最新勾股定律北师大版数学初二教案(热门14篇)
文件格式:DOCX
时间:2023-12-14 11:55:28    小编:FS文字使者

最新勾股定律北师大版数学初二教案(热门14篇)

小编:FS文字使者

教案的编写应该注重教学目标的明确和对学生发展的关注。教案需要根据学科的特点和学生的认知规律进行科学的设计。以下教案的编写体现了教师的敬业精神和专业能力。

勾股定律北师大版数学初二教案篇一

1.能通过估算检验计算结果的合理性,能估计一个无理数的大致范围,并能通过估算比较两个数的大小.

2.掌握估算的方法,形成估算的意识,发展学生的数感.

过程与方法。

1.能估计一个无理数的大致范围,培养学生估算的意识.

2.让学生掌握估算的方法,训练他们的估算能力.

情感态度与价值观。

让学生在合作探究中体会到成功的喜悦。

教学重点。

1.让学生理解估算的意义,发展学生的数感.

2.掌握估算的方法,提高学生的估算能力.

教学难点。

掌握估算的方法,并能通过估算比较两个数的大小.

教学过程。

一.导入新课。

同学们,请大家说出咱们班男生和女生的平均身高.你又是怎样得出结果的呢?

(我猜的.)。

“猜”字的意思就是根据自己的判断而估计得出的结果,它并不是准确值,但也不是无中生有,是有一定的理论根据的,本节课我们就来学习有关估算的方法.

二.讲授新课。

问题:某地开辟了一块长方形的荒地,新建一个以环保为主题的公园,已知这块荒地的长是宽的2倍,它的面积为400000米2.

(1)公园的宽大约是多少?它有1000米吗?

(2)如果要求误差小于10米,它的宽大约是多少?

(3)该公园中心有一个圆形花圃,它的面积是800米2,你能估计它的半径吗?(误差小于1米)。

(因为已知长方形的长是宽的2倍,且它的面积为40000米2,根据面积公式就能找到它们的关系式.可设公园的宽为x米,则公园的长为2x米,由面积公式得:

勾股定律北师大版数学初二教案篇二

1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.

2.能判断给出的数是否为有理数;并能说出现由.

过程与方法。

1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.

2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.

情感与价值观。

1.激励学生积极参与教学活动,提高大家学习数学的热情.

2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.

3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.

教学重点。

1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.

2.会判断一个数是否为有理数.

教学难点。

1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.

2.判断一个数是否为有理数.

教学方法。

教师引导,主要由学生分组讨论得出结果.

教学过程。

一、创设问题情境,引入新课。

[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?

[生]在小学我们学过自然数、小数、分数.

[生]在初一我们还学过负数.

[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.

二、讲授新课。

1.问题的提出。

[生]好.(学生非常高兴地投入活动中).

[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.

同学们非常踊跃地呈现自己的作品给老师.

[师]现在我们一齐把大家的做法总结一下。

勾股定律北师大版数学初二教案篇三

1、平行线的性质定理的证明.

2、证明的一般步骤.

过程与方法。

1、经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.

2、结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.

情感与价值观。

通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.

教学重点。

证明的步骤和格式.

教学难点。

理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.

教学过程:

一、创设现实情境,引入新课。

节课我们就来研究“如果两条直线平行”.

二、讲授新课。

在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:

同位角相等两直线平行,.

议一议。

利用这个公理,你能证明哪些熟悉的结论?

想一想。

(2)你能根据所作的图形写出已知、求证吗?

(3)你能说说证明的思路吗?

勾股定律北师大版数学初二教案篇四

课件出示:师:2002年世界数学家大会在我国北京召开,课件显示的是本届世界数学家大会的会标.会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图案来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)。

二、探究新知。

1.探究直角三角形三边长度的平方的关系.

课件出示如下地板砖示意图,引导学生从面积角度观察图形.

师:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

2.探索勾股定理.

师:由刚才归纳发现的结论,我们自然产生联想:一般的直角三角形是否也具有该性质呢?

勾股定律北师大版数学初二教案篇五

在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

1、创设情境。

师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界。

追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论。

问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

勾股定律北师大版数学初二教案篇六

学生技能基础:学习本节之前,学生已经对命题的含义有所了解,并且已经学习过一些公理和定理,为公理化思想的培养作好了充分准备.

活动经验基础:有了上一节的活动基础,学生对本节课主要采取学生分组交流、讨论、举例说明的学习方式有比较好的活动经验.

二、教学任务分析。

在上一节课的学习中,学生对命题的概念有了清楚的认识,但学生对于命题的构造,什么是真命题,什么是假命题还不甚了解,本节课旨在让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念,为此,本节课的教学目标是:

1.了解命题中的真命题、假命题、定理的含义;。

2.解命题的构成,能区分命题中的条件和结论。

3.经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理.

4.培养学生的语言表达能力。

三、教学过程分析。

本节课的设计分为五个环节:回顾引入——探索命题的结构——思考探讨——读一读——课堂反思与小结.

勾股定律北师大版数学初二教案篇七

一、你怎样理解这四首诗所表达的感情?各用一句话概括。

二、“孤城”、“羌笛”、“杨柳”、“落日”是古诗中常见的意象,请你找出一些带有上述意象的诗句加以吟诵,说说这些意象在古诗中一般有什么意味。

_三、探究活动:你赞同以下说法吗?请你查找有关资料或网站,与同学展开辩论。

1、王之涣的《凉州词》首句有些版本作“黄沙直上白云间”。有人认为后人广为流传的“黄河远上白云间”是错误的,因为在凉州根本见不到黄河,只能见到黄沙。

2、有人说河西走廊距青海千里之遥,那里根本无法看到青海的云,王昌龄《从军行》把“青海长云”与“孤城”、“玉门关”放在一起是不合适的。

3、对于“属国过居延”,课文注解“属国”是官名,指使臣。另一种说法认为“属国”指的是附属国,这句诗是“过属国居延”的倒装。

四、读了楚楚的《草原散章》,请说说你的总体感受。

答:

勾股定律北师大版数学初二教案篇八

学生的技能基础:学生已经有了初步的统计意识,在第一课时的学习中,学生已经接触了极差、方差与标准差的概念,并进行了简单的应用,但对这些概念的理解很单一,认为方差越小越好.

学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用。课堂主要采用实验讨论、自主探索、合作交流等学习方式,学生有一定的活动基础,具备了一定的合作与交流的能力。

二、教学任务分析。

在学生对极差、方差、标准差等概念都有了一定的认识之后,学生对这些刻画数据离散程度的三个统计量的认识上还存在一个误区,那就是认为方差或标准差越小越好。因此,本节课安排了学生对一些实际问题的辨析,从而使学生对这三个统计量有一个更深刻的认识,为此,本节课的教学目标是:

1.知识与技能:进一步了解极差、方差、标准差的求法;会用极差、方差、标准差对实际问题做出判断。

2.过程与方法:经历对统计图中数据的读取与处理,发展学生初步的统计意识和数据处理能力。根据极差、方差、标准差的大小对实际问题作出解释,培养学生解决问题能力。

3.情感与态度:通过解决现实情境中的问题,提高学生数学统计的素养,用数学的眼光看世界。通过小组活动,培养学生的合作意识和交流能力。

三、教学过程分析。

本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入。

勾股定律北师大版数学初二教案篇九

2、了解刻画数据离散程度的三个量度——极差、标准差和方差,能借助计算器求出相应的数值。

过程与方法。

培养学生认真、耐心、细致的学习态度和学习习惯.2.渗透数学来源于实践,又反过来作用于实践的观点.

情感态度与价值观。

教学重点。

会计算某些数据的极差、标准差和方差。

教学难点。

理解数据离散程度与三个“差”之间的关系。

教学准备:计算器,投影片等。

教学过程:

一、创设情境。

1、投影课本p148引例。

(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会“平均水平”相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度——极差)。

2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究。

如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)。

问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?

2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度——标准差和方差作铺垫。

勾股定律北师大版数学初二教案篇十

(本课适合有条件使用计算器的学校)。

学生知识技能基础:学生在七年级上学期已经学习了《计算器的使用》,学会了使用计算器进行有理数的加、减、乘、除、乘方运算,掌握了计算器的基本使用方法.

学生活动经验基础:学生在七年级上学期已经学过了使用计算器进行简单的有理数的计算并利用计算器进行了一定的探索活动,积累了一些活动经验.

二、教学任务分析。

本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第5节,具体内容为:用计算器求平方根和立方根以及有关混合运算.经历运用计算器探求数学规律的活动,发展合情推理的能力.

为此,本课的教学目标是:

2.鼓励学生自己探索计算器的用法,经历运用计算器探求数学规律的活动,发展学生的探究能力和合情推理的能力.

3.在用计算器探索有关规律的过程中,体验数学的规律性,体验数学活动的创造性和趣味性,激发学习兴趣.

三、教学过程设计。

教学准备:每位学生一个计算器,并按计算器的类型分小组。

目的:便于使用相同计算器的学生进行讨论,共同学习。

勾股定律北师大版数学初二教案篇十一

教学目标:

知识与技能:

1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.

2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

过程与方法。

1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

情感现价值观。

1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。

教学重点:

经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:

由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

一创设问题情境,引入新课。

『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。

我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

探索两个关于坐标轴对称的图形的坐标关系。

1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。

2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。

勾股定律北师大版数学初二教案篇十二

 教学目标:

知识与技能目标:

1.探索并掌握平行线的性质;。

2.能用平行线的性质定理进行简单的计算、证明.

过程与方法目标:

2.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.

情感态度与价值观目标:

1.通过对平行线性质的探究,使学生初步认识数学与现实生活的密切联系,体会科学的思想方法,激发学生探索创新精神.

l重点:

1.平行线性质的研究和发现过程;。

难点:

l教学流程:

一、情境引入。

1、同位角相等,两直线平行.

2、内错角相等,两直线平行.

3、同旁内角互补,两直线平行.

反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?

如图,直线a与直线b平行.

如图,直线a与直线b平行,被直线c所截.测量这些角的度数,把结果填入下表内.

勾股定律北师大版数学初二教案篇十三

学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.

学生活动经验基础:在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.

二、教学任务分析。

学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《你能肯定吗》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。因此,本课时的教学目标是:

1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.

2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.

3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.

勾股定律北师大版数学初二教案篇十四

平行线的性质公理:两条平行线被第三条直线所截,同位角相等.简单记为:两直线平行,同位角相等。

证明命题的一般步骤:

(1)根据题意画出图形(若已给出图形,则可省略)。

(2)根据题设和结论,结合图形,写出已知和求证;。

(3)经过分析,找出已知退出求证的途径,写出证明过程;(4)检查证明过程是否正确完善。

猜你喜欢 网友关注 本周热点 软件
musicolet
2025-08-21
BBC英语
2025-08-21
百度汉语词典
2025-08-21
精选文章
基于你的浏览为你整理资料合集
复制