数学个数乘分教学设计
文件夹
在人生的道路上,总结是我们不断提高自己的必要环节。完美的总结需要我们有足够的耐心和时间来对过去的经历进行梳理和反思。总结的范文可以给我们提供启示和思考,但我们要抓住其中的核心要点,根据自己的实际情况进行总结和概括。
1、使学生通过尝试和交流,初步掌握除数是小数的除法的计算方法。
2、提高学生的知识迁移能力和辨析能力。
3、培养学生细心做题的好习惯。
除数是小数的除法的计算法则
理解除数是小数转化成整数的道理
一、复习:
1、将下面各数去掉小数点后,变成了什么数?各扩大了多少倍?
3.70.420.00120.03
2、填写下表,说说被除数、除数和商之间有什么变化规律。
学生回顾并交流商不变的性质。
意图:通过复习,帮学生回顾本节后中要用到的知识,更利于学生知识的迁移。
二、探究学习
(1)学生列算式,说说为什么用除法。
(2)生独立计算。(师收集不同做法)
(3)交流评议:
交流方法:教师展示学生的.不同做法,学生进行评议交流。如果学生提到变单位的方法,教师要相机展示,没有提到便不展示。
(4)规范书写格式,学生纠正自己的做法。
2、尝试练习:
62.4÷2.6=
3、出示:
0.544÷0.16
(1)学生独立做
(2)交流做法,组织评议。
学生可能有的扩大100倍,有的扩大1000倍,让学生谈自己的理由。之后师引导小结:只需要把转化成之前学习的除数是整数的小数除法就行了。
三、反馈练习:
四、p29做一做
五、课堂小结
教学内容安排:
被除数和除数小数位数相同的除法。
教学目标:
1、使学生通过尝试和交流,初步掌握除数是小数的除法的计算方法。
2、提高学生的知识迁移能力和辨析能力。
3、培养学生细心做题的好习惯。
教学重点。
除数是小数的除法的计算法则。
教学难点。
理解除数是小数转化成整数的道理。
教学过程:
一、复习:
1、将下面各数去掉小数点后,变成了什么数?各扩大了多少倍?
3.70.420.00120.03。
2、填写下表,说说被除数、除数和商之间有什么变化规律。
学生回顾并交流商不变的性质。
意图:通过复习,帮学生回顾本节后中要用到的知识,更利于学生知识的迁移。
二、探究学习。
(1)学生列算式,说说为什么用除法。
(2)生独立计算。(师收集不同做法)。
(3)交流评议:
交流方法:教师展示学生的不同做法,学生进行评议交流。如果学生提到变单位的方法,教师要相机展示,没有提到便不展示。
(4)规范书写格式,学生纠正自己的做法。
2、尝试练习:
62.4÷2.6=。
3、出示:
0.544÷0.16。
(1)学生独立做。
(2)交流做法,组织评议。
学生可能有的扩大100倍,有的扩大1000倍,让学生谈自己的理由。之后师引导小结:只需要把转化成之前学习的除数是整数的小数除法就行了。
三、反馈练习:
四、p29做一做。
五、课堂小结。
本节课《分数乘分数》是人教版六年级数学第二单元的内容,重点十固和进化理解分数乘法的意义,探索分数乘分数的计算法则。
在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。对于课堂中的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
(1)引导学生通过用图形表示算式,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
(2)以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的'意义,体会分数乘分数的计算过程。
(3)学生运用数形结合的方法立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算方法积累认知。整体教学的效果很好。
由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生立进行。而在分数乘分数计算过程的探索中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较好。
学生在计算分数乘分数时能根据计算法则进行计算,但对于计算过程的约分,部分学生的约分意识不强,如3的倍数,7的倍数,甚至更大质数的倍数,学生不知道约分,使结果不是最简,还要加强训练。
【教学目标】。
(1)通过自主探索、合作交流,理解小数的除法计算法则,能正确地进行计算。
(2)培养学生运用转化的思想,自己发现问题,解决问题。
(3)通过学习活动,培养积极学习态度,树立学好数学的信心。
【教学分析】。
教科书首先通过生活情趣,引入一个数除以小数的除法计算,并使学生在解决问题的过程中,进一步体会小数除法的意义。本课时教师创建了老奶奶编“中国结”的生活情境导入新课,让学生发现问题,并解决问题,体会计算与生活的密切联系。通过合作交流、比较的方法,归纳出“一个数除以小数的除法”的计算方法。
【学生分析】。
(1)相关知识及基础:学生已有了,以前学过“商不变的规律”,和前一节课学习的“除数是整数的除法”的计算经验。
(2)学习困难与帮助:学生第一次接触一个数除以小数的除法,面对新知识的挑战,学生表现很积极。
【教学重点与难点】。
(1)教学重点:利用商不变的规律,正确地把除数是小数的除法转化成除数是整数的除法。
(2)教学难点:除数转化成整数,正确移动被除数的小数点。
【教学准备】。
多媒体课件,美丽的“中国结”,彩色绳,彩色卡纸做成的招牌,学习用品,生活用品。
【教学过程】。
一、复习铺垫(教学时间:3分钟)。
1、游戏导入。
师:同学们,你们喜欢玩游戏吗?
生:喜欢!
师:在上课前,我们来做一个接龙游戏,看看哪个组表现最好,好吗?
生:好!。
(点击多媒体课件,出示四组下面这样的题目进行接龙游戏。)。
(1)0.78扩大10倍是(2)9.38扩大100倍是()。
(3)6.73扩大1000倍是()(4)0.023扩大100倍是()。
(表扬表现出色的小组。)。
2、点击多媒体课件出现:
你能不用计算,判断出下面各式的商是否一样?请说明理由。
270÷9027÷92.7÷0.9。
(学生归纳出商不变的规律,答对的表扬,答错给予鼓励。)。
师:你们真棒,能把一种问题转化成另一种问题来思考,今天我们学习的“一个数除以小数”的除法,就可以运用转化思想的`方法进行学习。
(老师用掌声表扬学生,并板书课题。)。
二、创设情境,激趣导入(教学时间:1分钟)。
师:(教师手拿中国结)同学们,你们看这是什么?
生齐答:“中国结”。
师:你们知道“中国结”是用什么做?
生1:用丝绳。
生2:用彩绳。
师:你们对它的了解有多少?
生1:代表吉祥如意。
生2:表示祝福。
学生3:是中国的一种特色手工艺品。
师:你们想学吗?
生齐说:想。
师:老师介绍一位老奶奶给你们认识好吗?她的手可巧,会编各种的“中国结”。这节课谁表现出色,老师就把“中国结”奖给谁。
全体学生:好!
师:请同学们打开书本21页,例5。
三、探索计算方法。
(一)教学例5(教学时间:8分钟)。
1、课件演示(点击多媒体课件出现:两人正在对话,及老奶奶动手编“中国结”的情景。)。
师:根据这些信息,你能编出一道数学应用题吗?
师:请同学们独立分析题目的已知条件和问题,列出算式。
生:7.65÷0.85=(老师板书算式)。
师:请说说你是怎样想的?
生:要求这些丝绳可编成几个“中国结”,就是求7.65里面有几个0.85,用除法计算。
2、观察并比较式子的特点。
师:这个算式和上节课学的除法算式有什么不同?
生:上节课学习的除数是整数,而这道题的除数是小数。
3、小组合作,初步探索计算方法。
师:请同学们想想,能不能把除法转化成整数来计算?请同学们带着这个问题边看书,边思考,边讨论。(教师巡视,与个别学生交流了解情况。)。
4、探索交流多样化的算法。(学生展示成果,到讲台用投影仪汇报)。
师:那个小组愿意到这把想法告诉大家?
小组1:我们小组愿意,把7.65米0.85米都换成分米作单位的数,然后再计算。就可以计算出结果了。
师:你们说得好!(老师、学生掌声鼓励小组1。)。
小组2:我们小组认为把7.65米0.85米都化成厘米作单位的数,
7.65米=765厘米0.85米=85厘米765÷85=9(个)。
师:这个组也不错!
小组3:我们小组认为可以运用商不变的规律,把被除数和除数同时扩大100倍,变成765÷85计算就可以了。
师:第3小组说得非常好,同学们用热烈的掌声表扬这个小组。
小组4:我们小组与他们的都不同,我们刚学过除数是整数的小数除法,根据商的变化规律,被除数不变,除数扩大到它的100倍,商就缩小到它的,这样也可以算出7.65÷0.85的商。
师:也说得对!
5、交流,比较寻求最佳计算方法。
师:同学们通过动脑筋想出这么多方法计算7.65÷0.85,真了不起!
师:你认为这几种做法,哪种方便,为什么?(让学生各抒己见,说出自己的理由。)。
生1:我认为第3种方法好,方便又快。
生2:我同意第一位同学的说法,因为第1、2种只适合能够进行单位换算的一些数量,没带单位的数量就不能计算了;第4种更麻烦,换来换去容易出错;第3种就不同了,利用商不变的规律,只要把除数变成整数就行了。
生3:我们小组原来用第2种方法做的,但经过比较觉得第3种方法好,把米数改写成厘米数,实际上是间接的把被除数和除数同时扩大到原来的100倍。
师:对,第3种方法方便。通过比较我们发现,可以利用商不变的规律,把7.65÷0.85转化成765÷85,也就是把“除数是小数的除法”转化成“除数是整数的除法”来计算。(教师板书)。
板书:除数是小数的除法商不变的规律转化除数是整数的除法。
6、指导书写格式(竖式板书)。
〔过程说明:使学生清楚地明白转化的过程,又掌握了规范的竖式书写格式。〕。
7、反馈练习47.85÷0.75。
(学生独立完成后检验,同位交流;在学生独立做题时,教师辅导学习有困难的学生。)。
(二)教学例6(自主学习)(教学时间:5分钟)。
1、出示例6计算12.6÷0.28。
2、尝试独立计算。(要求学生边算边思考下面的问题,这些问题用多媒体课件演示。)。
(1)这里被除数和除数各有几位小数?
(2)怎样才能把除数变成整数?
(3)被除数只有一位小数,小数位数不够怎么办?
(在学生做题时,老师巡视用日记本做好学生错题记录。)。
3、教师把巡视时,记录的错例让学生进行对比分析。
(让书写端正的一位学生到黑板做12.6÷0.28。)。
(三)通过对比,归纳小数除法的计算方法(教学时间:3分钟)。
1、师:观察例5、例6,它们有哪些相同的地方?那些不同的地方?
生1:相同的是,两题的除数都是小数;不同的是,例5被除数与除数小数的位数相同,例6被除数与除数小数的位数不同。
生2:相同的是,都是把除数的小数点去掉,使除数变为整数;不同的是,例6的被除数在移动小数点时,位数不够要在末尾用“0”补足。
2、请大家想一想,怎样计算一个数除以小数的除法呢?
(1)鼓励学生大胆地用自己的语言描述一个数除以小数的计算方法。
(2)引导学生把“一个数除以小数的除法”的计算方法,分三个步骤总结。教师加以提炼得出:
一看:看清除数有几位小数;
三算:按照除数是整数的除法的方法计算。
(点击多媒体课件出示计算方法)。
(3)找出计算方法的关键。
师:你认为除数是小数的除法计算,关键是什么?
生2:我认为,“除数和被除数的小数点同时向右移动相同的位数,使除数变成整数。当被除数位数不够时,用0补足”是计算的关键。
生3:我认为,关键是转化时看除数有几位小数,就把除数的小数点向右移几位,同时被除数的小数点也要向右移动几位。
(四)阅读与质疑(教学时间:2分钟)。
(1)认真阅读书本例5和例6的内容。
(2)质疑。
(若学生没疑问,老师根据本节课重点难点提问,检查中下生掌握情况。)。
四、展示练习,深化认识(教学时间:17分钟)。
(1)在()里填上适当的数。
0.12÷0.3﹦÷33.72÷2.4﹦()÷24。
0.672÷0.28﹦()÷281.36÷0.16﹦()÷16。
(学生回答后表扬)。
(2)书本“做一做”第1题。
(你要认真审题,完成后还要认真检验哦!)。
(3)数学医院:(书本“做一做”的第2题)。
(看看谁是个好医生,要细心点哦!)。
(4)现场实践活动(在教室内设置几个购物点,由几位同学扮演售货员,同学们前往购物。)。
师:同学们,你们表现这么出色,老师带你们去购物好吗?
全体生:好!
出现下面情景:
※情景1:学生拿25.2元到商店买日记本,每本日记本3.6元,能买几本。
※情景2:到书店购买书每本10.5元,带了31.5元,可以买几本。
※情景3:到超市买巧克力,每块2.5元,10元可以买几块。
五、谈收获:(教学时间:1分钟)。
1、这节课你有什么收获?请和你的同学交流。
2、发奖,表扬表现出色的同学。
六、板书设计:
(一看、二移、三算)。
除数是小数的除法商不变的规律除数是整数的除法。
转化。
教学内容安排:
被除数和除数小数位数相同的除法。
教学目标:
1、使学生通过尝试和交流,初步掌握除数是小数的除法的计算方法。
2、提高学生的知识迁移能力和辨析能力。
3、培养学生细心做题的好习惯。
教学重点。
除数是小数的除法的计算法则。
教学难点。
理解除数是小数转化成整数的道理。
教学过程:
一、复习:
1、将下面各数去掉小数点后,变成了什么数?各扩大了多少倍?
3.70.420.00120.03。
2、填写下表,说说被除数、除数和商之间有什么变化规律。
学生回顾并交流商不变的性质。
意图:通过复习,帮学生回顾本节后中要用到的知识,更利于学生知识的迁移。
二、探究学习。
(1)学生列算式,说说为什么用除法。
(2)生独立计算。(师收集不同做法)。
(3)交流评议:
交流方法:教师展示学生的不同做法,学生进行评议交流。如果学生提到变单位的方法,教师要相机展示,没有提到便不展示。
(4)规范书写格式,学生纠正自己的做法。
2、尝试练习:
62.4÷2.6=。
3、出示:
0.544÷0.16。
(1)学生独立做。
(2)交流做法,组织评议。
学生可能有的扩大100倍,有的扩大1000倍,让学生谈自己的理由。之后师引导小结:只需要把转化成之前学习的除数是整数的小数除法就行了。
三、反馈练习:
四、p29做一做。
五、课堂小结。
文档为doc格式。
知识重点[单击此处输入知识重点]。
教学难点[单击此处输入教学难点]。
教学用具。
教学过程教学方法和手段。
引入1大10倍,小数点应怎样移动?要扩大1000倍呢?
5、学生填写括号里的数:
被除数15150()。
除数550500。
商()()3。
学生小结运用了什么规律?(商不变的性质)。
概念分析[单击此处输入教学过程]。
例题讲解【例1】。
一、引入新课:
学生做43.5÷5=8.7。
然后改题:4.35÷0.5猜一猜得数是多少?为什么?
二、新授:
1、出示例5。
(1)教师:图上有那些信息?根据信息分析题意,列出算式:7.65÷0.85。
(2)问:想一想,除数是小数怎么计算?(转化成除数是整数的除法来计算。)。
(3)问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
2、出示例6:12.6÷0.28。
教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
小结:学生说一说学到了什么?教师适当小结。
课堂练习1、书上第22页“做一做”
2、练习:判断并改错:
1.44÷1.8=811.7÷2.6=4.54.48÷3.2=1.4。
3、练习:书上24页的作业。
小结与作业。
课堂小结[单击此处输入课堂小结]。
本课作业[单击此处输入本课作业]。
课后追记。
本课又提高了一个层次,老师要把握好扩大除数、被除数的倍数(小数点向右边移动几位)是由除数决定的,要先看除数有几位小数,被除数和除数就同时向右移动几位。
教学内容p21~22。
教学目标初步掌握除数是小数的除法的计算法则。
知识重点应用商不变的性质,掌握除数和被除数小数点的移动方法。
教学难点p22例子6被除数小数位数少于除数小数位数情况的处理。
教学过程教学方法和手段。
引入让学生做p20页第11题。
被除数1.515150。
除数550500。
商
这就是“商不变的性质”
教学过程一、板书1.28÷4=0.32。
那么12.8÷40=?
0.128÷0.4=?
二、出示p21例5主题图:
组织学生分组讨论。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
二、例6。
被除数的小数位数少于除数的小数位数?
12.6÷0.28=。
课堂练习p22练习。
小结与作业。
课堂小结你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
本课作业[单击此处输入本课作业]。
课后追记。
应用被除数和除数同时扩大相同的倍数,商不变的性质应用于小数除法,扩大除数、被除数的倍数(小数点向右边移动几位)是由除数决定的,要先看除数有几位小数,被除数和除数就同时向右移动几位。
《一个数除以分数》是在一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,教材通过画图和多个例子来证明一个数除以分数就是乘这个分数的倒数。编者试图让学生经历从整数变化到分数,得到的运算法则由特殊到一般,从而经历一个严谨的科学归纳过程。
教材通过题目中的情境图引出一个数除以分数的新知,提出问题后,引导学生通过猜想、尝试、验证并通过多种方法都证明了一个数除以分数和乘这个分数的倒数的结果都相等。然后进行练习,学生学习效果肯定不错,教学过程也一定自然流畅。
如何既能让学生明白算理又让学生渗透这种数学方法呢?经过深思之后,我在学生猜想、尝试、验证、归纳出一个数除以分数等于乘这个分数的倒数的结果后,我抛出了这个问题:一个数除以分数为什么要乘以这个数的倒数呢?学生思考,讨论。汇报时学生开始大部分围绕因为结果相等来总结。此时我再结合线段图对学生进行算理的教学,大部分同学们恍然大悟,都露出了灿烂的笑容。孩子们高兴地说分数除法的算理也恰恰证明了我们猜想是正确的。在这节课的教学中,我既进行了数学思想方法的渗透,又进行了算理的教学。两者有机的结合在一起,效果显著。
虽说现在的教材已经把意义淡化了,但我在教学中依然采用了整数与分数对比,乘法与除法对比的方式,揭示了分数除法的意义。针对新教材的特点,对于分数除法的意义,我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,由于有了整数的基础和前面对于意义的理解,学生掌握得也较顺利。在分数除以整数的教学上,我把学习的主动权交给学生,让他们动手操作、集思广益,根据操作计算方法。于是学生们有的`模仿分数乘整数的方法,分母不变,把分子除以整数;有的根据题意及直观操作,得出除以2也就是平均分成两份,每份就是原来的二分之一,因而除以2就是乘上2的倒数。对于学生的想法,我都充分予以肯定,并通过练习让学生比较,选出他们认为适用范围更广的方式。由于学生理解透彻了,所以后面分数除以分数和整数除以分数的教学上,学生轻而易己地就掌握了计算方法。
《分数乘分数》是我们六年级数学的内容,重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。
对于课堂中的“探究活动”我没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
(1)、引导学生通过用图形表示算式,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
(2)、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。
(3)、学生运用数形结合的方法独立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算方法积累认知。整体教学的效果很好。
将本文的word文档下载到电脑,方便收藏和打印。
一、教学目标:
1、理解一个数除以小数的计算方法,会计算除数是小数的除法。
2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程。
二、教学重、难点。
重点:一个数除小数的计算方法。
难点:1、把除数转化为整数然后再除的方法。
2、确定商中小数点的位置。
预计教学时间:2节。
三、教学过程:
(一)基础训练。
【口算】。
2.8÷7=0.36÷12=5.05÷5=1.2÷4=。
2.6÷13=9.1÷7=10.2÷2=5.1÷3=。
(二)新知学习。
【典型例题】。
1、学习例5:
想:除数是小数怎么计算?
(1)小组讨论计算方法。
(2)独立完成。
(3)小结方法:可以把除数转化成整数。被除数和除数同时扩大相同的倍数,商不变。
2.学习例6,进一步体会小数除法的算理、算法。
(1)学生列出竖式,并说明意义。
(2)小组讨论算法。
(3)汇报:鼓励学生用自己的语言解释理由并进行交流。
【小结】怎样计算一个数除以小数?
(1)除数是小数的,可以把被除数与除数同时扩大相同倍数,把除数转化为整数再除。
(2)被除数位数不够,在末尾用“0”补足再除。
(三)巩固练习。
【基础练习】。
1.书p22做一做第一题。
2.书p22做一做第二题。
3.书p24第3题。
4.书p24第2题。
4、
【提高练习】。
5、书p24第4题。
6、书p24第5题。
7、书p25第6题。
8、书p25第8题。
能说一说其中的规律吗?
【拓展练习】。
9、书p25第7题。
10、书p25第9题。
(四)全课总结。
怎样计算小数除以整数?
(1)按整数除法的方法去除。
(2)商的小数点要和被除数的小数点对齐。
(3)整数部分不够除,商0,点上小数点。
(4)如果有余数,要添0再除。
(五)教学效果评价(小测题)。
1.计算下面各题。
26÷0.13=6.21÷0.03=210÷1.4=。
一、引导自主探索,了解分数与整数相乘的意义。
1、导入新课时,引导学生涂色表示3个米,目的是让学生认识到求3个米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的`计算方法进行了知识结构上的铺垫。
2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推,×3=?进一步发展学生合情推理能力,体验探索学习的乐趣。
二、加强过程体验,体会过程约分比结果约分更简便。在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11=?的练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。存在不足:本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。
文档为doc格式。
教学内容:
九年义务教育六年制小学数学第十一册第106―109页。
教学目的:
1、使学生了解圆是一种曲线图形。
2、使学生理解和掌握圆的各部分名称及圆的特征。
3、会用圆规画园。
4、培养学生的观察比较、分析推理,抽象概括等能力。
教学重点:
圆的各部分名称及圆的特征。
教学难点:
圆的特征。
教具准备:
多媒体课件一套、圆规等。
学具准备:
圆形纸片、圆规、直尺等。
教学过程:
一、设疑揭题,明确目标。
1.复习。
(课件显示由平面图形构成的自行车示意图,根据学生的回答,同步闪亮)。
2、设疑。
你们知道自行车架为什么要做成三角形?
(根据学生回答:三角形具有稳定性,课件闪亮自行车三角形的框架部分。)。
而自行车的轮胎为什么要做成圆形的呢?
(课件闪动自行车的轮胎后圆跳出,师在黑板上贴上圆形纸片,然后学生试回答)。
3、揭题。
大家现在知道的只是其中的一些表面原因,其实这里面具有一定的科学知识,你们想知道吗?学完了这节课,我们就会知道的。(板书课题)。
4、量标。
同学们,看到课题你想知道些什么呢?
(根据生答,师概括板书:图形、名称、特征、画圆)。
二、自主探究,合作交流。
(一)直观比较、了解概念。(圆)。
圆跟我们已学过的平面图形有什么不一样呢?
(课件出示,先闪动围成三角形和四边形的线段,再将围成圆的曲线用红线走了一圈。根据学生的回答,师板书:圆是曲线图形)。
你能举出日常生活中哪些物体上有圆吗?(生举例)。
(二)操作引路,感知概念(名称、特征)。
1、折圆。
请同学们拿出你们课前准备好的圆形纸片,象老师这样对折。打开,再换个方向对折、再打开,反复折几次,你可以发现什么?(有许多痕交于中间一点)。
2、量折痕。
再请同学们用直尺量一量刚才折的每一条痕的长度,你又发现了什么?(折痕长度相等)。
3、量点到圆上距离。
最后请同学们再用直尺量一量,中间这个点到圆任意一点的距离,你还可以发现什么?(距离也都相等)。
(三)自学交流,理解名称。
1.自学课本,初知名称。
同学们通过刚才动手发现圆里的知识还真不少,数学家们把这些知识都规定为不同的名称,你们想知道吗?请同学们自学课本的第4―9小节。
2.交流消化,理解名称。
(1)圆里各部分的名称有哪些?
(根据学生的回答师板书:圆心、直径、半径)。
(2)什么叫圆心?圆心就是我们刚才折圆时所发现的什么?
(3)数学家又是如何规定圆的直径的呢?
(随生答,媒体同步动画直径的过程,先后出示直径d及直径概念)。
那么,直径就是我们刚才折圆时的什么?(折痕)。
(4)什么叫半径?圆上任意一点是什么意思?(随生答,课件闪烁圆周上的许多点再动画出半径。)。
半径就是我们在量圆时所发现的什么?
(5)(课件显示出圆的圆心、直径、半径的整体图及概念,学生齐读概念一遍)。
3、练习。下面哪些是圆的半径或直径?为什么?
(四)猜想验证,概括特征。
1、分组讨论,进行猜想。
同学们,你能根据我们刚才折圆、量圆时所发现的,以及我们已学习的什么叫直径、半径来想一想、猜一猜,圆可能会有哪些特征呢?(学生分小组讨论)。
2、交流讨论,提出猜想。
请各小组把讨论情况在全班交流一下。
(根据交流情况,师板书猜想内容)。
3、各自验证,全班交流。
同学们真爱动脑筋,猜想了圆有这么多的特征。但是你们的猜想都对吗?你自己能不能想一个办法来验证一下,试试看。
(全班学生各自想法验证:有的折圆,有的量折痕,有的在圆中画直径、半径,有的量直径、半径,有的列表记录量的数据,有的嘴里在不停地唠叨着概念……)。
请同学们把你验证的方法和得出的结果告诉大家。
4、媒体演示,加深理解。
(多媒体将学生验证的圆的特征运用了旋转、重合等声像并茂的手段,进行了动态演示)。
5、学生概括,总结特征。
谁能把圆的特征用自己的语言来归纳概括一下。
(随生答,师板书:所有直径都相等,所有半径都相等,d=2,t=d/2)。
这就是我们验证出来的圆的特征,同学们同意吗?
(异口同声:同意。一生提反对意见:这些特征必须在同一个圆里才能成立。)。
哎呀,你真聪明,把大家容易疏忽的问题给提出来了,真了不起。(师边说边板书:在同一个圆里)。
6、对照验证,完善猜想。那么,你们的猜想有问题吗?(生:有,必须强调在同一个圆里)其实,你们刚才的猜想与验证,都是在自己手中同一个圆里进行折圆,量圆的,那么你们猜想对所说的圆里,就是指自己手中的同一个圆里。(师在猜想内容的“圆里”前补上“同一个”)。
这样,你们的猜想内容与验证结果意思就怎么样?
(随生答,师在“猜想”与“验证”之间连线同时板书:正确)。
7、练习,填空。
(五)自我实践,学会画圆。
1、自学画法,实践画圆。
(学生结合课本108页圆的画法,边看边学会用圆规画圆)。
2、学生自己介绍画圆步骤。
(随生介绍,师分步板书:定距、定点、旋转)。
怎样定距?(学生边介绍边演示)这个圆规两脚之间的距离就是什么?(生:圆的半径)。
在画圆时,你发现固定的一点与旋转一周各是圆的什么?
3、(师揭下贴在黑板上的圆形纸片,在贴纸片的地方示范画圆,小结画圆步骤)。
三、自练反馈,巩固新知。
1、填空。
(1)圆是平面上的一种()。
(2)左图圆内固定的一点o是这个圆的();线段ob是这个圆的(),用字母()表示;线段ac叫做圆的(),用字母()表示。
(3)在同一个圆里,直径与半径的比是()。
(4)把一个圆规的两脚张开4厘米,画一个圆,它的直径是()。
2、判断。
(1)两端都在圆上的线段叫做直径。()。
(2)圆里有无数条半径,无数条直径。()。
(3)所有的`半径都相等,所有的直径都相等。()。
(4)半径决定着圆的大小,圆心决定着圆的位置。()。
(5)画直径5厘米的圆,圆规两脚间的距离是2、5厘米。()。
(6)直径6厘米的圆比半径4厘米的圆大。()。
3、操作。
学会量没有圆心的圆的直径。(课本练习二十五第1题)。
四、运用新知,质疑释疑。
1、现在,大家一定能运用这节课所学的知识,解释一下“为什么车轮都要做成圆形,车轴应装在哪里?”
(多媒体放完车轮分别是正方形、椭圆形、圆形的行进动画后,给学生直观给予提示,学生各抒己见,直对中心。)。
2、学了“圆的认识”这节课,你还想知道些什么?
(生甲:圆也有周长和面积吗?生乙:怎样在操场上画一个很大的圆?……)。
圆的周长和面积以后会学到的。谁见过怎样在操场上画一个很大的圆?(学生互相释疑)。
五、总结全课,储存新知。
这节课你自己运用了哪些学习方法,学到了哪些知识?
六、学生作业,深化新知。
1、课堂作业:练习二十五第3、4题。
2、课后实践:量自行车轮胎外直径。
1.通过复习近平面图形的变换方法,整体上进一步把握图形与变换的意义和方法。
2.会用平移、旋转的方法改变图形的位置,能按比例放大、缩小图形,培养学生的动手实践能力。
4.通过复习,进一步体会平移和旋转、放大与缩小的方法,激发学生的学习热情,培养学生的创新意识。
教学准备:教师准备教学光盘。
1.提问:你知道变换图形的位置的方法有哪些?
引导学生说出变换图形的位置的方法主要是平移和旋转。
火车、电梯和缆车的运动是平移;风扇叶片、螺旋桨和钟摆的运动是旋转。与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。
2.怎样能不改变图形的形状而只改变图形的大小?
引导学生说出运用放大和缩小的方法可以只改变图形的大小,而不改变图形的形状。
3.比较平移与旋转与放大和缩小这两种方法有什么联系和区别?
区别:平移和旋转不改变图形的大小,只改变图形的位置。而放大和缩小不改变图形的形状,只改变图形的大小。
联系:两种方法都不改变图形的形状。
引导学生得出:长方形、正方形、等腰三角形、等边三角形、等腰梯形、圆都是轴对称图形。长方形有2条对称轴,正方形有4条对称轴,等腰三角形和等腰梯形有1条对称轴,等边三角形有3条对称轴,圆有无数条对称轴。(教师出示相应的图片)。
先让学生独立判断,然后结合学生的判断,进一步明确轴对称图形的基本含义,即把一个平面图形沿一条直线对折,折痕两边的部分能够完全重合,那么这个图形叫做轴对称图形。接着让学生画出轴对称图形的所有对称轴。
可以先让学生按要求依次进行操作,再通过交流帮助学生进一步明确相关的操作方法。
其中画出一个图形的另一半使它成为一个轴对称图形,以及画出一个图形旋转或平移后的图形,都可以先找出一些重要的点或线段,然后确定这些点或线段在另一半图形中的位置,或平移旋转后的位置,最后连一连。
要使学生认识到:决定平移后图形位置的关键是平移的`方向和平移的距离。决定旋转后图形位置的关键是旋转的方向和旋转的角度。
把一个图形按指定的比例放大,可以先在原图中找到平行四边形的底和高,算出放大后的底和高,然后画出放大后的这些线段,最后连一连。
要让学生思考按怎样的比是把原图形放大,按怎样的比是把原图形缩小。
可以先让学生讨论确定圆的位置,需要把圆向右移动几格?圆心应画在哪里?画出的圆的大小应与原来的圆大小相等。在此基础上依次解决书上的几个问题。
可以提醒学生以直角三角形的两条直角边作标准,先数一数每条直角边各有几格长,再算一算按指定的比例缩小后又应该是几格长。在此基础上,让学生动手画一画,并进行比较。求出新图形的面积与原来图形面积的比。
可以先让学生观察拼成的两个大正方形图案,说说它们分别是由哪两种瓷砖拼成的?在此基础上,鼓励学生各自按要求设计图案。要提醒学生:第一,每次只能选择两种瓷砖;第二,每种瓷砖都可以适当旋转。
展示学生设计的图案,及时组织学生互相评价。
通过复习,你对图形变换方面的知识又有了哪些新的认识?
完成《补充习题》的相关练习。
教学目标:
1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
教学重点:
1、理解比的基本性质。
2、运用比的基本性质进行化简比。
一、探究新知。
(一)比的基本性质。
1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)。
(1)4人小组交流(2)全班交流。
(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?
(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。
4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。
5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。
(二)化简比---完成练习题(后附)。
1、小组交流。
2、全班交流。
小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。
结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。
二、巩固练习。
1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是。
2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。
3、拓展练习。
3:8=(3+6):(8+)。
(让学生分小组讨论方法)。
三、课堂总结。
这节课有哪些收获?师生共同总结。
()年()班姓名。
比的基本性质小研究。
你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?
1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。
2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。
分数除法意义的理解和分数除以整数的算法的探究。
分数除以整数的算法的探究。
课件,平均分成5份的长方形纸一张。
一、复习
复习整数除法的意义
引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
根据已知的乘法算式:5×6=30,写出相关的两个除法算式。
二、新授
(一)初步理解分数除法的意义。
1、如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?
学生试着列出算式。
2、归纳概括分数除法的意义。
(二)分数除以整数。
1、出示例1、引导学生分析并用图表示数量关系。
问:求每份是这张纸的几分之几,怎样列式?
2、列式计算。
学生折一折,算一算。
3、理清思路。
学生说思路
4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。
三、练习
第30页做一做
四、作业练习
教材p34第1、3、4题。
五、总结
今天我们学习了哪些内容?
略
1、通过图形直观的表征,让学生更加清晰求的都是同一个阴影部分的面积。从而让学生直观地看到了加减法算式之间的联系,越来越接近1,感悟极限思想。
2、培养学生利用图形来分析问题、解决问题的意识和能力。
3、重视利用图形来分析题意,理清思路,提高解决问题的能力。
计算出结果。
1、教学例2。
计算。
从第二个数开始,每个数是前一个数的。
我一个一个加下去看看,答案好像有点规律。加下去,等号右边的分数越来越接近于1。
可以画个图来帮助思考。用一个圆或一条线段来表示“1”。
从图上可以看出,这些分数不断加下去,总和就是1。
2、渗透极限思想。
如果不停地加下去,
1、猜一猜“和”是多少?
2、请用“形”来解释这个结果。
3、反馈:
如果不停地加下去,空白部分会怎么样?
那的结果怎么样?(无限接近1。)。
运用知识。
你能用所学知识解决下列问题吗?
我是这样想的。
所以原式的结果是1。
作业:第110页练习二十二,第3题、第4题、第5题。
教学目标::通过生活实际、自主探索理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。(会解决有关小数、分数和百分数的简单实际问题)。
通过数一数、比一比操作,观察,培养学生的推理能力,发展学生的思维。(经历与他人交流各自算法的过程)。
(学生通过经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能)。
课前准备:小黑板。
板块教师活动学生活动教学目标及达成情况。
一、复习:
二、探究新知。
教学例2。
小结:求一个数的几分之几是多少,可以用乘法。
复习分数乖整数的意义和计算方法。
三、练习。
1、做练一练的第1题。
2、做练一练的第2题。
3、做。
4、练习八第6-9题。
通过练习巩固求一个数的几分之几是多少,可以用乘法。
通过列式计算,认识到求一个数的几分之几与一个数的倍数一样,都可以用乘法计算。
反思重建。
班级姓名小组小组评价。
学习目标:
1、掌握分数乘分数的计算方法,并能运用计算方法熟练进行计算。
2、掌握分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间。
的关系进行正确判断。
3、激情投入,阳光战示,全力以赴,挑战自我。
重点:分数乘分数的简便算法。
难点:因数与积的关系。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本p11页。
2、计算:
3、填空:
1)、×6表示();
×表示();
2)、一根绳子长81米,剪去,还剩这根绳的,还剩()米,这里是把()看作单位“1”。
二、合作探究:
思考:你想到了几种计算方法,有什么技巧?
小结:分数乘分数的简便算法:
例2、比较大小。
思考;你发现了什么规律?
小结:当一个因数大于1时,积()另一个因数(0除外);
当一个因数小于1时,积()另一个因数(0除外);
当一个因数等于1时,积()另一个因数;
三、学以致用:
1、直接写出得。
2、
3、我能辩对错。(对的打“”,错的打“”)。
1)、一个数乘真分数,积小于这个数。()。
2)、几个假分数相乘的积大于1,几个真分数相乘的积小于1。()。
3)、x××x()。
4)、分数乘法的意义与整数乘法的意义相同。()。
5)、如果a×=b×,那么a大于b。()。
4、解决问题:
1)、一根电线第一次用去米,第二次用去的是第一次的,第二次用去多少米?
我的发现:
聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?
序号。
比
我的方法。
(写出过程)。
1
14:21。
2
36:15。
3
1/6:2/9。
4
2/3:3/4。
5
1.25:2。
6
5.6:4.2。
我的发现:
教学目标:
1、学生通过小组合作学习对单元知识进行概括,建立知识结构;。
2、会解决实际问题;。
3、归纳整理的能力及解决问题的能力;。
4、积极探索、团结协作的精神,获得收获的成功感。
教学重点:运用所学知识解决实际问题。、
教学难点:归纳整理,形成知识脉络。
教学方法:引发矛盾,引入课题小组合作,归纳整理多元评价,建构知识应用实际,解决问题强化总结,拓展迁移。
教学过程:
一、引发矛盾,引入课题。
猜一猜:老师今年多少岁了?
猜这个谜语,我们需要哪些数学知识呢?
齐读课题,你想到什么?
那好吧,我们就开始复习。
二、梳理知识,形成脉络。
1、集中呈现。
现在请大家以小组为学习单位,按照你们的想法,把学过的数。
2、逐个梳理。
1)小组活动:请大家在小组中,每人挑1至2个名词说说意思。
2)全班交流(根据学生的发言提示随意在黑板上贴出各个名词)。
3)整理完善知识结构。
在数的整除这部分首先学习的是整除,这是为什么?请大家讨论一下,再推荐代表发言。(巡视,参与学生讨论。)。
组织学生汇报交流、讨论。
提示:整除是基础,整除前提下产生了约数与倍数,它们是相互依存的关系。(逐步引出公倍数、公约数、最小公倍数、最大公约数、互质数、合数、质数、质因数、分解质因数、奇数、偶数等。)。
说得真好!这些知识之间是有密切联系的。
对于今天整理出来的数的整除脉络图,大家有什么想法?
通过整理,可以使这部分知识更加条理化、系统化。
3、自学课本,看一看还有什么不清楚的问题?
三、应用、解决问题。
1、填空题。
在1----20的自然数中,有()个奇数,有()个偶数,有()个质数,有()个合数,奇数中的()是合数,偶数中的()是质数,既不是质数也不是合数的数是()。
2、能同时被2、5、3整除的最小两位数是(),最大三位数是()。
3、选择题。
(1)一个合数的约数有()。
a)1个b)2个c)3个d)4个。
(2)如果a和b是互质数,那么它们的最小公倍数是()。
a)ab)bc)abd)1。
4、判断题。
(1)整除一定是除尽,除尽不一定整除。()。
(2)相邻的两个自然数一定互质。()。
(3)所有偶数都是合数。()。
(4)24分解质因数24=22231。()。
(5)一个自然数的最大约数一定等于它的最小公倍数。()。
5、把下面的数按照不同的标准分成两类,你能想到几种?
21581720。
四、强化总结,拓展迁移。
老师想把自己的手机号码告诉大家,大家以后有什么问题都可以和我联系,好吗?
老师的手机号码是11位数字,每一位数字依次是:
1)是质数也不是合数;。
2)最小奇数与最小质数的和;。
3)最小的自然数;。
4)质数中最小的两个数的和;。
5)既是质数,又是偶数;。
6)最小质数与最小合数的积;。
7)有约数2和3的一位数;。
8)自然数中最小的奇数;。
9)最大约数与最小倍数都是7的数;。
10)所有自然数的约数;。
11)最大的一位数。
同学们以后有事需要老师帮忙,随时call我。
这节课上到这里可以吗?
1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题。
3.能借助数轴初步理解正数、0和负数之间的关系。
【重点难点】。
负数的意义和数轴的意义及画法。
【教学指导】。
1.通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2.把握好教学要求。
而是描述性的定。
义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。
3.培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
【课时安排】。
建议共分3课时:
负数的初步认识2课时在数轴上表示正数、0和负数1课时。
【知识结构】。
第1课时负数的初步认识(1)。
【教学内容】。
(1)(教材第2页例1)。
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
【重点难点】。
体会负数的重要性。
【教学准备】。
多媒体课件。
【情景导入】。
1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)。
2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)。
引出课题并板书:负数的初步认识(1)。
【新课讲授】。
教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3。
)我们来看一下课本上的图,你知道北京的气温吗?最高气。
温和最低气温都是多少呢?随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
【课堂作业】。
完成教材第4页的“做一做”第1题。
组织学生独立完成,指名回答。
答案:-18℃温度低。
【课堂小结】。
通过这节课的学习,你有什么收获?
【课后作业】。
完成练习册中本课时的练习。
第1课时负数的初步认识(1)。
0℃。
-3℃。
3℃(+3℃)。
通过温度的概念,初步学习负数,理解气温高低与温度的关系,是负数学习的第一步。
第2课时负数的初步认识(2)。
【教学内容】。
(2)(教材第3页例2)。
通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。
【重点难点】。
体会引入负数的必要性,初步理解负数的含义。
【情景导入】。
教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?
组织学生讨论回忆上一课内容。
师:很好,大家都很棒。今天我们继续学习负数知识。
引出课题并板书:负数的初步认识(2)。
六年级数学一个数乘分教学设计(优秀21篇)
文件夹