有几种围法?你呢?

师:还有没有其他的围法?看来我们已经找全了答案。(板书:全)。

小结:第一个花圃,我们找到了1种围法,第二个花圃,我们找到两种不同的围法,像这样把符合要求的答案一一的找出来,这种方法叫做一一列举,(板书:一一列举),"一一列举"这就是我们今天要学习的新策略。

3、导语:下面请同学们用这个策略来解决一个问题。

出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?

(1)请你思考之后,把不同的围法一一列举到第一张表格上。

(2)学生汇报(投影展示三张作业纸:不全、全而无序、全而有序)。

教学设计解决问题的策略篇二

[教学内容]:

教科书第89—90页的例1、“练一练”、练习十七第1题。

[教材分析]:

本单元主要教学用替换和假设的策略解决实际问题。本单元共安排了2个例题,分3课时进行教学,本节课是其中的第1课时。“替”即替代,“换”则更换,替换能使复杂的问题变得简单。教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材安排的例题就是利用“小杯的容量是大杯的1∕3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生“说说为什么这样替换”,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。

[教学意图]:

这节课的教学设计,力求体现新课程的理念,给学生自主探索的空间,为学生营造宽松和谐的氛围,让他们学得更主动、更轻松,凸现了内容的情趣化和生活化;在探索的过程中,培养学生的实践能力、创造能力、合作精神,鼓励学生大胆发表自己的意见,最大限度地调动学生学习数学的积极性、主动性和创造性,体现了过程的活动化,达成了预定的教学目的。

[教学目标]:

1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

2、使学学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

〔教学重点〕。

使学生掌握用“替换”的策略解决一些简单问题的方法。

〔教学难点〕。

使学生能感受到“替换”策略对于解决特定问题的价值。

〔教学过程〕。

一、复习导入。

1、说说图中两个量的关系可以怎样表示?

追问:还可以怎么说?

2、下面每个条件中两个量的关系还可以怎样表示?

(1)微波炉的容量是洗衣机的1/10。

(2)每个桌面的面积是教室地面面积的1/60。

指出:两个量的关系,换一个角度,还可以有另外一种表示方法。

3、从图中你可以知道些什么?

(多媒体出示:天平的左边放上一个菠萝,右边放上三个香蕉,天平平衡。)。

提问:现在老师在天平的左边放上两个菠萝,要使得天平平衡,右边可以放些什么?

追问:还可以怎么放?

指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。

4、口答准备题:

指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。

二、新授。

(一)教学例1。

1、读题。

谈话:请同学们大声地把题目读一遍!

2、分析探索。

小结:哦!刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。

追问:那该怎么办?同桌先相互说说自己的想法。

3、交流。

谈话:我们一起来交流一下,该怎么办?

追问:还可以怎么办?

小结:哦!两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法——替换。(板书:替换)。

4、列式计算。

a:把大杯换成小杯。

提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?

追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)。

小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。

b:把小杯换成大杯。

谈话:那反过来,把小杯换成大杯呢?(板书)。

提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?

指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。

提问:这样做的依据又是什么?

指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)。

提问:能求出每个大杯的容量吗?每个小杯呢?(板书)。

5、检验。

谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?

指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。

6、小结。

指出:解这题的关键就是把两种杯子看成一种杯子。

(二)练习。

谈话:刚才这题同学们想的很好,做的也很棒,接下来还有好多题目,等着大家去完成呢!

1、填空:

想:如果把它们都看成();把()支()换成()支()。

那么用22元钱相当于买了()支()。

想:如果把它们都看成();把()只()换成()只()。

那么全班40人相当于坐在了()只()上。

谈话:同桌先相互说说你的答案。

提问:可以怎么说?还可以怎么说?

指出:解决这样的应用题关键就在于把两种物体看成一种物体。

(三)教学“练一练”

1、出示题目。

谈话:自己先在下面读一遍题目。

2、分析比较。

提问:这题与刚才的例1相比较有何不同之处?

指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。

提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。

3、学生试做。

4、评讲。

谈话:说说你是怎么做的?

指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。

提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。

指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。

谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。

5、检验。

谈话:同桌相互检验一下刚才计算的结果是否正确。

6、小结。

提问:解这题时你觉得哪一步是关键?

指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。

7、填空。

三、全课总结。

谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)。

指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。

追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)。

指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的数量。

四、拓展应用,巩固策略。

1、播放达能广告。

同学们,从刚才的广告中你又发现了哪些数学知识呢?

2、让学生说说自己的发现。

3、是啊!在我们每天的生活中蕴涵着丰富的数学知识,只要你做个有心人,你会有更多的收获。课前老师也做了一些调查:

(1)要解决这个问题你准备用什么策略?在替换的过程中还需要用到画图,老师给你们准备了一张图在练习纸二上,画一画来尝试解决这个问题。

学生独立完成。并说出想的过程。

(2)除了把牛奶替换成饼干,还有没有别的不同的方法吗?

(3)说一说这题该怎样检验?

(4)提问:为什么你们都不把饼干替换成牛奶来考虑?

学生交流后小结:在解决实际问题的过程中,一般要选择简洁、容易的方法来解答。

五、机动练习。

附:板书设计。

——替换。

把两种物体看成同一种物体。

1、把大杯换成小杯共需要9个小杯。

720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)。

80×3=240(毫升)240÷80=3(倍)。

2、把小杯换成大杯共需要3个大杯。

720÷(1+2)=240(毫升)。

240÷3=80(毫升)。

教学设计解决问题的策略篇三

1、从解决简单的实际问题的过程中,体会用“一一列举”策略的特点和价值,能不遗漏,不重复找到符合要求的所有答案。

2、通过反思和交流,进一步积累解决问题的经验,发展思维的条理性和严密性,从而使学生获得解决问题的成功体验,树立学好数学的自信心。

体会策略的价值,感受策略带来的好处,使学生能主动运用所学的策略解决问题。

在学习过程中,能主动反思自己的解题过程提升对策略的认识。

一、导入。

出示草原牛羊成群图。

二、探究策略。

1、初次探究。

小黑板出示:用18根1米长的栅栏围成一个长方形的羊圈。

问:根据这句话的信息你想采用什么方法来帮牧民叔叔呢?

2、进一步探究。

问:你能把符合要求的长和宽可能性一一列举出来吗?

学生填写第63页的表格。

3、体会列表的特点。

问:反思一下刚才的思考过程,你有什么体会?

板书:有序(有条理)一一列举不遗漏不重复。

让学生再次说说应该怎样有条理地思考。

出示:像这样有条理的把可能性一一列举出来,从而找到问题的答案,这种解决问题的策略就叫列举。在列举时要注意按照一定的顺序,这样才能做到不重复、不遗漏。

4、进一步引导。

这几种围法中牧民叔叔会喜欢那种呢?为什么呢?

出示:周长相等的长方形,长和宽的差越大,面积就越小;长和宽的差越小,面积就越大。

三、体会策略中的技巧。

出示例题2。

读题后问:“最少订阅1本,最多订阅3本”是什么意思?

小组讨论并集体交流。

展示不同的思考方法:

(1)用1、2、3代表不同的杂志。

(2)用a、b、c代表不同的杂志。

(3)用甲、乙、丙代表不同的杂志。

(4)用(0、00、000)代表不同的杂志……。

3+3+1=7种。

(有一定的规律列举,不重复,不遗漏。)。

四、巩固练习。

问:根据题意你想到了什么?用什么策略解决这个问题?

交流,说出列举思考的过程。

五、交流中总结收获。

这节课你最大的收获是什么?“一一列举”对我们解决生活问题有什么好处?

六、课堂练习。

做练习十一的第1—3题。

解决问题的策略这一单元是采用列表的方法收集,整理信息,并在列表的`过程中寻求解决实际生活问题的有效方法。体会解决问题的策略常常是多样的,同一个问题可以用不同的策略,从不同的角度去分析。例1利用学生对长方形与它的长和宽关系的已有认识,要求学生找出用18根1米的栅栏围成长方形的各种方法,在寻找策略中体会“一一列举”的特点和价值。例2是在例1的基础上启发学生用“一一列举”的策略解决实际问题时,要不重复、不遗漏地进行思考过程。在探讨中让学生积极参与,感受解决问题的策略是在具体生活中的运用,从而激发学生主动运用所学到的策略解决简单的实际问题的兴趣。

教学设计解决问题的策略篇四

1.提高学生在具体情境中运用列举法解决实际问题的能力。

2.使学生深入感受使用列举法时的有序性。

3.培养学生运用数学方法解决生活问题的意识,提高解决问题的能力。

教学光盘。

一、复习导入。

通过谈话,复习前两节课的学习内容并了解学生的学习收获。

二、指导练习。

1.完成练习十一中的第6题。

让学生说出他们是怎么想的,然后总结出在使用列举法解决问题时需要注意的内容。

2.完成练习十一中的第7题。

指名读题,让学生观察表格并回答问题:“48个1平方厘米的正方形拼成的.长方形周长是多少?”

引导学生认真思考问题,然后给出解题方法。

3.完成练习十一中的`第8题。

指名读题,让学生理解“只是向东、向北走”的含义,并使用字母代替路线上的直线交点。

4.完成练习路线十一中的第9题。

出示题目,并要求学生仔细阅读题目。

三、完成思考题。

出示思考题并让学生独立完成,并进行集体订正。

教学设计解决问题的策略篇五

教学内容:教科书第65~67页例题和“想想做做1~4”

教学目标:

知识与技能目标:能根据解决问题的需要,初步学习用列表的策略收集和整理信息,对表格中的信息进行分析,认识其中的数量关系,学会从问题入手和从条件入手,找出解答问题的方法,使问题得到解决。

数学思考与解决问题目标:培养学生主动运用有关策略解决问题的意识,培养有条理和富有个性地思考,并清楚地表达解决问题的大致过程。

情感与态度目标:充分体会有关策略在解决问题过程中的价值,乐于和同学交流自己解决问题的一些策略,能自觉运用策略解决问题,获得克服困难及运用策略解决问题的成功体验。

教具准备:多媒体课件,三角板(画线用),文字贴图。

教学过程设计:

课前欣赏:播放《曹冲称象》flash影片,感受策略。(在黑板上贴课题)。

一、创设情境,感受用策略解决问题的魅力。

1.承接故事情境,感受策略的作用。

(1)看了故事你想说什么?

(2)过渡语:要称出那头大象的重量,大人们都束手无策,七岁的曹冲却想出了那么妙的解决办法,用称出与大象相同重量的一船石头的重量来求出大象的重量,真了不起!老师佩服得五体投地,真想送他一个美名“小小策略家”。

问:那你知道什么叫策略吗?你还在哪里见过或者使用过策略呢?

问:今天我们要学习什么?

师:对,今天我们要像曹冲一样巧妙地运用策略来解决问题。

过渡语:解决什么问题呢?我们也找头大象来称称他的重量好不好?这是不可能的。我们就解决一个身边的数学问题吧。

二、探究新知,初步理解列表的策略。

1.生活中的难题(课件)。

以动画图片的方式呈现情境:元旦快到了,为了使庆祝元旦的活动更有意义,固城中心小学五年级四个班准备分别在本班举行一次“我是环保小卫士”演讲比赛。瞧,四位班长正在买奖品呢。五(1)班买了9本笔记本用去36元;五(2)班要买11本笔记本;五(3)班用52元买笔记本。五(4)班要买8支钢笔。

2.从图上你获得了哪些数学信息?

问:你可以提出哪些数学问题呢?(课件依次出示三个问题)。

问:这些问题现在都能解决吗?(为“五(4)班要买8支钢笔共要多少元”打下伏笔。)。

(生广泛发言,教师及时肯定和评价)。

3.第一个问题能解决吗?

图中有那么多信息怎么办?(张贴:整理信息)。

四人小组交流:你已经了解了哪些整理信息的方法呢?

师:整理信息的方法是多样的。你们平时经常用这些方法整理信息吗?

4.师生共同完成列表整理信息。(在黑板上列表。)。

过渡语:老师今天要教一种新的整理方法,你们想学吗?

(1)图中的信息都要整理吗?(张贴:有用信息)。

板书:五(1)、五(2)。

(2)整理的时候把这些信息全部抄下来吗?

先引导学生呈现纯文字的简化整理。

如:五(1) 9本36元。

五(2) 11本 ?元。

问:这样整理怎么样?

师:如果再给他们加上点线框,就形成了一份表格了。感觉怎么样?(更清楚了,在学生的回答中张贴“有条理”)。

5.课件出示列表,并指出这样的整理叫“列表整理”。(张贴:列表)。

读表:你能从这张表格中了解到哪些信息?

比较:这张表与上面的情境图相比,哪个更有条理?

6.比较各种整理方法。

过渡语:同学们说了许多整理信息的方法,老师课前也准备了一下,想看吗?课件依次呈现预设的四种整理:

学生可以边看,边将看到的信息或者自己的感受与同桌交流。

比较:如果让你选择,你会把最喜欢的一票投给谁呢?为什么?

先在四人小组内交流,再汇报。

引导学生理解,这几种整理方法都比较清楚,但列表更简单些。

过渡语:看样子,列表整理信息既清楚又简单,那么我们就根据列表中的数据来解答题目吧。

7.分析数量关系及解答。黑板上。

(1)学生根据表格说一说解答思路。

问:要解决这个问题,根据表格我们可以怎么想?

适时的明确学生是“从条件想起”的或“从问题想起”的。并张贴纸片。

(2)完成计算,一生板演。

汇报时,追问:每一步分别求的是什么?这个结果对不对呢?

三、明理内化,初步运用列表的策略解决问题。

你认为表格的第一列应该填什么?(五(1)和五(3))课件出示。

接下来会填吗?同桌商量一下。

学生在训练卡上填表整理,并解答。学生汇报做法,课件验证。

2.整合、简化。(课件呈现两张表格)。

(1)师:观察比较两个表格,你能发现什么?

为什么两个表格中都有“五(1)买本子的信息”?

(讨论后汇报,只有通过这个信息才能知道本子的单价)。

(2)解决这两个问题我们用了两个表格,多麻烦,能不能将两个表格合并成一个表格呢?需要设计几列几行?为什么?每一行分别填什么?(课件依次呈现)。

(3)师讲解:如何不考虑班级,而将研究的注意力放在数量与总价的关系上,这张表还可以简化成下面的形式。

出示箭头简化后的表格。

感觉怎么样?

这里面的数据会填写吗?

观察这个表格,你还想说什么?

3.小结全课:回顾一下,刚才我们是怎么解决这两个问题的?

根据学生的回答分别贴出板书:列表整理信息、分析数量关系、解答并检验。

四、巩固提高。

1.完成书本p66页的第一题。

2.完成书本p67页的第二题。

书本上两题,视时间而定,一般只完成第一题(字典摞起之高)。

3.问题三:五(4)班买8支钢笔一共用去多少元?(有问题,但无条件。)。

(2)学生自主列表整理并解答。

(3)展示3位学生不同的列表及做法。后组内四人交流、修正。

4.开放题:根据所求问题自主选择有用的信息解答并展示。

具体设计如下:

学校要购买物品,商场里正在播放信息。(课件播放)。

四人小组,每个组为学校解决一个问题,认真读一读,想一想你需要哪些信息?等老师播放信息。

课件:体育组买6个足球的钱,可以买几个篮球?

学校买7张办公桌共用去多少元?

买来的扫帚每班发3把,可以发给24个班,如果每班发4把,可以发给几个班?

学校用124元可以买多少个黑板擦?

足球:每个56元椅子:3把100元。

拖把:一把39元粉笔:20盒46元。

排球:每个42元扫帚:3把10元。

篮球:每个48元办公桌:2张300元。

计算器:一个24元黑板擦:10个20元。

学生根据课件中滚动的信息搜集相关信息列表。生独立完成,汇报。

五、全课总结:

(1)通过今天的学生你有什么收获?

(2)你认为用列表的策略来解决问题有什么好处?

(3)列表的策略对解决其他问题也同样有效吗?

教学设计解决问题的策略篇六

1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。

2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

能有序、有效地思考、分析实际问题中的数量关系。

感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

课件、导学单、教具。

一、复习铺垫。

1、出示下面的问题,让学生列式解答。

把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?

数量关系:个小杯的容量=720毫升。

口头列式解答。

提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。

3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。

二、探索策略。

1、教学例1。

(1)理解题意。

谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。

能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。

揭示:6个小杯的容量+1个大杯的容证=720毫升。

大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。

(2)确定思路。

谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。

反馈:请把你的解题思路分享给大家。

学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:

思路一:假设把720毫升果汁全部倒入小杯。

问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。

思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。

思路三:列方程解。

小结:根据题中的数量关系,同学们想到了解决问题的.不同思路。上面的'几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。

(3)列式解答并检验。

谈话:选择一种方法完成解答,并检验解题的过程和结果。

完成解答后,让学生说说列式、检验的方法和结果。

(4)回顾反思。

(5)教学第二种思路。

学生独立思考,列式计算,教师巡视。

指名交流解题时的思考过程,以及列式计算的过程和结果。

(6)比较和回顾。

提回:通过解答上面的问题,你有哪些收获和体会?

让学生先在小组里说一说,再组织全班交流。

2、完成“练一练”。

(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。

(2)让不同思路的学生展示自己解题的过程。

三、巩固练习。

完成练习十一第1—3题。

四、课堂总结。

今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?

教学设计解决问题的策略篇七

1、知识技能方面:使学生在解决有关面积计算的实际问题的过程中,初步学会用画直观示意图的方法整理相关信息,能借助所画的示意图分析实际问题中的数量关系,确定正确的解决问题的思路;能正确解答与长(正)方形面积计算的有关实际问题。

2、数学思考和解决问题方面:使学生经历画示意图描述和分析问题的'过程,积累一些整理条件和问题、借助图形直观分析数量关系的经验,感受画示意图对理解题意和分析数量关系的作用,提高分析问题和解决问题的能力,发展几何直观。

3、情感与态度方面:使学生在解决问题的过程中,进一步体会数学与生活的联系,让学生体验经过克服困难而获得解决问题的成功体验,提升学好数学的信心。

学会用画图的方法表示图形面积增加或减少的情况,帮助理解题意,得到解决问题的方法。

多媒体课件,

一、引入新课。

1、出示复习题。

师:观察这三幅示意图,你能说说每一题的条件和问题分别是什么吗?

谁能口答算式?(数量关系式)。

教学设计解决问题的策略篇八

教师:多媒体课件;飞镖2支;镖盘一只。

学生:小棒;表格。

教学过程:

一、谈话导入:

小结、揭题:

二、探究策略:

(一)、教学例1。

1、解决:“可以怎样围?”

(2)能用小棒摆出来吗?1根小棒代表1米,请大家动手试一试。

(3)交流:谁来说说,你是怎样围的?

(4)教师问:有跟他不一样的围法吗?

2、解决:“有多少不同的围法?”

3、展示学生表格。

(2)再展示有顺序的4种,说:看看这张表格对吗?

(3)展示没有顺序的表格并比较:

这张表格呢?两张表格你们认为哪一张更好一些?为什么?

教师评价:对,按顺序填表才会显得有条理。

(4)展示有重复和遗漏的表格:

老师这里有张表格,大家看看,有什么意见?

(5)小结:

切换到电脑:教师小结同时课件演示:刚才我们在填表的时候,把不同的围法一个一个排列出来,从而解决了问题,运用的就是“一一列举”的策略(板书:“一一列举”)。

(6)集体订正。

(7)观察面积和长、宽的关系,发现规律。

你们认为王大叔会选哪一种?

比较长方形的长、宽、和面积,你们发现了什么?

看看长和宽的和,你们有什么发现?

小结:看来有顺序的一一列举,还能帮助我们发现隐藏的数学规律。

(二)、教学例二。

(2)最少买1只羊,最多买3只羊,知道这句话什么意思吗?

(3)你准备用什么策略解决这个问题?列举时你打算先考虑买几只羊的情况?

(4)展示学生作业,教师给予评价。

(5)小结:通过列表格我们能很快看出是否有重复、有遗漏,这是一种科学有效的整理方法。

三、练习拓展。

刚才同学们表现很出色,现在让我们轻松一下,做个游戏,好不好?

出示:游戏的规则是投中2次。(教师板书)。

看看,一共得了多少环?

还有谁想投?

展示学生作业问:你是按什么顺序列举的?

(3)教师:现在如果游戏规则是:只投两次(板书)。

老师觉得这4种不错(课件出示:藕粉荷叶茶莲藕汁大闸蟹)看看,是什么?

如果今天来的客人老师请你推荐其中的一种或两种,有多少种不同的推荐方法?

交流:同学们,谁来说说,你是怎么推荐的?

我相信我们会场上的客人老师一定会根据同学们的推荐,去选择自己满意的特产。

四、小结:

五、作业:

练习十一1-3。

教学设计解决问题的策略篇九

教学内容:

苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页—69页例2和练一练。

教学目标:

1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。

2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

能有序、有效地思考、分析实际问题中的数量关系。

教学难点:

感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

教学准备:

课件、导学单、教具。

教学过程:

一、复习铺垫。

1、出示下面的问题,让学生列式解答。

把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?

数量关系:个小杯的容量=720毫升。

口头列式解答。

提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。

3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。

二、探索策略。

1、教学例1。

(1)理解题意。

谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。

能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。

揭示:6个小杯的容量+1个大杯的容证=720毫升。

大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。

(2)确定思路。

谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。

反馈:请把你的解题思路分享给大家。

学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:

思路一:假设把720毫升果汁全部倒入小杯。

问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。

思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。

思路三:列方程解。

小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。

(3)列式解答并检验。

谈话:选择一种方法完成解答,并检验解题的过程和结果。

完成解答后,让学生说说列式、检验的方法和结果。

(4)回顾反思。

(5)教学第二种思路。

学生独立思考,列式计算,教师巡视。

指名交流解题时的思考过程,以及列式计算的过程和结果。

(6)比较和回顾。

提回:通过解答上面的问题,你有哪些收获和体会?

让学生先在小组里说一说,再组织全班交流。

2、完成“练一练”。

(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。

(2)让不同思路的学生展示自己解题的过程。

三、巩固练习。

完成练习十一第1—3题。

四、课堂总结。

今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?

教学设计解决问题的策略篇十

本课是苏教版五年级上册的《解决问题的策略——一一列举》。在此之前学生已经学会用列表和画图来解决问题,对这两种策略解决问题的价值已经有了体验和认识,而一一列举也是我们生活中解决问题时常用的策略之一,同时在列举的时候有序地思考,做到不重复、不遗漏,对发展思维也很有价值。本课的教学重点就是使学生学会用一一列举的方法解决生活中的实际问题。在本节课教学中,我觉得应紧扣以下三个方面:

1、引导学生认真审题,在理解题意后明确列举的目的。

在教学例1“用18根1米长的栅栏围成一个长方形花圃”,例2“订阅下面杂志,最少订阅1种,最多订阅3种,有多少种不同的订法?”后,我均安排了审题的环节,例1问“从这句话中知道了什么数学信息?”,例2问“你是怎样理解‘最少订阅1本,最多订阅3本’的?”引导学生通过认真审题明确例1是要找出长方形所有不同的围法。例2是要找出订阅1种或2种或3种杂志的所有不同的订法。让学生在理解题意后明确列举的目的,把每种答案都找出来,就需要一一列举。

出示例2后问“想想‘最少订阅1种,最多订阅3种’是什么意思?”既是引导学生认真审题,也是帮助学生找到解决问题的突破口,让学生明确要找出所有不同的订法,必须知道订阅1种,订阅2种,订阅3种杂志各有几种不同的订法。

3、借助不同方式列举,在交流合作中学习列举的方法。

通过例1、例2的教学让学生展示用文字叙述、字母替代后列举和列表格几种不同的列举方法,通过比较让学生感受到用列表的方式进行有序的列举,简洁明了,答案一目了然。特别是例2这样需要进行分类列举的,用列表格的方法操作起来比较简便,答案一目了然,且不重复也不遗漏。同时在教学中对表格的生成过程也给学生一个完整的印象,让学生初步学会借助表格进行有序列举。“练一练”我出示“一张靶纸共三圈,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中两次,可能得到多少环?”这题是一道开放题,可以借助不同的方法进行列举,而列表并不是最好的方法,我启发学生:“可以借助列表的方式,也可以想想有没有其他比较好的方法。”并让学生分小组交流合作,使学生在交流合作及教师的引导下最终找到最佳方法——计算列举,从而使学生感受列举方法的多样化。

课后,结合评课老师的详细评价和指导,我回过头来细细反思了整个教学过程,认识到了这节课中自己存在的许多不足之处。

1、我忽略了一个重要的问题,那就是这节课的重点和难点是使学生能有条理的一一列举,并进行分析,能用“一一列举”的策略解决实际问题。应该及时带领学生:“想一想,我们先找宽是几米?”再让学生按有序的顺序,把书上的表格填写完整。这样在解题的过程中,学生就能深刻感受到运用一一列举这一策略的过程以及价值,达到预期的教学目标和教学效果。

一节好的课必须围绕重难点,有针对性的突破,这样才会有好的效果,达到事半功倍的效果。

2、这节课上,我觉得给学生回顾策略的时间和空间少了点,虽然在教学中我注意发挥了学生的主体性,但是,本课容量较大,在某些环节我还没有很好地发掘学生的内驱力,导致学生来不及细想。要真正让学生学得主动,学得扎实,学得愉快,首先还需教师从观念上转变过来,多引导,少包办。

学生的数学学习应该是学生自主学习的过程,学生应该在活动中自主探索,发现。教师在课堂中的作用在于对学生进行有效的指导,帮助学生主动参与数学知识的发生﹑发展和形成过程,理解和掌握数学思想﹑知识和方法。

3、在今后的教学实践中,需要进一步加强自己的教学机智和敏锐的洞察力。在这节课中,对于学生在课堂上出现的一些问题,我没有能够机智地抓住,把它们作为课堂资源来及时调控课堂教学。

有人说,教师的成长就是实践加反思的过程,就是痛并快乐着的过程,是啊,实践、反思、再实践!我体验着,并实践着!

虽然在参加数学培训和数学教研活动时经常听到专家、名师们谈到策略,但对什么是“策略”心里挺没底的。细看教材,我对“策略”的定位是:在解决问题的教学中,孩子们对数量关系的阐述可以不十分规范,但只要能够结合具体情境和自身经验描述出思考过程就可以。不过需要老师有意识地引导孩子对各种方法进行比较,经过一定的数学思考,形成解决问题的策略。

思考孩子的知识起点很重要!因此在备课时,我首先思考了五年级孩子的知识起点。我很欣喜地发现,在他们一年级时已经学习了分与合,二三年级时能用数字组数,用列举方法编口诀,四年级上学期学会了“搭配的规律”等等。原来,孩子们几乎每个学期都在用“一一列举”的策略解决一些简单的问题,而且在不断的具体的应用过程中,孩子们已经体会着一一列举的基本思考方法,知道列举要注意有序,要不重复、不遗漏地进行思考。只是到现在为止,这只是一种无意识的解题行为而已。如何让这样的思考更深入、更系统,便是我今天课堂上的任务了。

课堂上,孩子们的表现很不错!我进入例1的教学后,孩子们通过摆小棒、列表等方法很顺利地解决了“围羊圈”的问题,而我则通过实物展示台展示孩子们填写的表格,侧重让孩子们在比较自己与同伴的探究成果中,加深“有序、不重复、不遗漏”这三个列举的关键,让学生感性认识“一一列举”策略,唤醒他们已有的数学经验,并通过找共同点聚焦,水到渠成地提炼出一一列举策略。例1“围羊圈”突出“找到根据,再有序列举”,例2“订杂志”突出“先分类,再有序列举”等等。通过对比这两道题,让孩子们更加感性地认识“一一列举”策略的特征——有序思考。除了不断地渗透一一列举的有序性外,还不断深化孩子们的数学思考,让他们对策略有更深的认识。

在处理p64页练一练时,学生对“小华投中两次,可能得到多少环?”这句话理解不到位,导致其中10+6=16(环),8+8=16(环)这两种情况未能看出环数是相同的,错误的认为是6种环数。当然,我课前备课时已经预料到孩子们会出现这种状况,经过我的点拨,孩子们很快明白了正确的是5种可能出现的环数,6种中靶情况。数学活动不仅仅呈现在数学课堂上,更要延伸到课后。我的一个问题:如果将“投中两次”改为“投了两次”,该怎样思考呢?将“列举”延伸到课后。我相信孩子们经过这节课的学习,会很好地解决这一问题。

纵观这一节课,学生始终都在思考:“一一列举时要注意什么?”我引导学生反思,体会一一列举的关键——有序思考。这样以学生已有的知识基础为起点,精确切入,让学生不是无奈地“跟着重复”,而是生动、高效地在自己已有的基础上学习、拓展。这样既突出了教学的重点,又立足了学生的数学现实,自然、简洁、高效。

当然,本节课也还存在一些不足之处:像跟某些孩子没有有效地沟通,课堂调控能力还有待提高。

猜你喜欢 网友关注 本周热点
精选文章
基于你的浏览为你整理资料合集
复制