平行线与相交线北师大版数学教案
文件夹
教案需要根据具体教学内容和学生的特点进行个性化设计。教案的编写需要注意语言表达的准确性和条理性,以提高教学的清晰性。以下是教育界的一些权威人士对于教案编写的要求和标准。
1.下列说法中正确的是()。
a.两直线被第三条直线所截得的同位角相等。
b.两直线被第三条直线所截得的同旁内角互补。
c.两平行线被第三条直线所截得的同位角的平分线互相垂直。
d.两平行线被第三条直线所截得的同旁内角的平分线互相垂直。
答案:d.
解析:a.两直线被第三条直线所截得的同位角相等,该选项错误;。
b.两直线被第三条直线所截得的同旁内角互补,该选项错误;。
c.两平行线被第三条直线所截得的同位角的平分线互相垂直,该选项错误;。
d.两平行线被第三条直线所截得的同旁内角的平分线互相垂直,该选项错误;。
故选d.
考点:平行线的判定与性质.
教学目标:
知识与技能目标:
1.探索并掌握平行线的性质;。
2.能用平行线的性质定理进行简单的计算、证明.
过程与方法目标:
2.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.
情感态度与价值观目标:
1.通过对平行线性质的探究,使学生初步认识数学与现实生活的密切联系,体会科学的思想方法,激发学生探索创新精神.
l重点:
1.平行线性质的研究和发现过程;。
难点:
l教学流程:
一、情境引入。
1、同位角相等,两直线平行.
2、内错角相等,两直线平行.
3、同旁内角互补,两直线平行.
反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?
如图,直线a与直线b平行.
如图,直线a与直线b平行,被直线c所截.测量这些角的度数,把结果填入下表内.
【学习目标】:
1、理解数轴的三要素,能画数轴。
2、能将有理数表示在数轴上,同时也能读出数轴的点所表示的数。
3、能理解数轴上的点表示的数的大小关系,并利用它来比较数的大小。
【学习重点】:认识数轴,画数轴,并利用数轴比较数的大小。
【候课朗读】:有理数的分类。
【学习过程】:
一、学习准备。
1、整数和分数统称为_________;零既不是_________,也不是_________,但它是_________。
2、正数,负数通常可以用来表示具有_________意义的量,请同学们读出教材p43三个温度计所表示的温度,分别为______、______、______,你能在温度计上标出150c,-200c的位置吗?若把温度计水平放置(或把书横放过来),我们可以发现温度计上既有正数,零,也有_______。因此我们也能将一个有理数用图形表示出来。
二、解读教材。
3、数轴的概念。
画一条水平直线,在直线上取一点表示_________(叫做_________),选取某一长度作为_________,规定直线上_________的方向为_________(用箭头标出),就得到下面的数轴。
1.如果两条平行线被第三条直线所截,那么同位角的平分线()。
a.互相平行b.互相垂直c.交角是锐角d.交角是钝角。
2.如果两条平行线被第三条直线所截,那么内错角的平分线()。
a.互相平行b.互相垂直。
3.体育课上,老师测量跳远成绩的依据是().
a、平行线间的距离相等b、两点之间,线段最短。
c、垂线段最短d、两点确定一条直线。
学习目标:
知识:对顶角邻补角概念,对顶角的性质。
方法:图形结合、类比。
情感:合作交流,主动参与的意识。
学习重点:对顶角的概念、性质。
学习难点及突破策略:“对顶角相等”的探究;小组讨论。
教学流程:
【导课】。
同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题(板书课题)。
【阅读质疑,自主探究】。
请大家阅读课本p,回答以下问题(自探提纲):
2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?
3、对顶角有什么性质?你是怎样得到的?
【多元互动,合作探究】。
同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的第2问,最后老师强调:
1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。
2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。
3、“对顶角相等”的推导过程。
在本次活动中,教师应重点关注:
(1)学生从简单的具体实物抽象出相交线、平行线的能力.
(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.
(3)学生学习数学的兴趣.
教师出示剪刀图片,提出问题.
学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.
教师提出问题.
学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.
在本次活动中,教师应关注:
(1)学生画出两条相交线的几何图形,用语言准确描述.
(2)学生能否从角的位置关系上对角进行分类.
(3)学生是否能够正确区分邻补角、对顶角.
(4)学生参与数学学习活动的主动性,敢于发表个人观点.
北师大版数学七年级下第七章共分6节,本节《轴对称现象》是第一节,它在本章中起着起始新课的作用。本节通过大量的生动的生活中的实例引领学生进入图形中的对称世界,深刻体会对称在现实生活中的广泛应用和丰富的文化价值。同时通过本节的学习与探索,使同学们对对称的认识由感性到理性,由浅到深,为后面抽象的对称图形的学习作好铺垫工作。
二、学生起点分析。
学生的知识技能基础:学生在七年级上就对对称图形有所接触,如:扇形,圆,线段,角等,所以当今天学习了什么样的图形是对称图形时,学生识别起来应该顺理成章,在对对称定义的理解和应用上也应有水到渠成的感觉。只是在轴对称图形和两个图形成轴对称的概念上可能会产生一些模糊,这是教学中应该突破的地方。
学生生活经验基础:对称现象及对称图形在生活中存在大量实例,因此,对称对于学生来说应该不陌生,理解起来也应不困难。
三、教学任务分析。
本节主要是感知和体会轴对称现象,也要为以后学习图形对称的相关知识起到一个承接的作用。为此,本节课的具体教学目标制定如下:
1.感知生活中的轴对称现象,探索轴对称的共同特征。
2.通过大量的实例初步认识轴对称,能识别简单的轴对称图形及其对称轴。
3.欣赏生活中的轴对称,体会其文化底蕴及价值,学为所用。
四、教学设计分析。
本节课设计了六个教学环节:课前准备、情境引入、合作学习、练习提高、课堂小结、布置作业。
第一环节课前准备。
活动内容:收集与对称相关的图片和实物(提前一周布置)。
活动目的:通过收集整理与对称相关的图片和实物,使同学们先对对称有一个整体的感性认识,并且初步了解对称在生活中大量存在,理解学习对称的必要性。
实际教学效果:通过分组合作,走向广阔的生活天地——田间、山村、工厂、社区等等,能让同学们充分感受到数学是对自然的浓缩与抽象,体会数学来源于生活;极大地激发同学们学习数学的兴趣和热情,同时也展现了同学们小组合作的团队精神。
第二环节情境引入。
活动内容:从各小组收集的图片中有代表性的选择一些,用投影仪演示。使学生能够形象直观地感受图形的对称。
1、平行线的性质定理的证明.
2、证明的一般步骤.
过程与方法。
1、经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.
2、结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.
情感与价值观。
通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.
教学重点。
证明的步骤和格式.
教学难点。
理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.
教学过程:
一、创设现实情境,引入新课。
节课我们就来研究“如果两条直线平行”.
二、讲授新课。
在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:
同位角相等两直线平行,.
议一议。
利用这个公理,你能证明哪些熟悉的结论?
想一想。
(2)你能根据所作的图形写出已知、求证吗?
(3)你能说说证明的思路吗?
学习目标:
进一步理解角的有关概念。认识角的表示及度、分、秒,并会进行简单的换算。
重点:通过操作活动,学会角的表示.
难点:在度、分、秒之间进行简单的换算。
学习过程:
课前热身:
说一说生活的角。
自主学习:
阅读课本143页内容,完成下列问题,
1.想一想:角的定义:_____________________________。
3.想一想:p144。
4.做一做:p144从角的运动定义出发,得到平角、周角的定义。
平角的定义:__________________________。
周角的定义:_______________________________。
1分钟记忆:角的定义和角的表示方法是什么?
反馈检测:
1.如图,可以表示成或可以表示成______,可以表示成______.
2.两个角的和是()。
a.一定是锐角b.一定是钝角c.一定是直角d.可能是直角、锐角、钝角。
1.初步体会观察、猜测得到的结论不一定正确.
2.通过探索,初步了解数字中推理的重要性.
3.初步了解要判定一个数学结论正确与否,需要进行有根有据的推理.
【学习重点】。
判断一个结论正确与否需要进行推理.
【学习难点】。
理解数学推理的重要性.
学习行为提示:创景设疑,帮助学生知道本节课学什么.
学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.
先阅读教材第162页“做一做”之前的内容,然后完成书中设置的两个问题,最后与同伴进行交流.
【说明】让学生通过观察、实验、归纳等方法初步体会得到的结论不一定正确.
师生合作共同完成教材第162页“做一做”的学习与探究.
【说明】(1)中让学生体会数学教学中从特殊到一般的思想方法;(2)中利用先猜想再验证的方法,培养学生从不同的角度来用不同的数学方法解决实际问题的能力.
学习目标:1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。
2.了解单项式、多项式、整式产生的背景,理解单项式、多项式的相关概念。
4.进一步培养学生认识特殊与一般的辩证关系。
学习重点:单项式、多项式、整式概念的理解。
学习难点:单项式的系数、次数;多项式的项数、次数等概念。
一、自主预习:
预习内容:
预习检测:。
1.如图,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a,b,c。这个箱子露在外面的表面积是;它项式,它的次数是。
2.下面两组式子各有什么特点?
我的疑惑:
二、合作探究:
1.知识与技能:
(1)理解全等图形的概念和特征。
(2)能够认识和区分全等图形。
(3)对给出的图形,能够分割成全等图形。
2.数学思考、解决问题、情感与态度:
(1)经历认识全等图形、辨认全等图形、自主分割全等图形的学习过程,体验数学活动充满探索性和创造性,体现“学有用的数学”。
(2)通过师生的共同活动,来提高学生对图形的分析能力,发展他们的空间观念和积极参与的主动精神。
〖教材分析〗。
本节课是学习全等三角形的准备课,属于入门教学内容。本节课的活动内容较多,更注重对学生开放性思维的培养。要求教师通过创设与学生生活环境、知识背景密切相关的教学情境,帮助学生理解数学概念,寻求解决数学问题的方法。本节课倡导合作交流的学习气氛,通过师生互动、生生互动学习新知识。
〖学校及学生状况分析〗。
我校是甘肃省示范性中学,办学条件良好,有一栋实验楼,3间多媒体教室,每个班都有投影仪。绝大部分学生来自城市,有较好的学习基础。
〖教学设计〗。
(一)创设问题情境,引出新课。
生1:第三扇,因为上面的图案只有一种,而其他的门上都有多种图案。
生2:第三扇门上的图案全都一样,是三角形,并且大小也一样,所以我也认为是它。
师:是不是这样呢?我们继续来看。
点击第三扇门,继续播放:
大门打开,屏幕出现:“祝贺你向数学王国又进了一步,开始今天的学习吧!”字幕。
生:每组图片的图案一样,大小也一样。
师:非常好,我们继续来看。
(一大一小同一底片的相片、地图、多边形。)。
生:每组的图案一样,大小不一样。
师:那么下面这一组呢?
生1:在这组图形中,(5)和(11)两个小圆的大小形状一样,(7)和(10)两个“l”形也是大小形状一样的。
生2:还有两个锐角三角形(4)和(9),也是形状大小一样,其他的都不完全一样。
师:很好,刚才看到的图形中,有些是完全一样的,如果把它们叠在一起,它们就能够重合(在几何画板中演示),我们把这样的图形叫做全等图形(congruentfigures)。
今天我们就来研究全等图形(板书:全等图形)。
(二)讲授新课。
师:该如何定义全等图形呢?全等图形有什么特点?
生1:两个形状相同的图形叫全等图形。
生2:不对,应该是两个大小、形状都相同的图形叫全等图形。
生3:既然大小、形状都一样,那它们就一定能够完全重合在一起,所以我觉得“两个能够完全重合的图形称为全等图形”是它的定义。
生4:我同意他的意见,刚才两位同学所说的大小、形状都一样是全等图形的特点。
师:非常好,大家不但说出了全等图形的定义,还归纳出了它的特点,自己解决了问题。
那么,明确了什么是全等图形,大家看看下列这一组图片,它们是全等图形吗?
生:第一组的图形是全等的,第二组不是,因为它们的大小不同。
师:非常好,那么,观察我们的周围,在我们的生活中还有全等图形吗?
生1:窗户的每一块玻璃是全等的。
生2:图案、大小一样的地板砖。
生3:数学课本封面的图形。
生4:同一印章印的红印。
……。
(三)通过游戏,识别全等图形,归纳性质。
师:大家都非常正确地举出了全等的生活实例,我相信,每位同学都很好地掌握。
一、选择题(共10题)。
1.有理数的绝对值一定是()。
a.正数b.负数。
c.零或正数d.零或负数。
答案:c。
2.绝对值等于它本身的数有()。
a.0个b.1个c.2个d.无数个。
答案:d。
解析:解答:根据绝对值得定义可知正数和零的绝对值是它本身,所以答案选择d选项。
分析:考查绝对值这一知识点.
3.相反数等于-5的数是()。
a.5b.-5c.5或-5d.不能确定。
答案:a。
分析:考查相反数的基本概念。
教学目标:
1.经历探索整式除法运算法则的过程,会进行简单的整式除法运算;。
2.理解整式除法运算的算理,发展有条理的思考及表达能力。
教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算。
教学难点:确实弄清单项式除法的含义,会进行单项式除法运算。
教学方法:探索讨论、归纳总结。
一、复习回顾。
活动内容:复习准备。
1.同底数幂的除法。
同底数幂相除,底数不变,指数相减。
2.单项式乘单项式法则。
单项式与单项式相乘,把它们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
二、情境引入。
活动内容:由生活常识“先见闪电,后闻雷鸣”的例子引出课题。
三、探究新知。
活动内容:
1.直接出示问题,由学生独立探究。
你能计算下列各题吗?如果能,说说你的理由。
一、学习目标:1、熟练地掌握多项式除以单项式的法则,并能准确地进行运算.
2、理解整式除法运算的算理,发展有条理的思考及表达能力.
二、学习重点:多项式除以单项式的法则是本节的重点.
三、学习难点:整式除法运算的算理及综合运用。
了解数据收集与整理的基本方法,学习设计调查问卷,体会并掌握数据收集的过程.
过程与方法。
收集数据的过程要有组织性,也要有认真的态度,积极参与,在与他人合作的过程中共同完成.
情感、态度与价值观。
体会数据在解决实际问题中的作用,逐步养成用数据说话的良好习惯.
【教学重难点】。
重点:掌握数据收集的基本方法,设计调查问卷.
难点:掌握数据收集的方法,会设计调查问卷.
【教学过程】。
一、创设情境,引入新课。
享有“杂交水稻之父”美称的袁隆平爷爷,为了寻找理想的水稻育种材料,他北至黑龙江,南到海南,观察了数不清的稻田,他对水稻生长的土壤肥沃情况、植株生长高度、植株的产量等各方面的数据进行了系统的收集,然后进行比较,最后筛选出了满意的材料,培育出了深受农民喜爱的杂交水稻.
要想发现一个事物的规律,就需要我们收集大量的数据,从中发现它们隐含的规律.
在生活中,我们会从报纸、电视或者网络上见到很多的数据,它们是信息的载体,我们的生活离不开数据,我们随时随地都在和数据打交道.本节课我们来学习如何收集数据.
问题展示:班级要举办元旦联欢晚会,如果由你来策划这次活动,你将如何安排节目?
学生合作探究,然后由代表发言.
师:要想解决这个问题,我们需要经历这样的活动过程:。
第一步:明确调查问题——同学们喜欢什么样的文艺节目;。
第二步:明确调查对象——全班每位同学;。
第三步:选择调查方法——采用调查问卷法;。
第四步:展开调查——每位同学填写问卷;。
第五步:记录结果,分析处理;。
第六步:得出结论.
师:此次调查问卷是如何设计的?你知道如何来设计调查问卷吗?
学生看书、交流,并举手回答.
1.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()。
a.角平分线b.中位线c.高d.中线。
2.下列说法错误的是()。
a.三角形的角平分线能把三角形分成面积相等的两部分。
b.三角形的三条中线,角平分线都相交于一点。
c.直角三角形三条高交于三角形的一个顶点。
d.钝角三角形的三条高所在直线的交点在三角形的外部。
3.角形的角平分线、中线和高()。
a.都是射线b.都是直线。
c.都是线段d.都在三角形内。
平行线与相交线北师大版数学初一教案(优质16篇)
文件夹