倍数特征小学教案设计
文件夹
一份好的教案可以帮助教师合理地组织和安排教学内容。教案应当注重培养学生的综合能力和创新思维。以下是一些获奖教师自带的教案,经过实践检验,具有很高的实用性。
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学过程:
一、提出课题,寻找3的特征。
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l3、l6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)。
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的'数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做。
四、课堂小结:
这节课你有什么收获。
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
教学难点:会判断一个数能否被3整除。
三疑三探教学模式。
课件等。
一、设疑自探(10分钟)。
(一)基本练习。
1、能被2、5整除的数有什么特征?
2、能同时被2和5整除的数有什么特征?
(二)揭示课题。
我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)。
(三)让学生根据课题提问题。
教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)。
(四)出示自探提示,组织学生自探。
自探提示:
自学课本19页内容,思考以下问题:
1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。
2、能被2、3整除的数有什么特征?
3、能被2、3、5整除的数有什么特征?
二、解疑合探(15分钟)。
1、检查自探效果。
按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。
2、着重强调;
一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)。
1、学生质疑。
教师:对于本节学习的'知识,你还有什么不明白的地方,请说出来让大家帮你解决?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)。
四、运用拓展(11分钟)。
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
1、判断下列各数能不能被3整除,为什么?
72567951890111120373。
2、58115207210451008。
有因数3的数:()。
有因数2和3的数:()。
有因数3和5的数:()。
有因数2、3和5的数:()。
让学生说说怎么找的。
(三)全课总结。
1、学生谈学习收获。
教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。
2、教师归纳总结。
学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
能被3整除的数的特征一个数各个数位上的数字之和能被3整除,
这个数就能被3整除。
1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。
2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。
教学重难点。
判断一个数是不是3的倍数。
课前准备。
小黑板、学具卡片。
教学活动。
一、引入新课,激发兴趣。
教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)。
教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。
学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。
谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)。
二、自主探索。合作学习。
1.先让学生猜一猜:3的倍数有什么特征?举例说明。
2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?
如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。
4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?
每个数所用算珠的颗数都是3的倍数。
5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。
一个数是3的倍数,这个数各位上的数的和一定是3的倍数。
6.进一步验证。
(1)同桌之间互相报数,验证刚才的结论是否正确。
(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。
7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?
在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
三、运用结论。巩固拓展。
1.做“想想做做”第1题。
指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?
2.做“想想做做”第2题。
提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。
3.做“想想做做”第3题。
让学生独立填写,再在小组里交流:你能找到几种不同的填法?
4.做“想想做做”第4题。
学生涂完后,指名回答:9的倍数都是3的倍数吗?
5.做“想想做做”第5题。
各自组数,并把组成的数记下来。
指名报答案,全班学生评议。
6.补充题。
提问:你今年几岁?再过几年你的岁数是3的倍数?
教学目标:
1、在探索活动中,观察发现3的倍数的特征。
2、能够运用2、3、5的倍数的特征,迁移类推出其他相关倍数问题的解决方法。
教学过程;
活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征么?指名说。
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。
1、在书上第6页的表中,找出3的倍数,并做上记号。
2、观察3的倍数,你发现了什么?先独立完成,看谁找的快。
教师参与到讨论学习中。先独立思考,想己的想法,然后与四人小组的同学说说你的发现。
生一:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生二:十位上的数也没有什么规律。
生三:将每个数的各个数字加起来试试看。
3、你发现的规律对三位数成立吗?找几个数来检验一下。
活动三:试一试。
在下面数中圈出3的倍数。
284553873665。
活动四:练一练。
1、请将编号是3的倍数的气球涂上颜色。自己独立完成,在小组内说说自己的想法。
361754714548。
2、选出两个数字组成一个两位数,分别满足下面的条件。独立完成,说说你的窍门和方法。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
活动五:实践活动。
在下表中找出9的倍数,并涂上颜色。可以在自主实践以后再交流。
板书设计:
教法建议。
教学设计示例。
约数和倍数的意义。
教学目标。
2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.。
教学重点。
2、理解约数、倍数相互依存的关系.。
3、应用概念正确作出判断.。
教学难点。
理解约数、倍数相互依存的关系.。
教学步骤。
一、铺垫孕伏(课件演示:数的整除下载)。
1、口算。
6÷515÷323÷7。
1.2÷0.324÷231÷3。
2、观察算式和结果并将算式分类.。
除尽除不尽。
6÷5=1.215÷3=15。
1.2÷0.3=424÷2=1223÷7=3……2。
31÷3=10……1。
4、寻找具有整除关系的算式.。
板书:15÷3=515能被3整除。
5、分类。
除尽除不尽。
不能整除整除。
6÷5=1.2。
1.2÷0.3=415÷3=15。
24÷2=1223÷7=3……2。
31÷3=10……1。
二、探究新知。
(一)进一步理解“整除”的意义.。
1、整除所需的条件.。
(1)分析:24能被2整除,15能被3整除;
23不能被7整除,31不能被3整除;(商有余数)。
《3的倍数的特征》的教学是在第一次教学之后,学校组织县级教学能手选拨赛时候第二次上,可以说是“一课两上”。我在第二次备课时完全从另一个角度来处理教材,收获颇丰。下面我就本节课前后两次上课反思如下:
第一次上课我是让学生圈出100以内3的倍数,去观察3的倍数的特征,由此总结出3的倍数的特征,然后实际应用,巩固练习。效果一般。而第二次上课时我是这样做的:使学生在原有认知的基础上产生认知冲突,在学习2、5倍数特征的基础上,让学生猜测是不是3的倍数的特征也要去看数的个位呢,进而产生新的.探索欲望,让后在百数表中圈出3的倍数的特征,接着借助学生熟悉的计数器进行两个实验,实验一:验证3的倍数的特诊,实验二:验证不是3的倍数的的数的特征。最后实践应用,课堂检测。
整个教学过程突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。这就要求我们教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。
反思这节课的不足我觉得在每个环节的过渡上要做的更加自然、一气呵成会更好。由于本节课按照赛教要求只有30分钟,时间的把握做的还不够恰到好处。总之,教无定法,学海无涯,需要我不断的学习和实践,不断提高自身素质和专业水平,大力提高教学质量。
1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。
2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。
实物投影仪、数字卡片等。
每人几张数字卡片。
一、谈话导入,揭示课题。
我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。
二、探索交流、获取新知。
(一)活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。
1、在书上第6页的表中,找出3的倍数,并做上记号。
(先独立完成,看谁找的快?)。
2、观察3的倍数,你发现了什么?
教师参与到讨论学习中。
先独立思考,想出自己的想法。
然后与四人小组的同学说说你的发现。
生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生2:十位上的数也没有什么规律。
生3:将每个数的.各个数字加起来试试看。
3、你发现的规律对三位数成立吗?找几个数来检验一下。
(1)自己先找几个数试一试。
(2)然后在小组内说说你验证的结论。
(三)活动三:试一试。
28、45、53、87、36、65。
(先自己圈,然后说说你是怎样判断的?)。
(四)活动四:练一练。
1、请将编号是3的倍数的气球涂上颜色。
36、17、54、71、45、48。
(自己独立完成,在小组内说说自己的想法。)。
2、选出两个数字组成一个两位数,分别满足下面的条件。
3、0、4、5。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
(独立完成,说说你的窍门和方法。)。
(五)活动五:实践活动。
在下表中找出9的倍数,并涂上颜色。
(可以在自主实践以后再交流。)。
三、总结。
通过这节课的学习,你有什么收获?
板书设计:
1、在下面数中圈出3的倍数。
28、45、53、87、36、65。
2、选出两个数字组成一个两位数,分别满足下面的条件。
3、0、4、5。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
学习内容:
人教版小学数学五年级下册第21页第8题、第22页。
学习目标:
1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。
2.我能运用2、5、3的倍数的`特征解决问题。
学习重点:
熟练掌握2、5、3的倍数的特征。
学习难点:
运用2、5、3的倍数的特征解决综合问题。
教学过程:
一、导入新课。
二、检查独学。
1.互动分享独学部分的完成情况。
2.质疑探讨。
三、合作探究。
1.小组合作,完成课本第21页第8题。
(1)3个3的倍数的偶数________________。
(2)3个5的倍数的奇数________________。
讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?
2.自主完成第22页第10题,然后与同伴交流。
3.小组合作,完成第11题,然后组内代表汇报。
4.小组交流“生活中的数学”。
将本文的word文档下载到电脑,方便收藏和打印。
教学内容:
教材分析:
本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。
教学目标:
2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。
教学重点:
探究求一个数的因数的方法及规律特点。
教学难点:
用求一个数的因数的方法熟练找全一个数的因数。
教具准备:
投影仪、小黑板、卡片。
教学课时:一课时。
教学设想:
运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。
教学过程:
一、复习旧知。
师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?
生:(预设)可以!
师:出示小黑板。
1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。
21和72×7=1430÷6=5。
2、判断。
(1)12是倍数,2是因数。()。
(2)1是14的因数,14是1的倍数。()。
(3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。()。
教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……。
二、新课教学。
过程一:尝试训练。
(一)出示问题。
师:同学们,老师有一个新问题,想请大家帮助解决,行吗?
生:行!(预设)。
尝试题:14的因数有哪几个?
(二)学生解决问题,教师巡视并根据实际适时辅导学困生。
(三)信息反馈。
板书:
1×14。
14 2×7。
14÷2。
14的因数有:1,2,7,14。
过程二:自学课本(p13例1)。
(一)学生自学例1。
教师提出自学要求(投影):
1、18有哪些因数?
2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。
3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。
(二)信息反馈。
1、反馈自学要求情况;
板书:
1×18。
182×9。
3×6。
18的因数有1,2,3,6,9,18。
还可以这样表示:18的因数。
2、知识对比,探索发现规律。
(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:
投影出示问题:
思考一:你用什么方法找出?
(2)学生思考,教师适时引导。
(3)同桌交流思考结果。
(4)师生互动。总结方法、点出课题。
求一个数的因数的方法:用乘法计算或除法计算(整除)。
过程三:尝试练习。
(一)用小黑板出示练习题。
1、找出30的因数有哪些?36的因数有哪些?
(二)信息反馈:师生互动总结特点。
板书:
一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。
三、课堂作业。
练习二第2题和第4题前半部分。
四、课堂延伸。
猜一猜:(卡片)只有一个因数的数是谁?
五、课堂小结。
师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?
生:……。
板书设计:
求一个数的因数的方法。
1×14。
142×7 方法:用乘法计算或除法计算(整除)。
14÷2。
14的因数有:1,2,7,14。
1×18。
182×9。
3×6。
18的因数有:1,2,3,6,9,18特点:一个数的因数的个数是有限的。
还可以表示为:
它的最小因数是1,的因数是它本身。
教学目的:
1、结合教材提供的具体情境,认识自然数和整数,并联系乘法认识倍数和因数。
2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
3、学生经历认识倍数和因数的含义,能对生活中有关的数字作出合理的解释。
4、在教师的帮助下,初步学会选择有用的信息进行简单地归纳与类比,发展合情推理能力。
5、在老师、同学的帮助下,对身边与数学有关的某些事物有好奇心,参与数学活动。
6、体验数学与日常生活密切联系。
教学重点:
探究因数与倍数。
教学难点:
倍数与因数的关系的理解。
教具准备:
实物投影仪等。
教学过程:
一、创设情境,导入新课。
1、导入谈话。
师:我们生活在一个充满数的世界里。
板书课题:数的世界。
2、呈现情境图。(略)。
二、组织活动,探索新知。
(一)活动一:看一看:
1、师问:图中有哪些数?谁愿意扮演小小售货员介绍一下水果的价格?
(1)说给你的同桌听听。
(2)指名汇报。
2、你知道这些表示水果的价格的数,分别是什么数呢?
(3.6和5.8是小数,6和4是整数。)。
3、问:我买5千克梨,需要多少钱?(生答:4×5=20(元))。
(二)活动二:试一试:
1、看书自学什么是自然数和整数。
(1)指名说说什么是自然数,什么是整数。
(2)同桌俩人一人说一个数。
(3)师:任意说一个数,学生判断它是什么数?
2、自学什么是因数和倍数?
问:在什么范围内研究倍数和因数呢?
3、师任意写一个乘法算式,先判断符合倍数和因数的范围吗?再判断()是()的因数,()是()的倍数。
(三)活动三:说一说。
1、根据算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。
(1)同桌俩人一人说一人判断。
(2)指名汇报。
25×3=7514×6=8420×5=100。
(四)活动四:找一找:
下面哪些数是7的倍数?
14172577。
(1)师:用什么方法来判断这些数是不是7的倍数呢?
(2)生答:14÷7=214是7的倍数。
17÷7=2……3,17不是7的倍数。
(五)活动五:练一练:
1、你写我说:
45×2=9045和2是90的因数,
90是45和2的倍数。
(同桌2人,一人写算式,一人说倍数和因数。)。
2、看谁找得快。
(1)24691218203048。
师问:先找哪些是4的倍数?
再找哪些是6的倍数?
哪些数既是4的倍数、又是6的倍数?
(2)请写出100以内全部6的倍数。
师:100以内6的倍数的个数是有限的还是无限的?如果不限制在100以内呢?
你发现6的最小的倍数是几呢?能找到最大的6的倍数吗?
三、总结。
师:通过这节课的学习,你有了什么收获?
板书设计:
数的世界。
我买5千克梨,需要多少钱?
4×5=20(元)。
答:需要20元钱。
先找哪些是4的倍数?再找哪些是6的倍数?哪些数既是4的倍数、又是6的倍数?
4的倍数:4122048。
6的倍数:612183048。
既是4的倍数、又是6的倍数:1248。
教学内容:书4-5页。
教学目的:
1、经历探索2,5的倍数特征的过程,理解2,5的倍数的特征,能正确判个数是不是2或5的倍数。
2、知道奇数、偶数的含义,能判断一个数是奇数或偶数。
3、在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力。
教学重点:
理解2、5的倍数的特征。
教具准备:
0-9的数字卡片、信封等。
1、一个自然数不是奇数就是偶数()。
2、最小偶数的两位数是12.()。
3、同时是2、5倍数的数的个位上的数一定是0.()。
填空。
1、是2的倍数的最小的三位数是(),
最大的三位数是().
2、是5的倍数的最小的两位数是(),
最大的两位数是().
选择。
1、()的数是偶数.
a.个位上是1、3、5、7、9。
b.个位上是0、2、4、6、8。
2、任何奇数加1后().
a.一定是2的倍数。
b.不是2的倍数。
c.无法判断。
4、一个奇数相邻的两个数().
都是奇数。
b.都是偶数。
c.一个是奇数,一个是偶数。
5、两个偶数的和().
a.一定是偶数。
b.可能是偶数。
c.可能是奇数。
6、选出3个是5的倍数的奇数().
a.10、20、30b.15、25、35。
c.10、15、20。
这学期,我们学习了倍数特征,分别是2、3、5的倍数特征。我们先来复习一下吧。
2的倍数特征:个位上是2、4、6、8、0。都是偶数。
3的倍数特征:各位相加的和是3的倍数。
5的倍数特征:个位上是5或0。
通过我的查找,我还发现了4、6、7、8、9、11的倍数特征。
4的倍数的特征:
(1)十位数是奇数且个位数为不是四的倍数的偶数或十位数是偶数且个位数是四的倍数。
(2)若一个整数的末尾两位数能被4整除,则这个数能被4整除,即是4的倍数。
6的倍数的特征:
各个数位上的数字之和可以被3整除的偶数。
7的倍数的特征:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。
8的倍数的特征:
数字的末三位能被8整除的数。
9的倍数的特征:
任何正整数的9倍,其各位数字之和是9的倍数,如果继续将各位数字连加最后必然会等于9。
11的倍数的特征:
一种是:11的倍数奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是0或是11的倍数。
另外一种答案是:若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1。
日记:
昨天,我和奶奶去超市购物,奶奶一共选了3包洗衣粉(因为走得匆忙,所以只看清了洗衣粉单价是自然数。)收银员阿姨说一共76元。我用3的倍数特征验证,发现结果有问题:按3的倍数特征7+6=13并不是3的倍数。而洗衣粉的单价又是自然数,所以更不可能是76元。我将结果告诉收银员,收银员连忙道歉说共75元,单价25元,共3包。通过这件事,我明白了,数的倍数特征无处不在,哪里都能用到它。
一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。
【教学目标】。
1、通过学习使学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。
【重点难点】。
掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。
【复习导入】。
说出下列各式中谁是谁的因数?谁是谁的倍数?
20÷4=5。
6×3=18。
在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数,你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。
(板书课题:因数和倍数(2))。
【新课讲授】。
(一)找因数:
1、出示例1:18的因数有哪几个?
一个数的因数还不止一个,我们一起找找18的因数有哪些?
学生尝试完成后汇报。
(18的因数有:1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。
教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有哪些?
小组合作交流后汇报,36的因数有:1,2,3,4,6,9,12,18,36。
教师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)。
教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。
仔细看看,36的因数中,最小的是几,最大的是几?
教师板书:一个数的最小因数是1,最大因数是它本身。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……。
教师:为什么找不完?
2、让学生完成做一做1、2小题:找3和5的倍数。汇报。
3的倍数有:3,6,9,12。
教师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……。
你是怎么找的?(用3分别乘以1,2,3,……)。
5的倍数有:5,10,15,20,……。
教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。
教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。
【课堂作业】。
1、完成课本第7页练习二第2~5题。
2、完成教材第8页练习二第6~8题。
【课后作业】。
完成练习册中本课时练习。
教学要求:
学会用短除法求两个数的最小公倍数。
掌握求最大公因数和求最小公倍数的区别。
教学重点:
学会用短除法求两个数的最小公倍数。
掌握求最大公因数和求最小公倍数的区别。
课前准备:
小黑板。
教学过程:
一、复习。
(1)写出3组互质数。
(2)找出每组数的最小公倍数。
6和925和10。
二、学习用短除法求最小公倍数。
36952510。
2352。
还能再除下去吗?
6和9的最小公倍数是:3×2×3=18。
25和10的最小公倍数是:5×5×2=50。
练习:求每组数的最小公倍数。
12和3036和547的.14。
24和3614和56。
三、比较用短除法求最大公因数与最小公倍的区别。
分别求30和45的最大公因数和最小公倍数。
比较:用短除法求两个数的最小公倍数和最大公因数的什么相同点?不同点?
小结:相同点:用短除法,除到互质数为止。
不同点:最大公因数是把所有的除数相乘;最小公倍数是把除数和商相乘。
四、教学求两个数的最小公倍数的两种特殊情况。
两个数成倍数关系。
15和3012和368和4。
求这两个数的最小公倍数?
说说你的发现?
五、观察。
两个数是什么关系?
最小公倍数与这两个数的什么关系?最大公因数与这两数有什么关系?
1.两个数互质。
拿出复习中同学们写出的互质数。
小组合作讨论研究。
如果两个数是互质数,它们的最小公倍数与最大公因数有什么特点呢?
2.练习。
直接说出每组数的最小公倍数与最大公因数。
3和78和911和4。
4和284和2533和11。
7和6348和1242和56。
3.作业:求每组数的最小公倍数与最大。
公因数。
15和207和512和16。
5和3528和1434和51。
一、复习导入:
为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。
下面的数,哪些是2的倍数?哪些是5的倍数。
1218202548607290。
让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。知道了2和5的倍数的特征,那么你想知道3的倍数有什么特征吗?从而引出课题。(板书:3的倍数的特征)。
二、探究新知1、自主探究3的倍数的特征。
(1)大胆猜想。
为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。
(2)猜想验证,体验新知。
由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。
出示百数表。
提问:你能在这些数中找出3的倍数吗?
仔细观察这些数,并和同桌讨论3的倍数有什么特征?
通过观察发现,个位数字和十位数字都没有什么规律,但是将各数位上的数字加起来,它们的`和都是3的倍数。如:12,十位上的1和个位上的2加起来是3,正好是3的倍数。再如:27,十位上的2和个位上的7加起来的和是9,正好是3的倍数。
验证:用数小棒的方法和除法进行验证。
(3)归纳总结。
在学习操作验证完成后,我用充足的时间引导学生自己总结。最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
2、判断一个数是不是3的倍数的方法。
主要是为了让学生将学到的只是系统化,条理化。
三、巩固提高。
(1)至(3)题是对新知识的巩固。这样设计的目的是通过判断、填空等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)。
在自我评价,总结提高部分,我鼓励学生说说本节课你有什么收获,其实也是培养学生独立总结的能力。
在这节课的设计中,我注重了学生的认知规律,激发了学生的求知欲望,注意了学生的个性张扬,让学生独立思考,合作学习,创新精神得到了培养。努力为学生营造了愉快的学习氛围。
认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。
【教学目标】。
1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。
【重点难点】。
【复习导入】。
1、教师用课件出示口算题。
10÷5=16÷2=。
12÷3=100÷25=。
220÷4=18×4=。
25×4=24×3=。
150×4=20×86=。
学生口算。
2、导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。
的倍数的特征小学五年级教案设计(优质16篇)
文件夹