最新光的本性教学设计(汇总12篇)
文件格式:DOCX
时间:2023-12-14 11:15:09    小编:JQ文豪

最新光的本性教学设计(汇总12篇)

小编:JQ文豪

每一次总结都是一次自我反思的机会,促使我们更加坚定前行的方向。了解总结的目的和重要性,做好充分准备,才能写出一篇较为完美的总结。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那么我们该如何写一篇较为完美的总结呢?以下是小编为大家收集的总结范文,仅供参考,大家一起来看看吧。

光的本性教学设计篇一

教学目的:使学生理解比的基本性质,掌握化简比的方法。

教学重、难点:化简比的方法。

教学过程:

一、复习。

1.除法中的商不变规律是什么?分数的基本性质是什么?

2、比与除法、分数有什么关系?

3、求比值 5:15  4/5:8/15  0.8:0.12。

二、新授。

我们刚才复习了除法中商不变规律和分数的基本性质,又知道。

和除法、分数有着密切的联系,比的前项相当于被除数,比的。

项相当于除数;比的前项也相当于分数的分子,比的后项相当。

分母。

那么在比中有什么样的规律?让学生自己讨论初步说出结论。

比的前项和后项同时乘以或者同时除以相同的数(零除外)。

注意:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。

2.教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

出示例1:把下面各比化成最简单的整数比。

(1)14:21      (2)1/6:2/9  (3)1.25:2   。

(1)问:这道题的前项和后项都是什么数?怎样才能使它化成最简的整数比呢?(先让学生自己讨论解答,然后引导得出:要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。

(2)问:这是一道分数比,怎样才能使它转化成整数比?(让学生自己动手做,后对照课本上的例题做法,对或者错,共同完成后引导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比)化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)问:这道是小数比,怎样化成整数比?(让学生说说并自己解答。指导根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比)。

(4)还有其它解法吗?可根据学生所答具体分析,特别是分数比实际上可用是分数除法来计算化简。

小结:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?特别提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。

三、巩固练习。

1.完成“做一做”的题目。

让学生说一说化简比的方法。

2.练习十二第5、7、8题。

3.练习十二第9题。

四、作业。练习十二第6、10题。

光的本性教学设计篇二

“分数的基本性质”是九年义务教育小学数学北师大版五年级上册第三单元的内容。它是在学生学习了分数的意义、分数大小的比较、商不变的性质、分数与除法的关系的基础上进行的,为以后学习约分、通分做准备。

学生已掌握了分数的意义和商不变的性质,已具备一定的动手操作的能力和分析、概括能力,能用分数表示图形的阴影部分,已具备一定的合作交流的意识和经验。

3:经历猜想、验证、实践等数学活动,合作学习能力得到提高,并进一步体验数学学习的乐趣。

“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,以前我曾经听过几节这样的.课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥。

基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。

1、直接写出得数:

(1)18÷6=(2)120÷40=(3)2÷3=—。

180÷60=12÷4=10÷15=—。

2、你能从前两组题中回忆起商不变性质吗?(被除数和除数同时扩大或缩小相同的倍数,商不变。)。

3、你能根据第三组题说出分数与除法的关系吗?根据分数与除法的关系,将商不变性质中的被除数、除数、商分别改为分子、分母、分数值后又怎么说?(分子和分母同时扩大或缩小相同的倍数,分数值不变。)分数中是否真有这样的规律呢?这节课我们就来探讨这个问题。

(通过上述知识的复习,为下面沟通商不变性质与分数基本性质的联系作准备。)。

1、折一折,画一画。

师:请同学们拿出准备好的三张长方形纸片。

要求:1)将三张同样大小的长方形纸片,分别平均分成4份、8份、16份。将第一张的3份画上阴影,第二张的6份画上阴影,第三张的12份画上阴影。

2)用分数表示阴影部分,

3)将阴影部分剪下来进行比较,看看能发现什么?

2、汇报。(师将一份学生作品贴在黑板上),

请这一同学谈谈发现:通过比较,三幅图阴影部分面积一样,因而三个分数一样大。(师板书三个分数相等的式子)。

3、师出示例2的三幅图,

4、请学生写出表示阴影部分的分数,再观察三幅图阴影部分面积,同样得出三个分数一样大的结论。

3、算一算。

2)学生先独立思考,后小组里讨论交流想法。

3)汇报。小组派代表汇报,教师根据汇报适当板书。

(通过折一折、画一画,培养学生的动手操作能力,同时给学生提供充分的感性材料,丰富他们的生活经验又可以激发学生的学习兴趣。)。

1、师:哪位同学能用一句话把大家发现的规律概括出来呢?

2、师:像右边那样列式行吗?=,为什么?你能将刚才概括出的规律修正一下吗?(出示分数的基本性质,全班齐读一遍。)。

3、师小结:刚才我们所说的就是分数的基本性质,它在课本第四十三页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。(全班再齐读一遍)。

(让学生概括分数的基本性质,培养学生的概括能力,通过分子分母同时乘以0,引导学生发现分母为0,分数没有意义,以培养学生思维的缜密性,同时回应前面的复习练习。)。

2、第43页试一试。

3、练一练。第44页第4题。

4、判断对错。

(1)分数的分子和分母都乘或除以相同的数,分数的大小不变。()。

(2)把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。()。

(3)3/4的分子乘3,分母除以3,分数的大小不变。()。

(4)10/24的分子加5,要使分数的大小不变,分母也必须加5。()。

4、数学游戏“你说我对”(图略)。

(利用以上练习,运用所学的知识解决实际问题,提高解决问题的能力,培养应用意识。)。

(复习所学知识和方法,加深认识,深化主题)。

1、课本第44页第1、2、3题。(巩固所学知识)。

光的本性教学设计篇三

1、知识与能力目标:在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

2、过程与方法目标:通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力。

3、情感态度价值观:通过自主学习,经历探究的过程,体验成功的快乐。

:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:

师生问好!

师:课前我们先进行一组口算练习,下面请##同学上台主持。

3:8=2:6=4:4=9:3=8:24=。

5:20=8.8:1.1=16:96=。

4:5=2:20=。

32:4=4:44=。

15:25=10:80=。

(小组活动)。

(学生回答)。

(学生回答)。

师:同学们真了不起,提出了这么多问题!

学习数学,我们不仅要善于提问,还要善于观察,下面请同学们在小组内交流一下自主学习的内容,组长分好工,准备汇报展示。

(小组活动)。

师:哪个小组的同学愿意来汇报自主学习的内容?

生汇报:我来汇报……其他小组有什么评价或补充吗?

师评价。

(生答)。

师:我真为你们感到骄傲,想到了这么多不同的答案!

组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

说出老师指的这个数是比例的外项还是比例的内项?

(师指生齐说)。

师:同学们反应特别快!比例还可以写成分数形式,那这个比我们可以写成。

师:请你观察,在这个分数形式的比例里,比例的外、比例的内项是谁?

师:同学们表现特别棒,那老师来考考你!看能不能通过刚才所学的知识解决我会应用。

(指1生读温馨提示)。

(生合作探究)。

师:哪个小组的同学愿意上台来把你们的发现跟同学们分享。

(生汇报展示)。

师:同学们能通过举例,验证自己的发现,太厉害了!在比例里,两个外项的积等于两个內项的积,叫做比例的基本性质,观察这个分数形式的比例,可发现交叉相乘的积相等。

师:同学们真了不起,想出了这么多不同的答案!通过本节课的学习,你有什么收获?

(生谈收获)。

师:同学们的收获可真不少!这就是本节课我们要学习的《比例的意义和基本性质》。

师:下面我们进行达标检测。

(生完成后)。

师:哪个小组的同学愿意来汇报自主学习的内容,其他同学拿出红笔,同桌互换。

(小组汇报)。

师:全对的同学请举手,组员全对的奖励一颗小印章。

师:同学们这节课表现得真棒,继续努力,好,下课!

《比例的意义和基本性质》是青岛版六年级下册第35—36页的内容,本节的教学目标制定如下:1、在具体情境中,理解比例的意义和基本性质,会应用比例的基本性质正确判断两个比能否组成比例(重点)。2、通过在探索比例的意义和基本性质的过程中,进一步发展自己的合情推理能力(难点)。3、通过自主学习,经历探究的过程,体验成功的快乐。本节概念性的东西较多,学生需要理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,我大胆放手,通过让学生自学课本,让学生讲的方式,使学生的学习能力得到了提升。备课前我查阅了有关比例的意义和基本性质的很多资料,并观看了视频,在研读了课标及教学用书后设计了自己的教学思路。《比例的意义和基本性质》是属于概念的教学,在课的设计上我紧扣“概念教学”这一主题进行设计。下面我从以下几方面反思自己的教学:

比例的意义和基本性质,是在学生学习了“比”后进行的,而“比’是上个学期学习的知识。根据我对学生的了解,大多数学生会把学过的不相关的知识忘到脑后,因此,通过课前口算练习和知识链接环节,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。

课改鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕迹而已。

从境景图入手,主要是让学生能通过现实情景体会比例的应用,运输量和运输次数的比的比值是相等的,由此引入比例的意义的教学。

在教学这节课时,我能充分发挥学生的主体作用,让学生通过小组讨论、交流,自主得出在比例里,两个外项的积等于两个内项的积,然后举例验证,最后归纳出比例的基本性质。学生用实际行动证明了他们对这部分知识的掌握,积极性也很高。

每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,把12:()=():5这个比例补充完整,告知学生有无数个比例,这样能推动学生积极思考,培养学生的发散思维。

根据一个乘法等式,写出比例,鼓励学生逆向思维,意在考察学生能否灵活运用新知。学生的表现也挺让我惊喜的,学生的思维很灵动。

每一次的课,总会有一些优点,但也发现了自己的一些不足:

只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。以上是自己对本节课的一些反思,希望领导和老师们批评指正。

光的本性教学设计篇四

1.使学生进一步理解比例的意义,懂得比例各部分名称。2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。3.能运用比例的基本性质判断两个比能否组成比例。【教学重点】比例的基本性质。

2.应用比例的意义,判断下面的比能否组成比例。6∶10和9∶15。

4.5∶1.5和10∶5教师结合回答说:刚才,你们是根据比例的意义先求出比值,再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?那学完今天的知识----比例的基本性质,老师的秘密对你来说就不是秘密了。

【设计意图】注重从学生已有的知识出发,为新课做好铺垫。

二、自主探究。

三、反馈。

1.在四人小组里,将你的发现与同伴交流一下。

2.全班交流.(当学生说到比例的基节本性时,师引导学生探究验证.)3.板书:在比例中,两个外项的积等于两个内项的积。

【设计意图】因为学生对比的知识了解甚多,在这一环节,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳的过程,并渗透科学态度的教育。

五、巩固练习。

1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(完成课本第41面的“做一做”)。

2、():4=6:()。

3、根据比例的基本性质,在()里填上适当的数.(1)15∶3=():1(2)2∶0.5=1.2:()。

5.在a:3=8:b中()是内项,a*b=()6.如果2a=7b(a,b不为零),那么a/b=()/()。

【设计意图】练习主要是运用比例的基本性质。要求学生讲明理由,培养学生有根据思考问题的良好习惯,并与用比例的意义来判断两个比能不能组成比例形成对比;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯,并且充分体现练习的层次性、开放性,让孩子们发现比例的知识的奥妙。

六、通过本节课学习,你有什么收获?还有什么疑问?

【设计意图】关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

七、布置作业:

1、课本第43页的第5题(全班完成)。

2、课本第44页的第14题(学有余力的孩子完成)。

在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。【板书设计意图】这板书是为了突出重点,让孩子能一目了然地看出比例各部分名称以及两个外项和两个内项的积到底是两个数相乘。

光的本性教学设计篇五

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

根据乘法等式写出正确的比例。

多媒体课件。

本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

一、旧知铺垫导入。

2、比和比例有什么区别?

【设计意图】。

注重从学生已有的知识出发,为新课做好铺垫。

二、自主探究。

过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

【设计意图】。

组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

三、反馈练习。

指出下面比例的外项和内项。(投影出示)。

先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

【设计意图】。

这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

【设计意图】。

这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

五、巩固练习。

1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

(学生独立完成后,用展示台展示)。

3、根据比例的基本性质,在()里填上适当的数。(投影出示)。

六、全课总结:

这节课你有什么收获。

【设计意图】。

关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

七、拓展练习:把下面的等式改写成比例。

3×40=8×15。

光的本性教学设计篇六

1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

多媒体课件。

一、复习旧知。

1.师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。2.师:如何判断两个比能否组成比例?生:化简比、求比值。

3∶6=1∶2。

所以6∶10=9∶15生2:因为20∶5=4∶1。

28∶7=4∶1。

所以20∶5=28∶7.

(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

(1)观察这几组比例,它们有什么共同点?

在比例6:3=4:2中,组成比例的四个数“。

6、

3、

4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

认真观察所写出的比例,你有什么发现?(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

(2)6×2=3×4,两个外项的积等于两个內项的积。4.验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

(1)与同桌每人写出一个比例,交换验证。

(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。8.教学“试一试”

(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

三、巩固练习。

1.完成“练一练”第1题。(1)从表中你知道哪些信息?(2)从表中选择两组数据,写出一个乘积相等的式子。

追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

学生独立完成,教师巡视。

2、练习七第2题。

(1)下面四个数。

5、

说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

3.任意从1-10中,写出4个数,判断能否组成比例?

与同桌合作完成。一个写,另一个判断。4.我是小法官,对错我来判。

(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。(2)学生独立完成第2小题。

四、全课总结。

今天我们学习了什么内容?你有什么收获?

光的本性教学设计篇七

1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

2、利用比例知识解决实际问题。

3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

一、谈话导入,创设情境:

出示cai课件(一张微型照片)。你能看出这是杭州哪一个景点的照片?的确,照片太小了,那现在老师将这张照片按一定比例放大一些,。由此出现一张平湖秋月的风景照。

我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

二、自主探究,学习新知。

(一)教学比例的意义。

1、8厘米。

出示。

6厘米。

4厘米。

3厘米。

(1)根据表中给出的数量写出有意义的比。

(2)哪些比是相关联的?

(3)根据以往经验,可将相等的两个比怎样?(用等号连接)。

教师并指出这些式子就是比例。

2、让学生任意写出比例,并让学生用自己的语言描述比例的意义。

3、教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

4、写出比值是1/3的两个比,并组成比例。

1、比例和比有什么区别?

2、认识比例的各部分。

(1)让学生自己取。

(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的。

外项,中间的两项叫做比例的内项。

板书:8:6=4:3。

内项。

外项。

(3)让学生找出自己举的比例的内外项。

()。

12。

2

()。

=

(4)找出分数形式比例的内外项位置又是怎样的?

3、出示【启迪学生思维,展开审美想象】。

(1)这个比例已知的是哪两项,要求的又是哪两项?学生试填。

(2)学生反馈,教师板书。

(3)你发现了什么?

(4)指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

4、用比例性质验证你所写比例是否正确。

5、练习8:12=x:45。

0.5。

x

20。

32。

=

求比例中的未知项,叫做解比例。

如何证明你的解是正确的?

(三)小结:今天这堂课你有什么收获?

三、巩固练习。

1、下面哪几组中的两个比可以组成比例。

4

1

12:24和18:36。

0.4:和0.4:0.15。

14:8和7:4。

5

2

2、根据18x2=9x4写出比例。【体会到数学的逻辑美,规律美】。

3、从1、8、0.6、3、7五个数中。

(1)选出四个数,组成比例。

(2)任意选出3个数,再配上另一个数,组成比例。

(3)用所学知识进行检验。

四、实际应用。

不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

同学们,如果你是汪骏强,你准备怎么办?

光的本性教学设计篇八

使学生理解比例的意义,会用比例的意义正确地判断两个比是否成比例,使学生理解比例的基本性质。

灵活地判断两个比是否组成比例。

投影机等。

一、复习。

1、什么叫做比?什么叫做比值?

2、求出下面各比值,哪些比的比值相等?

12:16:4.5:2.710:6。

二、提示课题,引入新课。

1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。

2、引入新课。

三、导演达标。

1、教学比例的意义。

(1)引导学生观察课本的表格后回答:

a、第一次所行驶的路程和时间的比是什么?

b、第二次所行驶的路程和时间的比是什么?

c、这两次比的比值各是什么?它们有什么关系?

板书:80:2=200:5或=。

(2)引出比例的意义。

a、表示两个比相等的式子叫做比例。

c、判断两个比能不能组成比例,关键是看两个比的比值是否相等。

d、做一做。(先练习,后讲评)。

(1)看书后回答:

a、什么叫做比例的项?

b、什么叫做比例的外项、内项?

(2)引导学生总结规律?

先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。

3、练习:判断下面的哪组比可以组成比例。

6:9和9:121.4:2和7:10。

四、巩固练习:第一、二题。(指名回答,集体订正)。

五、总结:今天我们学习了什么?

比例的意义和比例的基本性质及怎样判断两个比是否可以组成比例的方法。

六、作业:第二题。

光的本性教学设计篇九

1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

3.较好实现知识教育与思想教育的有效结合。

理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。

板书有关习题的幻灯片。

一、复习。

1.出示。

在括号里填上适当的数:

指名说一说结果,并说一说你是根据什么填的?

二、课堂练习:

1.自主练习第4题。

学生先独立做,教师巡视,并个别指导,集体订正。

教师板书题目中的线段,指名让学生板演。

在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)。

怎样找出相等的分数?

让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

然后要求学生在书上把这几个相应的点找出来。指名板演。

2.自主练习第5题。

先让学生独立做,教师巡视。个别指导。

指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

教师根据学生的回答选择几个题目进行板书。

3.自主练习第6题。

先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

集体订正。指名说一说自己的计算过程和结果。

教师根据学生的回答选择几个题目进行板书。

4.自主练习第7题。

学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

5.自主练习第8题。

学生先独立做。

光的本性教学设计篇十

学习内容分析:

“分数的基本性质”是九年义务教育小学数学北师大版五年级上册第三单元的内容。它是在学生学习了分数的意义、分数大小的比较、商不变的性质、分数与除法的关系的基础上进行的,为以后学习约分、通分做准备。

学习者分析:

学生已掌握了分数的意义和商不变的性质,已具备一定的动手操作的能力和分析、概括能力,能用分数表示图形的阴影部分,已具备一定的合作交流的意识和经验。

教学目标:

3:经历猜想、验证、实践等数学活动,合作学习能力得到提高,并进一步体验数学学习的乐趣。

教学重点:

教学难点:

设计意图:

“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,以前我曾经听过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥。

基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。

教学过程:

一、复习旧知,引入新课。

1、直接写出得数:

(1)18÷6=(2)120÷40=(3)2÷3=—。

180÷60=12÷4=10÷15=—。

2、你能从前两组题中回忆起商不变性质吗?(被除数和除数同时扩大或缩小相同的倍数,商不变。)。

3、你能根据第三组题说出分数与除法的关系吗?根据分数与除法的关系,将商不变性质中的被除数、除数、商分别改为分子、分母、分数值后又怎么说?(分子和分母同时扩大或缩小相同的倍数,分数值不变。)分数中是否真有这样的规律呢?这节课我们就来探讨这个问题。

(通过上述知识的复习,为下面沟通商不变性质与分数基本性质的联系作准备。)。

二、小组合作,探究新知。

1、折一折,画一画。

师:请同学们拿出准备好的三张长方形纸片。

要求:1)将三张同样大小的长方形纸片,分别平均分成4份、8份、16份。将第一张的3份画上阴影,第二张的6份画上阴影,第三张的12份画上阴影。

2)用分数表示阴影部分,

3)将阴影部分剪下来进行比较,看看能发现什么?

2、汇报。(师将一份学生作品贴在黑板上),

请这一同学谈谈发现:通过比较,三幅图阴影部分面积一样,因而三个分数一样大。(师板书三个分数相等的式子)。

3、师出示例2的三幅图。

4、请学生写出表示阴影部分的分数,再观察三幅图阴影部分面积,同样得出三个分数一样大的结论。

5、算一算。

2)学生先独立思考,后小组里讨论交流想法。

3)汇报。小组派代表汇报,教师根据汇报适当板书。

(通过折一折、画一画,培养学生的动手操作能力,同时给学生提供充分的感性材料,丰富他们的生活经验又可以激发学生的学习兴趣。)。

三、概括性质,揭示课题。

1、师:哪位同学能用一句话把大家发现的规律概括出来呢?

2、师:像右边那样列式行吗?=,为什么?你能将刚才概括出的规律修正一下吗?(出示分数的基本性质,全班齐读一遍。)。

3、师小结:刚才我们所说的就是分数的基本性质,它在课本第四十三页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。(全班再齐读一遍)。

(让学生概括分数的基本性质,培养学生的概括能力,通过分子分母同时乘以0,引导学生发现分母为0,分数没有意义,以培养学生思维的缜密性,同时回应前面的复习练习。)。

四、解释应用,强化认知。

2、第43页试一试。

3、练一练。第44页第4题。

4、判断对错。

(1)分数的分子和分母都乘或除以相同的数,分数的大小不变。()。

(2)把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。()。

(3)3/4的分子乘3,分母除以3,分数的大小不变。()。

(4)10/24的分子加5,要使分数的大小不变,分母也必须加5。()。

5、数学游戏“你说我对”(图略)。

(利用以上练习,运用所学的知识解决实际问题,提高解决问题的能力,培养应用意识。)。

四、小结回顾,评价激励。

(复习所学知识和方法,加深认识,深化主题)。

六、布置作业,拓展延伸。

课本第44页第1、2、3题。(巩固所学知识)。

光的本性教学设计篇十一

知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。

过程与方法:引导学生在参与观察、比较、猜想、验证等学习活动的过程中,有条理,有根据地思考、探究问题,培养学生的抽象概括能力。

情感、态度和价值观:使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

预习生成单、作业纸、课件。

一课时。

一、导入新课,揭示课题。

1、师:通过昨天的预习,你知道我们今天要学习什么内容?(生:分数的基本性质)。

2、师:针对这个内容,同学们做了充分的预习,相信你们一定提出了不同的数学问题,现在请组长带领组员提炼出你们组最想研究的问题。

3、指名学生汇报。

4、师:同学们,不管你们提出什么样的问题,都与分数的基本性质有关,今天我们就带着这些问题走进课堂。

二、检查预习,自主探究。

1.出示预习生成单:(师:我们已经预习了这部分内容,请同学们组内交流一下你们的预习成果,形成统一意见准备汇报。)。

2.指名上台展示并汇报。(师:哪个组的同学愿意最先上来展示你们的成果?)。

4.师:其他同学还有补充吗?你们得出这个结论了吗?

三、合作交流,探究新知。

1.师:第一张纸涂色部分是这张纸的(学生说二分之一),第二张纸涂色部分是这张的(四分之二),第三张纸涂色部分是这张纸的(八分之四),涂色部分都相同,也就证明这三个分数的大小也(学生说相等),可是,它们的分子分母却不相同,他们有没有一定的变化规律呢?我们通过合作交流来探究这个问题。

2.出示合作要求(课件),指名学生读一读。

3.学生合作交流,探究学习。

5.指导汇报,总结规律。谁能完整的说一下你们刚才总结出的规律?

6.教师归纳板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

7.请同学们读一读这句话,想一想:还有需要补充的内容吗?(0除外)。

8.再读一读,说说这句话中哪个词比较关键。

9.拓展深化,加深理解,完成练习,思考:分数的基本性质与商不变的性质之间的联系。(练习一)这个过程也要看学生的生成在哪,教师及时的给予肯定。

9.教师小结:通过刚才的学习,孩子们的表现特别出彩,老师相信你们接下来的表现会更棒。

四、应用拓展,新知内化。

1.出示例2,指名读题,理解题意。

2.师:你觉得解决这道题应该利用什么知识?(生:分数的基本性质)。

3.学生独立在练习本上完成,指名板演,集体订正。

4.小结:刚才,我们通过自主学习、小组探究知道了什么是分数的基本性质,下面就应用分数的基本性来解决一些实际问题。

五、当堂检测。

光的本性教学设计篇十二

1.理解比例的基本性质,认识比例的各部分名称。2.能用比例的基本性质正确判断两个比能否组成比例。学习重点理解比例的基本性质。

一、复习(课件出示以下问题,指名学生回答)。

1、什么叫做比例?

2、什么样的两个比才能组成比例?

3、判断下面的比,哪两个比能组成比例?把组成的比例写出来。3:918:303:61.8:0.92:49:27学生独立完成后全班交流订正。

判断两个比能不能组成比例,除了看比值是否相等,还有没有其它的方法?这节课我们就一起来研究研究。

二、自主探索,体验新知。(课件出示自学要求)。

1、自学要求:1)自学书第41页的内容,把重要的地方画上线,不懂的问题用铅笔标在书上。2)提示:可以结合以下问题进行自学:

(1)什么叫比例的项?比例中有几个项?分别叫什么?(2)你能把比例改写成分数形式吗?改写成分数后你还能找到比例的外项和内项吗?试试看.(3)比例的基本性质是什么?你能用字母表示这个性质吗?根据比例的基本性质如何判断两个比能不能组成一个比例.(4)小组中议一议并集体交流。

2、组织学生交流自学成果。1)试一试。

应用比例的基本性质,判断下面的两个比能否组成比例。如果能组成比例,把组成的比例写出来,并指出比例的内项和外项。

3:6和8:50.2:2.5和4:502)课件出示三组比例,让学生填空。

三、巩固练习。

课件出示练习题,学生练习。

四、课堂总结说一说本节课的收获。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制