数学因式分解教学设计热门
文件夹
总结可以帮助我们更好地了解自己的优点和不足,为今后的学习和工作规划提供依据。结合实际情况,将总结与可行的改进方案相结合。随着社会的发展和变革,总结已经成为人们成长和进步的必备工具。
知识与技能:
在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。
过程与方法:
通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。
情感态度与价值观:
通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。
教学重难点。
教学重点:
掌握平行四边形的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学工具。
多媒体课件,平行四边形纸片,剪刀,学具袋。
教学过程。
1复习旧知。
请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)。
2情境引入。
(一)、故事激趣。
同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)。
(二)、学生思考、猜测。
3探究新知。
(一)利用方格,初步探究。
1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。
课件出示:比较两个图形的大小,然后引进格子图。
师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)。
2、同桌交流方法。
3、生汇报想法。
4、通过数方格你发现了什么?
(二)动手操作,深入探究。
2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。
师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。
(板书:割补法)。
3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。
4、展示学生作品:不同的方法将平行四边形变成长方形。
提问:观察拼出的长方形和原来的平行四边形,你发现了什么?
平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。
(边说边板书)。
4学以致用。
(一).课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。
(板书:s=ah=6×4=24㎡)。
(二).课件出示练习题,学生独立完成。
1.
2.有一块地近似平行四边形,底43米,高20.1米,面积是多少平方米?
3.填表。
4.判断:。
(1)平行四边形的底是7米,高是4米,面积是28米。()。
(2)a=5分米,h=2米,s=100平方分米。()。
5.下面对平行四边形面积的计算对吗?
6×3=18(平方米)()。
6.下面对平行四边形面积的计算对吗?
8×7=56(平方分米)()。
7.思考题:你有几种方法求下面图形的面积?
课后小结。
回想一下刚才我们的学习过程,你有什么收获?
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推的?
1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
勾股定理的应用。
勾股定理的应用。
一、知识点讲解。
知识点1:(已知两边求第三边)。
1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形abc中,ab=10,ac=17,bc边上的高线ad=8,求bc的长?
知识点2:
利用方程求线段长。
(1)使得c,d两村到e站的距离相等,e站建在离a站多少km处?
(2)de与ce的位置关系。
(3)使得c,d两村到e站的距离最短,e站建在离a站多少km处?
利用方程解决翻折问题。
3、在矩形纸片abcd中,ad=4cm,ab=10cm,按图所示方式折叠,使点b与点d重合,折痕为ef,求de的长。
5、折叠矩形abcd的一边ad,折痕为ae,且使点d落在bc边上的点f处,已知ab=8cm,bc=10cm,以b点为原点,bc为x轴,ba为y轴建立平面直角坐标系。求点f和点e坐标。
6、边长为8和4的矩形oabc的两边分别在直角坐标系的x轴和y轴上,若沿对角线ac折叠后,点b落在第四象限b1处,设b1c交x轴于点d,求(1)三角形adc的面积,(2)点b1的坐标,(3)ab1所在的直线解析式.
知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系。
1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。
(2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。
(3)在abc中,a:b:c=1:1:,那么abc的确切形状是_____________。
二、课堂小结。
谈一谈你这节课都有哪些收获?
应用勾股定理解决实际问题。
三、课堂练习以上习题。
四、课后作业卷子。
本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。
针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:
一、复习引入。
对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。
二、例题讲解,巩固练习,总结数学思想方法。
活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。
活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。
活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。
二、巩固练习,熟练新知。
通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。
在教学设计的实施中,也存在着一些问题:
1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。
2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。
3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。
教学目标1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;2.理解完全平方式的意义和特点,培养学生的判断......
勾股定理勾股定理11、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史.2、能力目标:(1)......
2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.。
3.了解立方根的性质----唯一性.。
4.区分立方根与平方根的不同.。
5.分清两个互为相反数的立方根的关系,即。
5.渗透特殊---一般的数学思想方法.
1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.。
3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.。
2.学生通过对实际问题的解决,体会数学的实用价值.。
重点:立方根的概念及求法.。
难点:立方根的求法,立方根与平方根的联系及区别.。
本节内容教学法为:类比法。
1、知识目标:
(1)掌握勾股定理;。
(2)学会利用勾股定理进行计算、证明与作图;。
(3)了解有关勾股定理的历史.
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;。
(2)通过问题的解决,提高学生的运算能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;。
(2)通过有关勾股定理的历史讲解,对学生进行德育教育.
教学重点:勾股定理及其应用。
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。
教学用具:直尺,微机。
教学方法:以学生为主体的讨论探索法。
以《初中数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上册数学教学任务。
1.知识与技能目标
学生通过探究实际问题,认识三角形、全等三角形、轴对称、整式乘除和因式分解、分式,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。
2.过程与方法目标
掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。
3.情感与态度目标
通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。
本册教材的主要内容有:三角形、全等三角形、轴对称、整式、分式。其中,三角形主要学习三角形的三边关系、分类,三角形的内角、多边形的内外角和。本章节是后两章的基础,了解了相关的知识,教学时加强与实际的联系,加强推理能力的`培养,开展好数学活动。全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。分式主要学习分式的概念、性质、能用基本性质进行约分和通分并进行相关的四则混合运算。教学时重视和分数类比,加强分式、分式方程与实际的联系,体现数学建模思想。
写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻,厌学普遍,听不懂的学生太多,上课发言的同学太少,回答问题没人愿意举手。
要在本学期获得理想成绩,老师和学生都要付出艰苦的努力,要在培养学生良好的学习习惯上狠下功夫,激发学生学习数学的兴趣,充分发挥学生学习的主体作用,并做好学生的查漏补缺工作。通过本学期教学,争取让学生的成绩得到提高。
(1)、认真做好教学工作。把认真教学作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
(2)、上课时,老师要关注学生,让学生能专心听课,认真思考问题,不说话、不开小差、不做小动作、不做与上课无关的事。
(3)、兴趣是最好的老师,应激发学生学习数学的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
(4)、引导学生积极参加知识的构建,营造民主、和谐、平等、自主、探索、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生做笔记,捋清课堂知识脉络,使知识来源于学生的创造中。
(5)、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
(6)、培养学生良好的学习习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
(7)、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
认真上好每一堂课,坚持教改教研,与同行共同探讨数学教学方法,取长补短,吸取优秀教师的先进经验和教学技能。
6.提高自身科研能力,争取创造新的教学理念,促进教学发展;
7.不断进行教学反思,在工作中积累更多,更好,更宝贵的教学经验,撰写经验文章。
针对差生、优生辅导,我想采取以下做法: 1.优生辅导
主要要求班上成绩突出的学生,尽量会做课本“问题解决”中的练习,并能适当做些课外资料上的练习题。在此基础上,教师争取个别或小范围内对他们进行指导,讲解,并对一些提高题、难题的解题思路作出相应的分析,教给他们一些学习方法和解题技巧。
教兵”的方法,让一些成绩较好的学生帮助他们,指导监督他们的学习。适时也可由教师亲自辅导他们,让他们感受到温暖与自信。
目的:巩固平方根的概念。其中在处理第5小题时,应先把带分数化为假分数。
不足:可以让学生求小数的平方根,如:求0.0004的平方根,可能学生会出现两种不同的方法:其一,直接求;其二,化为分数求,不管怎样都要引导学生去发现,最终归纳问题的症结在于当被开方数是小数时,其平方根小数点的位数应如何确定。于是再次引导学生通过观察得到结论:被开方数与其平方根小数点位数是2:1的关系。这样就能更深层次地提升学生的分析能力,教师在教学时有必要这样做。
练习2、求下列各数的平方根:(抢答)。
64,0.01,121,0.09,0,,,-0.36。
目的:熟练求平方根的方法并能提高解题的速度,从而活跃课堂气氛。把整节课的教学推向了高潮,也是本节课的亮点。
4、注意课堂教学的完整性。
目的:通过本节课的学习,使学生掌握平方根的概念,一方面使新授知识得到充分的应用,另一方面起到前呼后应的教学效果。
不足:由于时间较紧,所以讲解速度较快,可能使部分同学未能真正理解。
教学目标:
1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.
2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.
教学重点:会求一组数据的算术平均数和加权平均数.
教学难点:体会平均数在不同情境中的应用.
教学方法:引导-讨论-交流.
教学手段:多媒体。
教学过程:
创设情景,引入新课(出示篮球比赛的一些画面)。
活动1:前后桌四人交流.
找同学回答后,给出算术平均数的定义.
一般地,对于n个数x1,x2,…,xn我们把。
叫做这个n数的`算术平均数,简称平均数,记为.读作“x拔”.
想一想:
小明是这样计算东方大鲨鱼队的平均年龄的:
年龄/岁1618212324262934。
相应队员数12413121。
平均年龄=(16×1。
1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
一、知识点讲解。
知识点1:(已知两边求第三边)。
1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形abc中,ab=10,ac=17,bc边上的高线ad=8,求bc的长?
知识点2:
利用方程求线段长。
(1)使得c,d两村到e站的距离相等,e站建在离a站多少km处?
(2)de与ce的位置关系。
(3)使得c,d两村到e站的距离最短,e站建在离a站多少km处?
利用方程解决翻折问题。
3、在矩形纸片abcd中,ad=4cm,ab=10cm,按图所示方式折叠,使点b与点d重合,折痕为ef,求de的长。
5、折叠矩形abcd的一边ad,折痕为ae,且使点d落在bc边上的点f处,已知ab=8cm,bc=10cm,以b点为原点,bc为x轴,ba为y轴建立平面直角坐标系。求点f和点e坐标。
6、边长为8和4的矩形oabc的两边分别在直角坐标系的x轴和y轴上,若沿对角线ac折叠后,点b落在第四象限b1处,设b1c交x轴于点d,求(1)三角形adc的面积,(2)点b1的坐标,(3)ab1所在的直线解析式.
知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系。
1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。
(2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。
(3)在abc中,a:b:c=1:1:,那么abc的确切形状是_____________。
二、课堂小结。
谈一谈你这节课都有哪些收获?
三、课堂练习以上习题。
四、课后作业卷子。
本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。
针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:
一、复习引入。
对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。
二、例题讲解,巩固练习,总结数学思想方法。
活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。
活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。
活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。
二、巩固练习,熟练新知。
通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。
在教学设计的实施中,也存在着一些问题:
1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。
2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。
3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。
1、知识与能力:
1)进一步巩固相似三角形的知识.
2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.
2.过程与方法:
经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
3.情感、态度与价值观:
1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。
2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。
(三)教学重点、难点和关键。
重点:利用相似三角形的知识解决实际问题。
难点:运用相似三角形的判定定理构造相似三角形解决实际问题。
关键:将实际问题转化为数学模型,利用所学的知识来进行解答。
本周上午我听了史老师一节关于《运用平方差公式进行因式分解》的公开课,史老师以自己扎实的数学基本功,细致严谨的数学解题思路,灵活轻松的师生互动,为我们献上了一节优质的数学课。
史老师针对本章内容所要用上了前面的知识做了细致的复习。实现了本章节知识点的联系与复习回顾,对接下去的`学习做了很好的铺垫。
史老师通过求长方形的面积来引导学生探索、总结出运用平方差公式进行因式分解的法则,利用数形结合,让学生对这个法则的理解更深入,同时突破了难点,体现了以教师为主导、学生自主探究、讨论、合作交流的新课改理念。
史老师通过练习,让学生观察步骤,并做出总结。使学生加深了对知识的理解,学会观察,发现,总结知识。最后史老师还给学生编了个解题的顺口溜,既方便让学生记忆,又能巩固知识。
(1)整节课老师讲得多,学生个别回答较少。
(2)学生的讨论与合作学习还需加强,讨论问题还不够深入,应让学生从合作学习中有所提高,从与它人的交流中碰撞出思维的火花。
(3)还需加强的对知识点的认识,比如为什么要学升降幂,是为了结果的有序,数学的结果需要简洁有序。这样让学生很清楚,有目的的学习效果总是比较好的。
1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.
【过程与方法】。
经历观察、分析、交流的过程,逐步提高运用知识的能力.
【情感态度】。
提高学生的观察、分析能力和对图形的感知水平.
【教学重点】。
会求反比例函数的解析式.
【教学难点】。
反比例函数图象和性质的运用.
教学过程。
一、情景导入,初步认知。
【教学说明】复习上节课的内容,同时引入新课.
二、思考探究,获取新知。
1.思考:已知反比例函数y=的图象经过点p(2,4)。
(1)求k的值,并写出该函数的表达式;。
(2)判断点a(-2,-4),b(3,5)是否在这个函数的图象上;。
分析:
(1)题中已知图象经过点p(2,4),即表明把p点坐标代入解析式成立,这样能求出k,解析式也就确定了.
(2)要判断a、b是否在这条函数图象上,就是把a、b的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.
(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.
【归纳结论】这种求解析式的方法叫做待定系数法求解析式.
2.下图是反比例函数y=的图象,根据图象,回答下列问题:
(1)k的取值范围是k0还是k0?说明理由;。
(2)如果点a(-3,y1),b(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:
(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k0.
(2)因为点a(-3,y1),b(-2,y2)是该函数图象上的两点且-30,-20.所以点a、b都位于第三象限,又因为-3-2,由反比例函数的图像的性质可知:y1y2.
【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.
教学过程中渗透类比的数学思想,形成新的知识结构体系;设置探究式教学,让学生经历知识的形成,从而达到对知识的深刻理解与灵活应用。
学法:自主、合作、探索的学习方式。
在教学活动中,既要提高学生独立解决问题的能力,又要培养团结协作精神,拓展学生探究问题的深度与广度,体现素质教育的要求。
王老师上课时通过学生自己的试算、观察、发现、总结、归纳,得出用平方差公式进行因式分解,这样得出平方差公式后,并且把乘法公式进行对比,通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练。王老师放手让学生探索,促进学生主动发展的教学方法贯穿于这节课的始终。
从学生的练习情况来看,许多同学都掌握了这节课的知识,整个课堂中,以学生练为主,王老师能敢于创新、敢于探索,整节课的学习,教师始终是学生学习活动的组织者、指导者和合作者,而学生始终都是一个发现者、探索者,充分发挥他们的学习主体作用。这样大大提高了这节课的效率。
教师讲课语言简捷、清晰,有较强的表达和应变能力,课堂教学基本功好。乘法公式的引入由两种形式的'引入,又形象直观地理解了乘法公式的内在实质。做到以点拨为主的教学。对于公式的牲能严格要求学生理解,并能让学生自己举例符合公式形状的例子,课堂内的练习量、内容及安排上恰当好处,有基本运用公式,有变式运用公式,也有适当的加深应用,满足了不同层次的学生的学习。效果是比较显著的。
1、知识与能力:
1)进一步巩固相似三角形的知识.
2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.
2.过程与方法:
经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
3.情感、态度与价值观:
1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。
2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。
(三)教学重点、难点和关键。
重点:利用相似三角形的知识解决实际问题。
难点:运用相似三角形的判定定理构造相似三角形解决实际问题。
关键:将实际问题转化为数学模型,利用所学的知识来进行解答。
【教法与学法】。
(一)教法分析。
为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:
1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。
2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。
3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。
(二)学法分析。
按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。
【教学过程】。
一、知识梳理。
1、判断两三角形相似有哪些方法?
1)定义:2)定理(平行法):。
3)判定定理一(边边边):。
4)判定定理二(边角边):。
5)判定定理三(角角):。
2、相似三角形有什么性质?
对应角相等,对应边的比相等。
(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)。
二、情境导入。
胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。
(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)。
三、例题讲解。
例1(教材p49例3——测量金字塔高度问题)。
《相似三角形的应用》教学设计分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.
解:略(见教材p49)。
问:你还可以用什么方法来测量金字塔的高度?(如用身高等)。
解法二:用镜面反射(如图,点a是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)。
例2(教材p50练习?——测量河宽问题)。
《相似三角形的应用》教学设计《相似三角形的应用》教学设计分析:设河宽ab长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即《相似三角形的应用》教学设计.再解x的方程可求出河宽.
解:略(见教材p50)。
问:你还可以用什么方法来测量河的宽度?
解法二:如图构造相似三角形(解法略).
四、巩固练习。
五、回顾小结。
一)相似三角形的应用主要有如下两个方面。
1测高(不能直接使用皮尺或刻度尺量的)。
2测距(不能直接测量的两点间的距离)。
二)测高的方法。
测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决。
三)测距的方法。
测量不能到达两点间的距离,常构造相似三角形求解。
(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)。
六、拓展提高。
怎样利用相似三角形的有关知识测量旗杆的高度?
七、作业。
课本习题27.210题、11题。
1、感受细腻生动的描写,了解清晰明了的思路。
2、了解正面描写和侧面烘托的写法。
学能目标1掌握正面描写与侧面烘托的写法。2积累文言词语。
德育目标掌握口技这一传统民间艺术的魅力。
教学重点学习正面描写与侧面描写相结合的手法。
教学难点品味生动逼真的描写语言。
一、表演激趣,
导入新课欣赏《洛桑学艺》的口技表演片段。
导入新课学生欣赏激发兴趣。
二、朗读课文整体感知。
1、听朗读录音,识字正音。
2、自读课文,读准字音。
3、指名朗读,读出节奏,读出语气。
4、思考问题。
1)口技艺人表演了一个怎样的故事?
2)本文按什么顺序写的?
3)由哪些语言来判断了解故事情节的发展?
听读课文。
思考问题。
举手回答。
三、质疑解难合作探究。
1、把预习中遇到的翻译问题提出来,小组合作完成。
2、答疑解难,小组解决不了的,师生共同商讨。
3、积累文言词语小组讨论。
师生共同商讨。
出示练习,
积累文言词语。
四、研读探讨构思技巧。
速读课文填写与课文内容相关的表格。
从填写的内容中揣摩、发现构思上的技巧。
速读课文填写表格揣摩技巧。
五、品读。
品味精彩语句品味体现“善”的精彩语句:
用“我认为--词(或句子)用得好,因为它写出了(表现了)--”的句式来表达。
默读课文自学或互学交流评析。
五、促读。
拓展延伸。
1、找出《陌上桑》中的正面描写与侧面描写的句子。
2、利用课文内容填空。
学生练习加深巩固。
六、归纳总结。
通过今天的学习,你有哪些收获?
学生总结。
七、布置作业模仿文章写法,运用正面描写与侧面烘托的方法刻画一个人物或描写一幕场景。
冯佰珍。
[口技教学设计(人教版八年级上册)]。
教材简析:
本课的教学对象是小学三年级的学生,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物很多,也为学生奠定了感性基础。他们的思维特点是以具体形象思维为主,同时具有初步的抽象思维能力,对于具体、直观的内容有较大的依赖性。所以,本课尽量营造一种轻松愉悦的氛围,让学生在玩中学,在观察、操作中探索研究,以多媒体课件为学习媒体,让学生自主探索,在探索中发现,在探索中学习。在教学中,我通过让学生找生活中的对称物体,欣赏图片,加强了知识与生活之间的联系。同时,学生通过动手、折一折、画一画、猜一猜、剪一剪等活动,建立起了轴对称图形的概念,探索出了轴对称图形的特征以及判断轴对称图形的方法。
教学目标:
1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。
教学重点:
使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
教学难点:
引导学生自己发现和认识轴对称图形的一些基本特征。
教学准备:
多媒体课件一套,每小组有不同的图形一套,小剪刀等。
教学过程:
一、创设情境,引入新课。
情境导入:昆虫家族今天开了个舞会,它们正欢快的飞舞着。看!它们向这儿飞来了,不过只有它们的半个身影。它们说:“只要你猜对我们是谁,我们就会出现。”
1、请你猜一猜,他们分别是什么?
2、提问:你们怎么猜得这么准啊?(它们的两边都是一模一样的。)。
小结:像这些昆虫的两边是一模一样,我们就说它是对称的。
师:老师这还带来了一组对称物体的照片,请大家来观察,看看这些照片有什么共同之处。
生:左右两边一模一样。
二、合作交流,感悟新知。
1、初步感知。
过渡:刚才同学们的观察都很准确。生活中还有哪些物体是对称的?
生:蝴蝶,裤子,鞋子,七星瓢虫等。
学生回答:(剪一棵松树)。
提问:那么仔细观察这两个图形,看看它们有什么相同的地方?
引导学生,让他们说出:这两个图形的两边是一模一样的,它们是对称的,中间有一条折痕。
继续提问:(出示提前准备好的一张音符图)那这个图形的两边也是一模一样的,中间也有一条折痕,那它和上面两个图形有什么不同的地方?请你们把它们对折后想一想。
引导:音符图对折后只上半部分重叠在一起,下半部分不重叠。像这样只有一部分重合在一起,我们就称为是部分重合。(板书:部分重合)而松树图和爱心图对折后能全都重合在一起。
小结:对折后能全都重合在一起,我们称为是完全重合。(板书:完全重合)像这样对折后能完全重合的图形我们叫它轴对称图形。这条折痕就是对称轴,我们用点划线来表示。
揭题:这就是我们这节课要学习的内容轴对称图形。(板书:轴对称图形)。
同桌互相说一说什么是轴对称图形。
2、加深理解。
过渡:同学们说的真好。这里有三张照片,是我对同一只杯子从不同的角度拍的。
(1)出示这是从杯子的正面拍的。这个图形是轴对称图形吗?对称轴在哪?
(2)出示这是从杯子的上面拍的。这个图形是轴对称图形吗?对称轴在哪?
小结:对称轴可以有不同的方向。
(3)出示这是从杯子的侧面拍的。这个图形是轴对称图形吗?那你有办法把它变成。
轴对称图形吗?(添柄、去柄)。
小结:同一只杯子由于观察的角度不一样,看到的图形有时是轴对称图形,有时不是轴对称图形。
三、动手操作,巩固新知。
1、折一折。
过渡:今天我给大家带来了一些老朋友,你还认识它们吗?那我们就一起说出它们的名字。
(1)下面请你们用对折的方法,看看哪些是轴对称图形,哪些不是轴对称图形?
(2)生折交流汇报。
平行四边形不是轴对称图形。为什么不是,你是如何证明的?(对折后不能完全重合)。
能不能折一次就好了?
小结:我们要判断一个图形是不是轴对称图形,要看它对折后能否完全重合。
(3)那其他四个图形都是轴对称图形吗?你是怎样判断的?
生演示并说明理由。
等腰三角形、等腰梯形有一种对折方法,长方形有两种对折方法,圆有无数种对折方法。
小结:这些图形不管只有一种对折方法还是很多种对折方法,只要对折后能完全重合的图形,就是轴对称图形。
2、判断。
过渡:刚才同学们都用对折的方法来判断是不是轴对称图形。现在,不对折,你能用眼睛看出来吗?真的?现在就考考你们。
出图生判断,说说对称轴在哪?
四、再次探索,掌握画图方法。
(1)生尝试画一个,汇报交流。
你是如何画的?你为什么要和这个点连起来?这两个点为什么不用找?
(2)方法小结:第一步找对称点,第二步依次连线。
说明在找对称点的时候,如果图形的顶点在对称轴上,那么这个点的对称点就是它自己,就不用找了。
(3)用这种方法完成其他两幅图并汇报交流。
五、全课总结,分享收获。
今天,我们学习了轴对称图形,你有哪些收获呢?
六、欣赏图片,拓展知识。
留心我们的生活,你会发现轴对称图形、对称现象的物体无时无刻都在美化我们的生活。蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由飞翔;我们的服装因为对称才显得大方、典雅;古今中外,有许多的建筑也是对称的,多么神奇,多么美丽。我们只要用心思考,就会感到对称的力量。
文档为doc格式。
会应用平方差公式进行因式分解,发展学生推理能力.
2.过程与方法。
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.
3.情感、态度与价值观。
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.
重、难点与关键。
1.重点:利用平方差公式分解因式.
2.难点:领会因式分解的解题步骤和分解因式的彻底性.
3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.
教学方法。
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.
教学过程。
一、观察探讨,体验新知。
【问题牵引】。
请同学们计算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【学生活动】动笔计算出上面的两道题,并踊跃上台板演.
(1)(a+5)(a-5)=a2-52=a2-25;。
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).
二、范例学习,应用所学。
【例1】把下列各式分解因式:(投影显示或板书)。
(1)x2-9y2;(2)16x4-y4;。
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
(5)m2(16x-y)+n2(y-16x).
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.
【学生活动】分四人小组,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);。
(5)m2(16x-y)+n2(y-16x)。
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
八年级数学因式分解教学设计(热门17篇)
文件夹