六年级数学比的教案文案(模板16篇)
文件格式:DOCX
时间:2023-12-14 05:18:06    小编:翰墨

六年级数学比的教案文案(模板16篇)

小编:翰墨

教案应该具有明确的教学目标,以便指导教学过程中的每一步。在编写教案时,教师应当注意合理利用课堂时间,避免教学过程冗长或紧张。以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

六年级数学比的教案文案篇一

教学要求:

1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。

2、使学生正确掌握分解质因数和求两个数的公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的公约数,两个或三个数的最小公倍数。

教学过程:

一、揭示课题。

1、口算(指名口算课本第64页第11题)。

2、引入新课。

我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求公约数最小公倍数。

二、复习约数和倍数。

1、提问:什么是整除(板书整除)如果a能被b整除,必须具备哪些条件?

当a能被b整除,也就是b整除a时,还可以怎样说?板书:

约数。

倍数。

2、做“练一练”第1题。

学生做在课本上,说明倍数和约数的依存关系。

3、学生练习。

(1)从小到大写出9的五个倍数。

复习约数倍数相关知识(略)。

(2)写出18的所有约数。

三、复习质数合数。

1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:

板书:1。

质数。

合数。

怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。

2、口答:

(1)说出比10小的质数和合数。

(2)最小的质数和最小的合数各是几?

(3)下面哪些是质数?哪些是合数?

785123579190。

3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)。

4、做“练一练”第3题。

练后指名口答,集体订正。

四、复习公约数和公倍数。

1、学生练习。

(1)写出18和24所有的公约数,指出公约数。

(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。

学生口答,老师板书。

提问:什么叫做公约数和公约数?什么叫做公倍数和最小公倍数?

(板书——公约数、公约数——公倍数——最小公倍数)。

2、“练一练”第4题。

集体练习,指名口答,说一说方法怎样归纳三种关系?

追问:用短除法求公约数和最小公倍数有什么相同和不同?

五、复习。

能被2、5、3整除各有什么特征。

1、提问:能被2、5、3整除各有什么特征。

(板书:——能被2、5、3整除的数)。

2、“练一练”第5题。

提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,

板书:偶数。

奇数。

想一想,自然数可以分为哪几类?

六、课堂小结。

根据板书内容,说说相互之间有什么联系。

七、课堂练习。

1、练习十一和12题。

2、课堂作业。

(练习十一第15、16题、17题中(3)(4)。

八、课外作业:练习十一第18题。

将本文的word文档下载到电脑,方便收藏和打印。

六年级数学比的教案文案篇二

教学内容:人教版小学数学教材六年级上册第54页例2及相关练习。

教学目标:

1.能在实例的分析中理解按比分配的实际意义。

2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

教学重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

教学难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

教学准备:课件。

教学过程:

一、情境导入。

课件出示:女生与男生的人数比是5:7。

师:“女生和男生的人数比是5:7”,从这句话中,你得到了哪些信息?

【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。

二、实例探究。

(一)自主探索。

1.出示:六(2)班一共有48人,女生与男生的人数比是5:7。

师:根据这两条信息,你能求出什么?男生、女生各有多少人呢?你会算吗?

2.学生独立尝试。

3.同桌交流。

师:与同桌交流一下你的想法和做法,有不同的方法都可以写下来。(教师巡视指导)。

4.汇报:

请不同做法的学生上台板演,交流汇报。

预设(1):48÷(5+7)=4(人);。

女生:4×5=20(人);。

男生:4×7=28(人)。

师:还有不同的解决方法吗?

预设(2):女生:(人);。

男生:(人)。

师:这种方法中,是什么意思?呢?

5.小结:刚才同学们用不同的方法解决了同一个问题,我们再一起来看看(配合课件演示)。

【设计意图】在引导学生探究时,没有直接用书本上的例题,而是用了班级男生、女生人数比这一实际情况。因为是学生非常熟悉的事例,所以学生很乐意去探索、交流、实践。这样的'设计不仅降低了学习的难度,而且激发了学生的学习兴趣。

(二)揭示课题。

师:像上题这样,把数量按一定的比来进行分配的方法叫做按比分配。今天我们就一起学习按比分配。(板书课题:按比分配)。

(三)实践尝试。

出示例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。

1.阅读与理解。

浓缩液和稀释液指的是什么?(浓缩液是纯清洁剂,稀释液是加水之后的清洁剂。)。

师:你能用刚才的方法解决这一问题吗?(学生独立解题,交流汇报。)。

2.分析与解答。

预设(1):每份是500÷5=100(ml),浓缩液有100×1=100(ml),水有100×4=400(ml)。

师:这里的5表示什么?(把总体积平均分成5份。)。

预设(2):浓缩液有(ml),水有(ml)。

师:表示什么?(浓缩液占总体积的;)。

呢?(水占总体积的。)。

3.回顾与反思。

师:可以用怎样的方法对结果进行验证?

预设:看浓缩液与水的比是不是等于1:4。

小结:体现在问题解决的过程中,要看清楚1:4到底是哪两个量之间的比。

【设计意图】把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

三、实践应用。

(一)基本练习。

1.师:打开教材第55页,看第一题。

(1)师:用自己喜欢的方法独立算一算,看谁算得又快又对。

(2)交流:说说你的方法。

2.出示:李伯伯家里的菜地共800平方米,他准备种黄瓜和茄子。

师:请你来设计一下,可以怎么分配?

预设一:1:1。

师:如果按1:1分配,那么种黄瓜和茄子的面积分别是多少平方米?(学生自主计算)。

师:通过计算,发现按1:1分配其实就是我们以前学过的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。

对于其余各种分配方法,都让学生快速算一算再交流。

(二)发展提高。

1.师:增加点难度行不行?我把这一题变一下。

(1)比较:这一题和前几题相比,有什么不同?

(3)学生尝试。

(4)交流算法。

师:你是怎么算的?(展示学生作业)还有同学用其他方法做吗?介绍一下你们的方法。

师:这几位同学的方法有什么共同点?有什么不同点?

(1)比较分析:

师:这一题又有什么不一样?没有直接给出“比”,不能直接按比分配了,那怎么办?

师:我们可以先求出比,再按比进行分配。

(2)学生独立尝试,交流算法。

(三)小结。

师:通过上面两个问题的解答,你觉得在解答按比分配的问题时应注意什么?

师:说得对,在解答这类问题时,我们要认真审题,看清楚是对哪个数量进行分配,是按什么比分配的;如果题目没有直接给出比,我们要先根据题目信息求出比,再按比分配。

【设计意图】创设问题情境,从基本练习到综合性较强的问题,再到没有直接给出比的题目,层层深入,让学生在解决实际问题的过程中感受学习的乐趣和价值,不仅培养了学生独立解题的能力,而且还可以让学生在实践的探索中验证、品尝自己的学习成果,再次感受成功带来的乐趣。

四、课堂总结。

1.师:学到这里,谁能告诉我们,今天这节课我们主要研究了什么?说说你的收获和感受。(指名回答)。

2.课外延伸。

师:比在生活中应用非常广泛,请你课后搜集生活中的实例,编一道按比分配的题目,在下一节课中进行交流学习。

【设计意图】让学生自己抓住“收获”、“感受”来进行课堂总结,可以再次让学生对所学知识进行梳理,培养评价、反思的能力,让学生更加深切地感受到数学的魅力。

六年级数学比的教案文案篇三

教学目标:

(1)知识目标:使学生理解按比例分配的意义。

(2)能力目标:使学生灵活掌握按比例分配应用题的数量关系和解答方法。

(3)情感目标:在教学中渗透事物是相互联系的辩证唯物主义思想。

教学重点:分析理解按比例分配应用题的数量关系。

教学难点:掌握按比例分配应用题的解答方法。

教具准备:多媒体课件。

教学过程:

一、学前准备。

60÷100=3/5。

40÷100=2/5。

这里的3/5和2/5是什么意思?

2、60:40=3:2。

你发现了什么?

二、探究新知。

1、导入新课。

在日常生活中,我们有时需要把一些数量按照一定的比来分配,你能举出这样的例子吗?

2、教学例题2。

(1)学生独立思考,相互说说:要分配什么?3:2是什么意思?

(2)探究问题解决的方法。

(3)交流。

(4)用分数怎么解答?

总面积平均分成的份数:3+2=5。

播种大豆的面积:100×3/5=60(公顷)。

播种玉米的面积:100×2/5=40(公顷)。

(5)用归一方法怎么解答?

3、归纳小结:按比例分配的应用题有什么特点?怎样解答?

4、学习例题3。

(1)小组尝试解答检验。

(2)全班交流、反馈。

三个班的总人数:47+45+48=140(人)。

一班应栽的棵数:280×=()棵。

二班应栽的棵数:280×()=()棵。

三班应栽的棵数:280×()=()棵。

(3)例题2和例题3有什么相同点和不同点。

三、巩固练习与检测。

2、一个三角形的三个内角的度数比是2:3:7,求这个三角形的各个内角的度数。

3、教材53页的2、3题。

四、小结(略)。

五、作业:练习十三的第一、二、五题。

六年级数学比的教案文案篇四

教学要求:

1.使学生进一步掌握含有百分数统计表的结构及能够准确熟练地进行数据计算与表格填写。

2.进一步培养学生观察、分析的能力。

3.通过制统计表,培养学生认真、仔细的良好习惯。

教学过程:

1.讲述练习内容。

上节课我们学习了制作含有百分数的统计表,这节课我们进行巩固练习。

2.复习。

让学生观察教材52页例1统计表提问:制一张合格的统计表的步骤是什么?(要求边看书边讨论,然后回答)。

制复式统计表的步骤:

(1)设计“表头”

(2)定纵横栏目各需几格。

(3)画表。

(4)填写数据(包括总计、合计)。

(5)写上名称、制表日期

3.巩固练习。

在学生掌握复式统计表制作方法的基础上,出示练习十七第3题。

方法:指导做题,让学生研究后再制表。

(1)提问:“各年级”和“全年级”各表示什么意思?

(2)教师巡视指导,然后让学生结合题目说一说制表的步骤。

4.综合练习。

(1)完成教材练习十一第5题。

方法:独立完成。然后让学生回答第二季度合计数填写的位置,全班齐练。

(2)完成教材练习十一第4题。

方法:要求学生认真审题,抓住关键词语,弄清数量关系,正确列出算式,准确计算。在做题时一定要注意差后,发现普通的问题要统一纠正。

5.深化练习。

练习十一第6题,不要求所有的学生都能完成,教师提示引导,学生试做。

教师引导,表中各班占总数的百分几中的总数指的是谁平均每人植树的棵数又是什么意思?学生试做后讲评。

6.全课总结。

有关统计部分的知识在我们的生活中应用很广,因此这部分知识很重要,同学们一定要牢牢记住。

7.作业(补充)。

(1)请把下面统计表填写完整。

双林衬衫厂去年各季度生产情况统计表1993年1月。

(2)填表。根据统计要求将下表填写完整。

东方小学男、女生人数统计表。

六年级数学比的教案文案篇五

倒数的认识、分数除法的意义与计算、解决问题。

通过本单元的学习,学生一方面完成了分数加减乘除的学习任务,比较系统地掌握了分数的四则混合运算及解决相关实际问题的方法;另一方面也进一步加深了学生对乘除法关系的理解,体会数学知识方法的内在联系,为解决有关分数的实际问题提供更多的支持,同时也为后面学习比和比例、百分数打下坚实的基础。

本单元是在学生已经掌握了分数乘法、解方程等知识的基础上进行教学的。本单元的学习内容与下一单元比的相关知识联系紧密,将分数除法安排在比的前面进行学习,为更好地学习下一单元的内容奠定了知识基础。

知识与技能

过程与方法

1、理解倒数的意义,掌握求一个数的倒数的方法。

2、通过实例,使学生知道分数除法的意义与整数除法的意义相同。

3、理解并掌握分数除法的计算方法,明确算理。

4、会用算术方法及列方程解答分数除法问题。

5、能运用不完全归纳法总结出倒数的意义。

6、在教学分数除法的计算方法时,用折纸的方法推导计算结果,体现了数形结合思想;把除法计算转化成乘法计算,渗透了转化思想。

7、在探究倒数意义的过程中激发学生探究数学的兴趣,并能付诸行动。

8、体会数学知识之间的内在联系,促进学生整体思考能力的提升。

9、能积极参与数学活动,对数学有好奇心和求知欲。

10、体验获得成功的乐趣。

1、掌握求一个数的倒数的方法。

2、理解并掌握分数除法的意义、算理及计算方法,会用算术方法及列方程解答分数除法问题。

1、理解分数除法的算理。

2、运用分数除法的相关知识解决实际问题。

六年级数学比的教案文案篇六

本单元的内容主要包括百分数的意义和读写法,百分数和分数、小数的互化以及用百分数解决问题。

百分数在生活中有着广泛的应用,人们常用百分数对事物进行描述、分析、统计、比较。虽然学生在日常生活中已经大量接触了百分数,但是对百分数的意义以及其应用价值的认识还处于模糊阶段。本单元在学生学习了整数、分数、小数相关知识的基础上,正式认识百分数。百分数表示的是一个数是另一个数的百分之几的数,因此,它是一种特殊的分数,有关百分数的计算与应用都可以由分数的相关知识迁移过来。由于百分数与实际生活联系紧密,学习百分数对理解和判断生活中相关数据信息以及运用百分数解决日常生活中的实际问题有着重要的意义。

六年级上册主要教学百分数的意义及一般应用,六年级下册教学百分数的特殊应用(如利率、折扣、成数)。两部分内容的着眼点有所不同,六年级上册的教学重点是利用知识的迁移,认识百分数的意义及一般性应用;而六年级下册的教学重点是了解百分数在生活中一些特殊领域的应用,更强调对其实际意义的理解。

备课目标

知识与技能

过程与方法

情感、态度与价值观

1.理解百分数的意义,会正确读写百分数,会用百分数表述生活中的一些数学现象。

2.掌握小数、分数和百分数的互化方法。

3.在理解、分析数量关系的基础上,正确解决有关百分数的实际问题。

4.经历探究百分数意义的过程,积累探究问题的经验。

5.经历探究小数、分数和百分数互化方法的过程,体会转化、类比、迁移等数学思想方法。

6.经历用百分数解决问题的过程,学习解决问题的策略,提升解决问题的能力。

7.在探究百分数的意义的过程中,体会数学与生活的密切联系。

8.积极参与数学活动,激发好奇心和求知欲。

9.在运用数学知识和方法解决问题的过程中,认识数学的价值。

重点:

1.理解百分数的意义及掌握百分数与小数、分数之间的互化方法。

2.用百分数解决问题。

难点:

1.百分数和分数在意义上的区别。

2求比一个数多(或少)百分之几的数是多少。

六年级数学比的教案文案篇七

【教学内容】教材第3-4页例3。

【教学目标】。

知识与技能:结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。

过程与方法:通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

情感、态度与价值观:通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

【重点难点】。

重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

难点:推导算理,总结法则。

【新知探究】。

明确算理,探究算法。

出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)。

(一)探究几分之一乘几分之一的算理算法。

1.求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)。

求一个数的几分之几,我们可以用乘法来计算。

2.等于多少呢?说说你的想法,并把你的想法在纸上写下来。

3.学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

4.进行交流反馈。

重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固:把1个正方形看作1公顷,先平均分成2份,每份表示公顷,再把公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是公顷。

6.猜想计算方法。

六年级数学比的教案文案篇八

这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的几分之几是多少的实际问题的解答方法。

学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的困难,教师要适时指导。

1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。

2、培养学生的分析能力与表达能力。

掌握求一个数的几分之几的问题的数量关系,并能正确地解答。

正确地确定单位1

教学过程备注

分析题意,理解数量关系。

教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)

教师然后让学生试着画一画线段图,分析题意。

全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。

列式为:2500=

学生独立完成。

集体订正。

巩固练习。

1、教师出示做一做。

这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。

然后再独立解答。

2、完成练习四中的部分练习。

课堂小结。

板书:

六年级数学比的教案文案篇九

知识目标:在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。

能力目标:会运用商不变的规律或分数的基本性质化简比,并能解决一些简单的实际问题。

情感目标:在化简比的同时感受数学的应用价值,体会数学知识的内在联系。

教学重难点重点:会运用商不变的性质或分数的基本性质化简比。

难点:运用比的化简解决生活中的一些实际问题。

教学过程。

一、复习铺垫,揭示课题。

1.师:上节课我们学习了生活中的比,谁来说说什么叫比?你能举个例子吗?

2.比与除法、分数有什么关系?

3.这节课我们继续学习关于比的知识(板书课题——比的化简)。

4.看了这个课题,你想知道些什么?

二、创设情境,探究新知。

1.体会化简比的必要性。

师:是的,又不能喝,光凭眼睛看不好判断,那你们需要老师给你提供些什么信息?

根据学生回答,课件出示相应的数据信息:

蜂蜜水。

号杯:3小杯12小杯。

号杯:4小杯16小杯。

师:根据这些信息,现在你有办法解决“哪杯蜂蜜水更甜”这个问题吗?

预设:生1:看看平均一小杯蜂蜜用了几小杯水,再进行比较。

生2:看看平均一小杯水用了多少小杯的蜂蜜,再进行比较。

教师适时引导学生找出蜂蜜与水之间的比,并板书:

1号杯:3:12。

2号杯:4:16。

师:联系前面学过的分数与比的关系,想一想,3:12和4:16这两个比能不能像分数化成最简分数一样,也能化成最简比呢?把你的想法和同桌说一说,并试一试。

师:谁来汇报一下你的方法,并说说这样做的依据。根据学生回答板书:

1号杯:3:12=3/12=1/4=1:4。

2号杯:4:16=4/16=1/4=1:4。

师:现在我们发现,两杯水中蜂蜜和水的比实际上都是1:4,说明这两杯水是?(一样甜)。

2.理解化简比。

师:从刚才的化简过程中,我们知道3:12=4:16,两杯水是一样甜的。笑笑也写了两组相等的比(课件出示)仔细观察,看看有什么发现,请你也试着写一组相等的比,并和同桌交流。

(1)学生独立思考,试着写一写,并同桌交流自己的发现。

(2)结合学生汇报,课件演示每组相等的比中前项、后项是如何变化的,并引导学生发现比的化简与商不变规律以及分数的基本性质之间的联系。

3.归纳比的基本性质。

师:你能根据商不变规律和分数的基本性质概括出比的基本性质吗?

比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。(强调“0除外”)。

4.揭示“最简整数比”。

师:分数约分要注意什么?比的化简又要注意什么?

分数约分要约到最简分数,化简比也要化到前项和后项只有公因数1为止,这样的比就叫最简整数比。

5.化简比的方法。

师:分数可以约分,比也可以化简,你能化简下面的比吗?(课件出示)。

化简下面的比:

24:42120:60。

1)独立尝试。(指明两人板演)。

交流:说说你的思路。(方法、根据)。

2)小组活动:(课件出示)。

化简下面的比:

0.7:0.82/5:1/4。

思考:这两组比与前面的最大区别是什么?

小组讨论:如何把这两组比化简?并试一试。

全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)。

3)归纳:怎样化简比?

小组讨论、全班交流。

4)师小结:看来,化简比的方法不唯一,不过都有一个共同目标:最后都要化简成最简整数比。

三、巩固应用,解决问题。

1.化简比:(带的为选做)。

(要求:学习有些吃力的学生可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)。

21:240.3:1.54/5:5/7。

1:4/50.12:60.4:1/4。

2.教材第73页“练一练”第1、2题。学生独立完成,集体交流、订正。

3.教材第73页“练一练”第4题。

(1)学生独立完成(1)、(2)两题,集体订正。

(2)小组讨论完成第(3)题,集体交流,明确:判断谁投球命中率的高低就是看比值的大小。

四、全课总结。

师:回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?

六年级数学比的教案文案篇十

课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。

使学生理解比的基本性质,掌握化简比的方法。

一、复习。

1.除法中的商不变规律是什么?

2.分数的基本性质是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

1.教学比的基本性质。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

六年级数学比的教案文案篇十一

3、导入课题:

我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

1、教学例3比的基本性质。

(4)师:你觉得哪些词语比较重要?0除外你怎样理解得?

2、教学例4应用比的基本性质化简比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

出示:把下面各比化成最简单的整数比

(1)12:18(2)(3)1、8:0、09

(1)让学生试做第(1)题

师:你是怎么做的?6和12、18有着怎样的关系?

引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。

六年级数学比的教案文案篇十二

按比例分配的练习。

已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

练习、反思、总结。

小黑板。

一、基本练习。

(一)六1班男生和女生的比是3:2。

1.男生人数是女生人数的()。

2.女生人数是男生人数的(),女生人数和男生人数的比是().。

3.男生人数占全班人数的(),男生人数和全班人数的比是().。

4.全班人数是男生人数的(),全班人数和男生人数的比是().。

5.女生人数占全班人数的(),女生人数和全班人数的比是().。

6.全班人数是女生人数的(),全班人数和女生人数的比是().。

把250按2比3分配,部分数各是多少。

二、变式练习。

1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?

教学反思:

提高练习的灵活度,以及练习的形式。

六年级数学比的教案文案篇十三

苏教版国标本六年级上册p68~70认识比例1、例2以及相应练习。

【教学目标】。

1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。

3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。

【教学重难点】。

理解比的意义,比与分数、除法的关系。

【教学过程】。

一、创设情境,引入比。

1.图片激趣,引发讨论,设置悬念。

2.电脑呈现例l主题图。

3.揭题:比较两个数量之间的关系还可以用一种新的方法比。

二、自主探索,认识比。

(一)初步理解比。

1.启发谈话:用比怎样表示2杯果汁和3杯牛奶这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。

果汁的杯数相当于牛奶的'2/3,我们还可以说成果汁与牛奶杯数的比是2比3。

牛奶的杯数相当于果汁的3/2还可以怎样说成牛奶与果汁杯数的比是3比2。

2.看书自学,汇报交流:

(1)写法。

(2)各部分名称。

(3)比是有序的。

3.完成p68试一试。

(二)深入认识比。

1.认识不同量之间的比。

(1)生读例2,师:读了这条信息,你能提出什么数学问题?

(请学生分别算出它们的速度,填入表格。)。

(2)指出:像路程和时间这两个有着相除关系的量,我们也可以用比来表示。

交流得出:小军走的路程与时间的比是900:15、小伟走的路程与时间的比是900:20。

(3)追问:900:15表示什么?900:20呢?(速度)。

2.丰富对不同类量的两个数量比的认识。

张祥买3本笔记本用了10.5元。

提问:这句话中告诉了我们哪两个量?它们之间有着怎样的关系呢?会用比来表示吗?

3.总结概括比的意义。

(1)观察一下这几组式子,总结相同的特点。

(2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?

(3)小结:两个数的比归根结底表示的都是两个数相除。

三、自学课本,内化比。

1.自学课本p69。

2.反馈:通过看书,你还知道了什么?

*求比值。

*分数形式的比。

*理解比、除法、分数之间的关系。

六年级数学比的教案文案篇十四

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

比例的基本质性。

发现并概括出比例的基本质性。

多媒体课件。

一、旧知铺垫。

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

和5:2。

1/2:1/3和6:4。

和1:4。

二、探索新知。

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书。

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:=60:40。

内项:6o。

外项:40。

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如::=60:40。

外内内外。

项项项项。

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。(师作适当的补充)。

在比例里,两个内项的积等于两个外项的积。

板书。

两个外项的积是。

两个内项的积是。

外项的积等于内项的积。

(4)举例说明,检验发现。

1

两个外项的积是。

两个内项的积是。

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=60/40。

3.。

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5=1/4:1/10。

()()=()()。

六年级数学比的教案文案篇十五

1、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2、体会数学与日常生活的联系,了解数学的价值,增强应用数学的`意识。

抽取问题。

理解抽取问题的基本原理。

一、教学例。

1、猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2、实验活动。

(1)一次摸出2个球,有几种情况?

结果:有可能摸出2个同色的球。

(2)一次摸3个球,有几种情况?

结果:一定能摸出2个同色的球。

3、发现规律。

启发:摸出球的个数与颜色种数有什么关系?

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做。

第1题。

(1)独立思考,判断正误。

(2)同学交流,说明理由。

第2题。

(1)说一说至少取几个,你怎么知道呢?

(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?

三、巩固练习。

完成课文练习十二第1、3题。

六年级数学比的教案文案篇十六

已学了比、求比值、化简比按比例分配等知识。

学习目标。

1、巩固比的意义、求比值与化简比的方法。2、能运用比的意义解决一些实际问题。

导学策略。

练习。

教学准备。

习题。

教师活动。

学生活动。

一、复习概念。

什么叫做比?

怎样求比值与化简比?

求比值与化简比有什么联系与区别?

二、独立练习。

第1题练习后说一说自己的'方法。

第2题巩固化简比的方法。

第3、4题先弄懂题意,再鼓励学生独立完成,全班交流。

第5、6、7、8、题是运用比的意义解决一实际问题,先鼓励学生独立完成,然后在小组中或全班交流不同的方法。

三、你知道吗?

学生自学,然后教师介绍黄金分割。

口答并结合练习加以说明。

列表分析。

教学反思。

还可以。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
六年级数学比的教案文案(模板16篇) 文件夹
复制